Supporting Information For:

Record High Single-Ion Magnetic Moments through 4fⁿ5d¹ Electron Configurations in the Divalent Lanthanide Complexes [(C₅H₄SiMe₃)₃Ln]⁻

Katie R. Meihaus,[†] Megan E. Fieser,[‡] Jordan F. Corbey,[‡] William J. Evans,^{‡,*} and Jeffrey R. Long^{†,§,*}

[†]Department of Chemistry, University of California, Berkeley, California 94720

[‡] Department of Chemistry, University of California, Irvine, California 92697

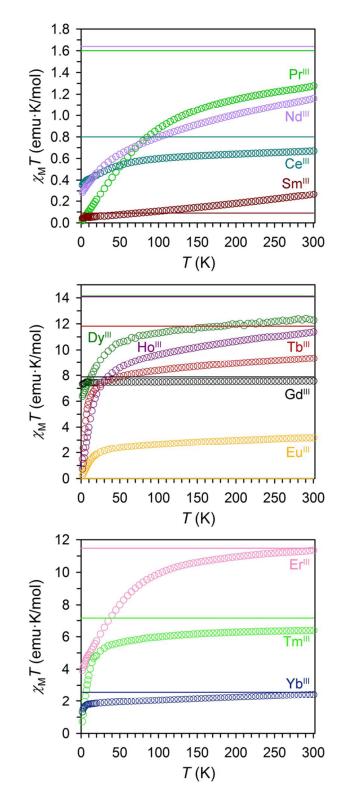
[§] Materials Science Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720

Journal of the American Chemical Society

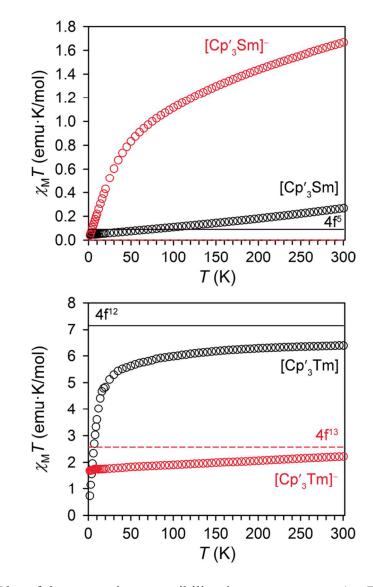
Table of Contents

Page S3 – Figure S1, Plot of the magnetic susceptibility times temperature ($\chi_M T$) versus *T* for the stable trivalent lanthanides, cerium through ytterbium.

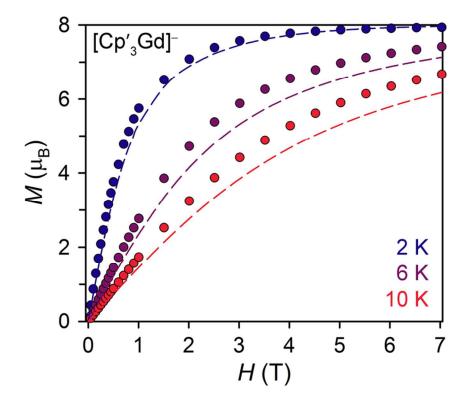
Page S4 – Figure S2, Plot of $\chi_M T$ versus T for Cp'₃Sm / [K(crypt-222)][Cp'₃Sm] and Cp'₃Tm / [K(crypt-222)][Cp'₃Tm].

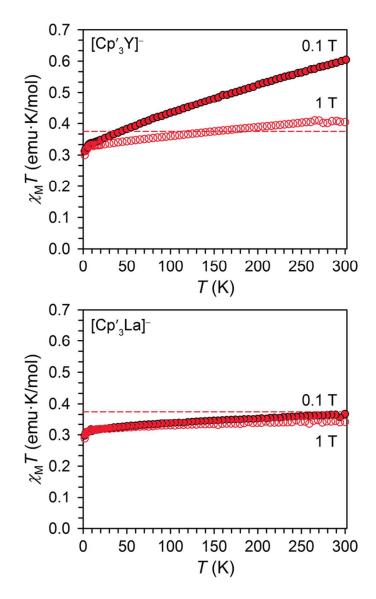

Page S5 – Figure S3, Magnetization versus field curves for [K(2.2.2-cryptand)][Cp'₃Gd].

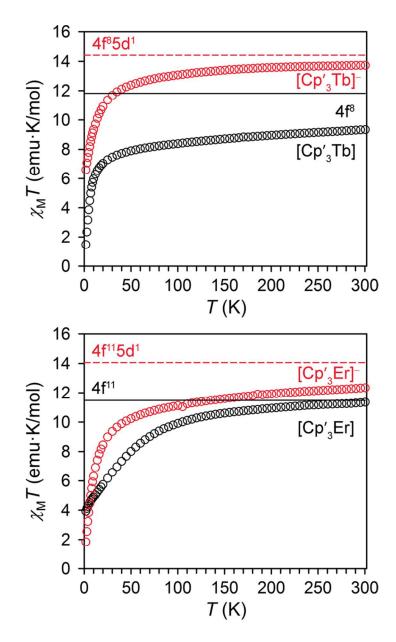
Page S6 – Figure S4, Plot of $\chi_M T$ versus T for [K(crypt-222)][Cp'_3Y] and [K(crypt-222)][Cp'_3La].

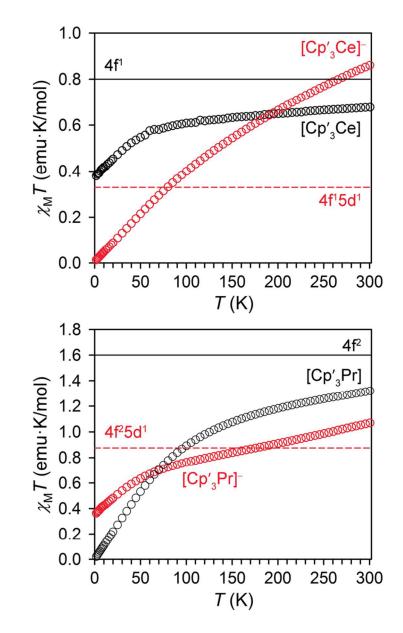

Page S7 – Figure S5, Plot of $\chi_M T$ versus *T* for [K(2.2.2-cryptand)][Cp'₃Tb] / Cp'₃Tb and Cp'₃Er / [K(2.2.2-cryptand)][Cp'₃Er]

Page S8 – Figure S6, Plot of $\chi_M T$ versus T for Cp'₃Ce / [K(crypt-222)][Cp'₃Ce] and Cp'₃Pr / [K(crypt-222)][Cp'₃Pr].


Page S9 – Figure S7, Variable-field $\chi_M T$ versus T for [K(crypt-222)][Cp'_3Ce] and [K(crypt-222)][Cp'_3Nd].


Figure S1. Plot of the magnetic susceptibility times temperature ($\chi_M T$) versus temperature for the stable trivalent lanthanides, cerium through ytterbium. Colored circles correspond to experimental data and colored lines represent the theoretical room temperature $\chi_M T$ value for each of the free trivalent lanthanides.


Figure S2. (Top) Plot of the magnetic susceptibility times temperature ($\chi_M T$) versus temperature for Cp'₃Sm (black circles) and [K(crypt-222)][Cp'₃Sm] (red circles) under an applied field of 0.1 T. Solid black and dashed pink lines represent the theoretical room temperature values for free Sm^{III} (4f⁵) and Sm^{II} (4f⁷), respectively. For [K(crypt-222)][Cp'₃Sm] at T = 300 K, $\chi_M T$ is 1.66 emu·K/mol, larger than the theoretical value of 0 emu·K/mol, assuming only the ground state (S = 3, L = 3, J = 0) is populated. However, the energy separation between ground and excited J for Sm^{II} and isoelectronic Eu^{III} is ~300 cm⁻¹, thus due to population of excited J states, the room temperature moment is often larger than the theoretical prediction. (Bottom) Plot of the magnetic susceptibility times temperature ($\chi_M T$) versus temperature for Cp'₃Tm (black circles) and [K(crypt-222)][Cp'₃Tm] (red circles) under an applied field of 0.1 T. Solid black and dashed pink lines represent the theoretical room temperature values for free Tm^{III} (4f¹²) and Tm^{II} (4f¹³), respectively. The experimental room temperature $\chi_M T$ values of 6.38 emu·K/mol and 2.22 emu·K/mol both closely approach the predicted values for free Tm^{III} (7.15 emu·K/mol) and Tm^{II} (2.57 emu·K/mol).


Figure S3. Variable temperature M(H) curves for [K(2.2.2-cryptand)][Cp'₃Gd] collected from zero to 7 T. Data points are given by colored spheres and dashed lines represent the corresponding sum of an $S = \frac{1}{2}$ and $S = \frac{7}{2}$ Brillouin function.

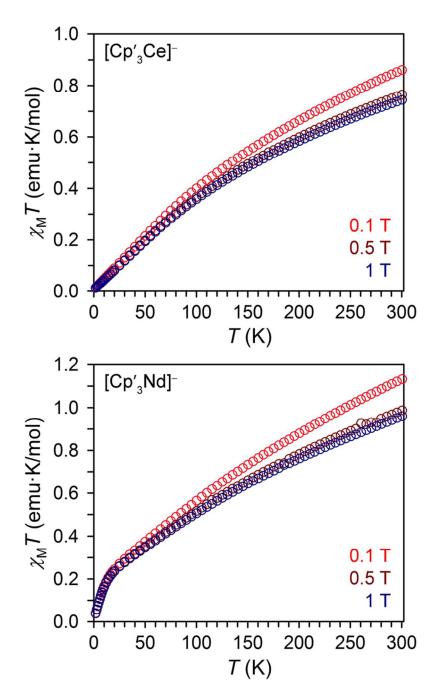

Figure S4. Plot of the magnetic susceptibility times temperature ($\chi_M T$) versus temperature for [K(crypt-222)][Cp'₃Y] (top) and [K(crypt-222)][Cp'₃La] (bottom) under applied fields of 0.1 T (filled circles) and 1 T (empty circles). Solid dashed pink lines represent the theoretical room temperature $\chi_M T$ values = 0.375 emu·K/mol for $S = \frac{1}{2}$. The large slope and linear increase with temperature in the case of [K(crypt-222)][Cp'₃Y] is indicative of temperature independent paramagnetism.

Figure S5. (Top) Plot of the static magnetic susceptibility times temperature ($\chi_M T$) versus *T* collected at 0.1 T for Cp'₃Tb (black circles) and [K(2.2.2-cryptand)][Cp'₃Tb] (red circles), with room temperature $\chi_M T$ values of 13.73 emu·K/mol and 9.34 emu·K/mol, respectively. Dashed pink line and solid black line represent the theoretical $\chi_M T$ values at 300 K for free Tb^{II} (14.42 emu·K/mol, coupled 4f⁸5d¹) and free Tb^{III} (11.82 emu·K/mol). (Bottom) Plot of the static magnetic susceptibility times temperature ($\chi_M T$) versus *T* collected at 0.1 T for Cp'₃Er (black circles) and [K(2.2.2-cryptand)][Cp'₃Er] (red circles), with room temperature $\chi_M T$ values of 12.35 emu·K/mol and 11.35 emu·K/mol, respectively. Dashed pink line and solid black line represent the theoretical $\chi_M T$ values at 300 K for free Er^{II} (14.06 emu·K/mol, coupled 4f¹¹5d¹) and free Er^{III} (11.48 emu·K/mol).

Figure S6. (Top) Plot of the magnetic susceptibility times temperature ($\chi_M T$) versus temperature for Cp'₃Ce (black circles) and [K(crypt-222)][Cp'₃Ce] (red circles) under an applied field of 0.1 T. Solid black and dashed pink lines represent the theoretical room temperature values for free Ce^{III} (4f¹) and Ce^{II} (assuming 4f¹5d¹), respectively. For [K(crypt-222)][Cp'₃Ce] at T = 300 K, $\chi_M T$ is 0.86 emu·K/mol, larger than the theoretical value for the coupled 4f¹5d¹ configuration (0.33 emu·K/mol), though smaller than the theoretical value for the 4f² and uncoupled 4f¹5d¹ configurations (1.6 emu·K/mol and 1.18 emu·K/mol, respectively). (Bottom) Plot of the magnetic susceptibility times temperature ($\chi_M T$) versus temperature for Cp'₃Pr (black circles) and [K(crypt-222)][Cp'₃Pr] (red circles) under an applied field of 0.1 T. Solid black and dashed pink lines represent the theoretical room temperature values for free Pr^{III} (4f²) and Pr^{II} (4f²5d¹ coupled), respectively. The room temperature $\chi_M T$ value of 1.07 emu·K/mol for [K(crypt-222)][Cp'₃Pr] falls in between the values for the 4f² and 4f²5d¹ configurations, similar to Ce^{II} and Nd^{II} as discussed in the main text.

Figure S7. Plot of the magnetic susceptibility times temperature ($\chi_M T$) versus temperature for [K(crypt-222)][Cp'₃Ce] (top) and [K(crypt-222)][Cp'₃Nd] (bottom) collected at fields of 0.1 T, 0.5 T, and 1 T (red, dark red, and dark blue circles, respectively).