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Figure S1. SEM image showing the distorted shape of the boron-doped silicon diatom 

frustules after treatment with HCl and HF. 
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Figure S2. XPS survey spectra of boron-doped silica diatom frustules (A) and silicon diatom 

frustules (B). 
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Figure S3. XRD spectrum of boron-doped silicon diatom frustules. Strong silicon peaks 

(JCPDS card number 27-1402) were observed.  
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Figure S4. (A) Current density measurement for bare boron-doped silicon diatom frustules 

carried out in PBS electrolyte at 0 V. (B) Current density measurement for boron-doped 

silicon diatom frustules coated with InP and catalyst carried out in PBS electrolyte at bias 

potentials from 0 V to -500 mV in steps of 100 mV. (C) Current density measurement for 

boron-doped silicon diatom frustules coated with InP and catalyst carried out in 0.1 M H2SO4 

electrolyte at bias potentials from 0 V to -500 mV in steps of 100 mV. 
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Figure S5. GC of H2 (200 ppm) standard for 310 µl gas sample. 
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Theoretical moles of H2 produced  

 

 

According to R (H2) = 
�
�� , a photocurrent of 6 µA should produce 0.112 µmol of H2 for  

1 h.  

 

R (H2) =  
�	�	��	
	�	
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mol ��
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=  3.1 x 10

-5 
x 10

-6  
A mol H2

 
C

-1  
 

 
For 1 h of water splitting reaction = 3.1 x 10

-5
 x 10

-6 
A mol H2

 
C

-1 
x 3600 s  

 

(where Charge (C) = Current (A) x Time (s)) 

 

Amount of H2 evolution for 1 h = 0.112 µmol (or) 112 nmol. 

 

 

Calculation for moles of H2 produced from gas chromatography 

 
Average area of pure H2 (310 µl, 200 ppm) = 0.00455 mV min 

 

Consider, 99.5% of pure H2 has 995000 ppm of H2. 

 

To convert the average area of pure H2 (310 µl, 200 ppm)  

 

into high pure H2 = � 0.00455 mV min

200 ppm
� × 	995000	ppm = 22.63625 mV min. 

 

Average area of high pure H2 (310 µl) = 22.63625 mV min. 

 

Area of sample H2 (310 µl) after 1 h = 0.00655 mV min 

 

From the areas of pure and sample H2, the H2 evolution is calculated based on the formula 

from Zhang et al. 
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Amount of H2 evolution = � �.�����	��	�� 
(22.63625-0.00655) mV min

� x 1 ml x 
�!"

��.�	�	����	�"	 
 

(where 1 ml is the volume of the headspace.) 

 

Amount of H2 evolution for 1 h = 12.9 nmol. 
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