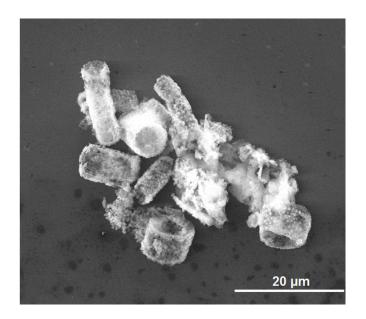
Boron-Doped Silicon Diatom Frustules as a

Photocathode for Water Splitting

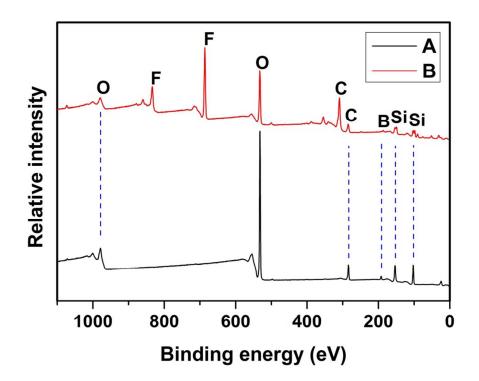
Soundarrajan Chandrasekaran[†], Thomas J. Macdonald[‡], Andrea R. Gerson[§], Thomas Nann

 $^{\sharp *}$ and Nicolas H. Voelcker $^{\dagger *}$

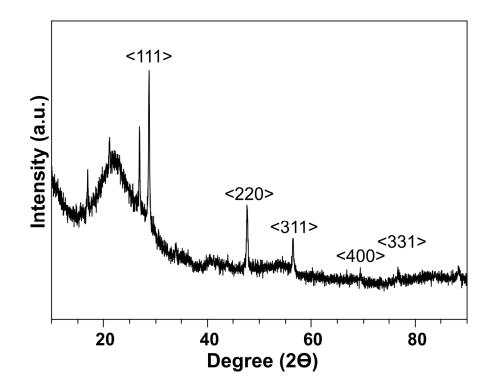
[†]Mawson Institute, University of South Australia, Mawson Lakes Blvd, Adelaide, SA 5095, Australia.

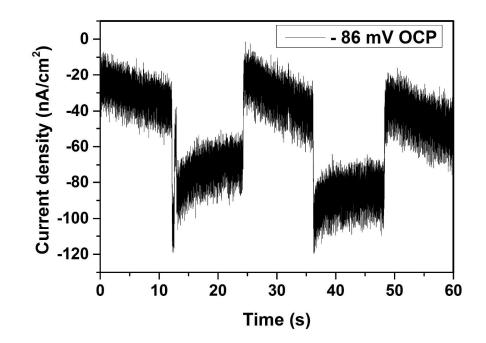

[‡]Ian Wark Research Institute, University of South Australia, Mawson Lakes Blvd, Adelaide, SA 5095, Australia.

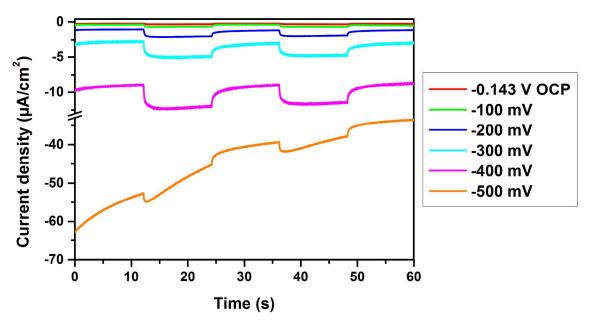
[§]Minerals and Materials Science & Technology, Mawson Institute, University of South Australia, Mawson Lakes, Adelaide, SA 5095, Australia.

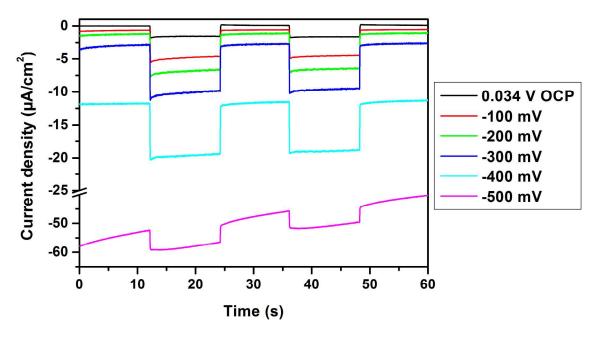

* Thomas Nann, e-mail: thomas.nann@unisa.edu.au.

* Nicolas H. Voelcker, e-mail: nico.voelcker@unisa.edu.au.


Supporting Information


Figure S1. SEM image showing the distorted shape of the boron-doped silicon diatom frustules after treatment with HCl and HF.


Figure S2. XPS survey spectra of boron-doped silica diatom frustules (A) and silicon diatom frustules (B).


Figure S3. XRD spectrum of boron-doped silicon diatom frustules. Strong silicon peaks (JCPDS card number 27-1402) were observed.

(A)

(B)

(C)

Figure S4. (A) Current density measurement for bare boron-doped silicon diatom frustules carried out in PBS electrolyte at 0 V. (B) Current density measurement for boron-doped silicon diatom frustules coated with InP and catalyst carried out in PBS electrolyte at bias potentials from 0 V to -500 mV in steps of 100 mV. (C) Current density measurement for boron-doped silicon diatom frustules coated with InP and catalyst carried out in 0.1 M H₂SO₄ electrolyte at bias potentials from 0 V to -500 mV in steps of 100 mV.

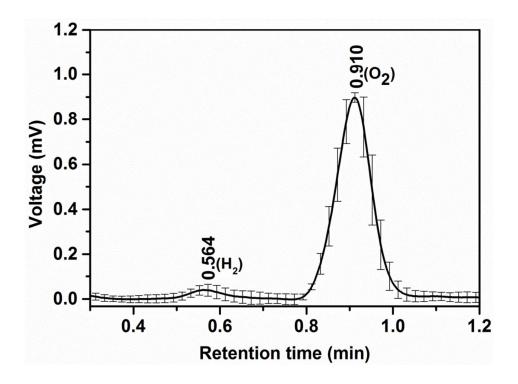


Figure S5. GC of H_2 (200 ppm) standard for 310 µl gas sample.

Theoretical moles of H₂ produced

According to **R** (**H**₂) = $\frac{I}{nF}$, a photocurrent of 6 µA should produce 0.112 µmol of H₂ for 1 h.

$$\mathbf{R} (\mathbf{H}_2) = \frac{6 \times 10^{-6} \text{ A}}{2 \frac{\text{mol } \text{e}^-}{\text{mol } \text{H}_2} \times 96485 \frac{\text{C}}{\text{mol } \text{e}^-}}$$

= $3.1 \times 10^{-5} \times 10^{-6} \text{ A mol } \text{H}_2 \text{ C}^{-1}$

For 1 h of water splitting reaction = $3.1 \times 10^{-5} \times 10^{-6} \text{ A mol H}_2 \text{ C}^{-1} \times 3600 \text{ s}$

(where Charge (C) = Current (A) x Time (s))

Amount of H_2 evolution for 1 h = 0.112 µmol (or) 112 nmol.

Calculation for moles of H₂ produced from gas chromatography

Average area of pure H₂ (310 μ l, 200 ppm) = 0.00455 mV min

Consider, 99.5% of pure H_2 has 995000 ppm of H_2 .

To convert the average area of pure H_2 (310 µl, 200 ppm)

into high pure
$$H_2 = \left[\frac{0.00455 \text{ mV min}}{200 \text{ ppm}}\right] \times 995000 \text{ ppm} = 22.63625 \text{ mV min.}$$

Average area of high pure $H_2(310 \ \mu l) = 22.63625 \ mV$ min.

Area of sample H₂ (310 μ l) after 1 h = 0.00655 mV min

From the areas of pure and sample H_2 , the H_2 evolution is calculated based on the formula from Zhang *et al.*¹

Amount of H₂ evolution =
$$\left[\frac{0.00655 \text{ mV min}}{(22.63625 - 0.00655) \text{ mV min}}\right] \times 1 \text{ ml } \times \frac{\text{mol}}{22.4 \times 1000 \text{ ml}}$$

(where 1 ml is the volume of the headspace.)

Amount of H_2 evolution for 1 h = 12.9 nmol.

Reference:

1. Zhang, K.; Jing, D.; Xing, C.; Guo, L. Significantly Improved Photocatalytic Hydrogen Production Activity over Photocatalysts Prepared by a Novel Thermal Sulfuration Method. *Int. J. Hydrogen Energy* **2007**, *32*, 4685-4691.