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Abbreviations:

ACN Acetonitrile

ASAP Atmospheric Solids Analysis Probe

CD Circular Dichroism

COSY Correlation Spectroscopy

DAD Diode Array Detector

DEPT Distortionless Enhancement by Polarization Transfer
DMSO Dimethyl Sulfoxide

dpf Days Post-Fertilization

ESI Electro Spray lonization

EtOAc Ethyl Acetate

EtOH Ethanol

FT-IR Fourier Transform Infrared

Fr Fraction

Hex Hexane

HMBC Heteronuclear Multiple Bond Correlation
HMQC Heteronuclear Multiple Quantum Correlation
HPLC High Performance Liquid Chromatography
HRMS High Resolution Mass Spectrometry

HSQC Heteronuclear Single Quantum Coherence
LC-MS Liquid Chromatography-Mass Spectrometry
MeOH Methanol

MS Mass Spectrometry

NMR Nuclear Magnetic Resonance

ODS Octadecyl-Silica

Pet Petroleum

RP-HPLC Reverse Phase-High Performance Liquid Chromatography
Subfr Sub-fraction

tr Retention Time

uv Ultraviolet



General Experimental Procedures
HPLC-grade solvents (petroleum ether, hexane, CH,Cl,, EtOAc, EtOH, MeOH, ACN, and water) were
purchased from Sigma-Aldrich (St. Louis, MO, USA) and used in all processes, including RP-HPLC
and LC-MS. Synthesis reagents (1,2-diaryl-ethanone, piperidine, acetic acid, formalin (37%), and
NaHCO3) were purchased from Sigma-Aldrich (St. Louis, MO, USA). RP-HPLC was performed at
room temperature in an Agilent 1100 series system (Santa Clara, CA, USA) equipped with vacuum
degasser, quaternary pump, thermostatically-controlled column compartment, and DAD. LC-MS (ESI,
positive mode, m/z) spectra were collected on a Shimadzu LCMS-2010EV system (Kyoto, Japan) with
UV detector.

The chemical structures were elucidated by the analytical spectroscopic techniques of FT-IR,
CD, HRMS, 'H NMR, "*C NMR, DEPT135, and 2D NMR techniques (‘"H-'"H COSY, HMQC, HSQC,
NOESY, and HMBC). FT-IR was recorded as a thin film on a ZnSe plate with a Nicolet Avatar
370DTGS spectrometer (Thermo Electron Corporation). CD spectra were measured at 25°C and a speed
of 1 nm's” as a thin film in a demountable rectangular cell with path length of 0.5 mm in an AVIV
model 410 spectrometer (AVIV Biomedical, Inc. Lakewood, NJ, USA) equipped with a temperature
controller. To obtain HRMS, ASAP (ESI, positive mode) was operated in a Thermo Scientific Exactive
spectrometer powered by Orbitrap technology. The differences (ppm) value between a found (F) and a
calculated value (C) were calculated from the equation ppm Difference = | F-C|/C x 10°. The NMR
spectra were acquired on a Bruker AVANCE 400 or 40011 spectrometer with 'H and "°C frequencies of
400 and 100 MHz, respectively. Chemical shifts were in ppm and relative to tetramethylsilane; coupling
constants (J) were reported in Hz. The NMR lock solvents (acetone-ds and CD;0D) were purchased

from Cambridge Isotope Laboratories.

Plant Materials

A sample (~2.8 kg) containing a mixture of D. glomulifera and D. littoralis were collected from the area
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of the Murray river, along the Hume Weir, near Albury, NSW, Australia (latitude -36.003°, longitude
147.139°) by S.J. Whittaker; the plants were collected from the flats exposed by the drop of the reservoir
level during extreme drought. The plants were identified by Surrey Jacobs (Royal Botanic Gardens,
Melbourne, Australia). Voucher specimens for the population are housed at the National Herbarium of
Victoria (MEL). The plants were frozen until shipment (-18°C), and shipped on dry ice to the authors’
laboratories in April 2009 under a plant import permit from Animal Plant Health and Inspection Service,
US Department of Agriculture (permit no. P37-08-00668, 21 May 2008). Individual plants were carefully
teased from the frozen biomass and preserved as voucher specimens deposited in the herbarium of the

University of the Sciences in Philadelphia (PHIL).

Extraction, Fractionation, and Isolation

Freeze-dried plants (100 g) were ground to pass a 20 mesh screen and extracted at room temperature in a
blender with 1:1 (v/v) CH,Cl,/MeOH. As shown in figure S2A, the plant material residue was removed
by filtration and extracted twice more in the same solvent to give the CH,Cl,/MeOH extract. The plant
material residue was extracted with water (x3), and the aqueous extracts were pooled as a water extract.
After partial evaporation in vacuo to about half of the original volume, water was added to the
CH,Cl,/MeOH organic extract and then partitioned with petroleum ether (bp 40-60°C); the pet. ether
fractions were pooled. All fractions were evaporated to dryness in vacuo (organic) or by lyophilization
(aqueous) and subjected to bioassay.

The CH,Cl,/MeOH extract (Frl) was subjected to diol silica gel flash column chromatography with
hexane, CH,Cl,, EtOAc, MeOH, and water to generate five solvent fractions partitioned by polarity. The
active CH,Cl, fraction was further separated to seven subfractions through RP-HPLC on a semi-
preparative Phenomenex ultracarb 10 ODS-20 (600x10 mm, 10 pym, 5 mL-min") column in a linear
gradient elution of water to MeOH (5 — 95 % MeOH) with DAD detection at 206 and 254 nm. The
seven subfractions were taken to dryness in vacuo and by lyophilization and submitted to bioassay. The

two active subfractions (subFr45) were further purified by semi-preparative RP-HPLC on a YMC
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J’sphere ODS-H80 (250x10 mm, 4 pm, 3 mL'min") column in an isocratic solvent system of
water/MeOH/ACN (4:3:3, v/v/v) and yielded four compounds (1-4). The toxic fractions, subfractions, and
individual compounds were analyzed in the RP-HPLC and LC-MS (ESI, positive mode, m/z) with a
Waters Symmetry C18 column (250x4.6 mm, 5 pm, 0.2, 0.3 or 0.5 mL'min™") in the mobile phase of
water/MeOH/ACN (4:3:3, v/v/v), water/EtOH/ACN (4:3:3, v/v/v) or water/ACN (1:1, v/v) with UV
detection. The toxicity of the six compounds (1-4) on the zebrafish larvae was assayed; we confirmed that
1 caused significant biliary dysfunction. The dry weight of the plant material was 6.08% of the frozen
weight of the plant; other yield data can be found in figure S2B. The yield of toxic compound 1 was
collectively approximately 1.84% of the dry weight of the plant.

Solvent adducts (1w and 1m) and biliatresone (1) were purified in the EtOH-based solvent to remove
the interference of MeOH and dried directly in vacuo. RP-HPLC and LC-MS analysis of the purified
compounds were performed with a Waters Symmetry C18 column (250x4.6 mm, 5 pm, 0.3 mL-min™") in
a mixture of water/EtOH/ACN (4:3:3:, v/v/v). For compound 1d, the tiny peak at tz 22.18 min or tg 22.69
was purified by RP-HPLC with a Waters Symmetry C18 column (250x4.6 mm, 5 pm, 0.5 mL-min™) in a
mixture of water/ACN (1:1, v/v), which leads to higher difference of retention time between 1 and 1d.
This collection was evaporated directly to dryness in vacuo. '"H NMR and HMBC data were acquired in

acetone-dg lock solvent.

Chemical Structure Elucidations

Compound 1 was isolated as a yellowish gum. The *C NMR spectrum (Figure S4 and Table S1)
showed 18 carbons including a carbonyl group (6c=195.7 ppm, C1'). The DEPT135 spectrum showed two
peaks corresponding to dioxymethylene (6c=102.5 ppm, Cla) and methylene (6c=130.1 ppm, C3")
carbons. Among the 16 protons in the '"H NMR spectrum, a broad proton peak (8;=8.05 ppm, OH) was
not correlated to a carbon in the HMQC spectrum (Figure S5). This proton showed a correlation to the
phenyl carbons (0c=116.9 ppm, C3" and 6.=125.9 ppm, C1") in the HMBC spectrum (Figure S6). An

olefinic protons (6y=6.04, 6.08 ppm, 3'-H) was typical of a a-methylene with no splitting; these were
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correlated with the carbonyl carbon (6c=195.7 ppm, C1") and a quaternary aromatic carbon (6c=125.9
ppm, C1") in the HMBC. The HMBC spectrum showed correlations from la-H to C1 and C2; 3-H to Cl1,
C2, C4 and C5; 3'-H to C1', C2" and C1"; 3"-H to C2" and C5"; 4"-H to C2" and C6"; 5"-H to C1" and
C3"; 6"-H to C2', C2" and C4" (Figure S6). The NOESY spectrum presented only a cross-peak correlation

between 3-H and 4-methoxyl proton (-OCHj3) (Figure S7).

Biliatresone (1): yellowish gum; CD (deg, film): Ae = —0.3 (240 nm), Ae = +0.5 (290 nm); '"H NMR and
C NMR, see Table 1; IR (film): Amex 3379, 2925, 1622, 1485, 1202, 1074, 932, 751 cm™'; HPLC-UV/vis
(aqg MeOH and ACN): A 235, 281 nm; HR-ASAP-MS (ESI, positive mode, m/z): 329.1022 [M+H]"
calcd for CisH;06, 329.1025. Values of '"H NMR spectroscopy of biliatresone (1) measured in the
CD;OD lock solvent were acquired from biliatresone newly purified in an EtOH-based solvent to
compare with values of the '"H NMR of a mixture of 1 and 1m in the CD;OD lock solvent. '"H NMR
(400MHz, CD;0D, ppm): &y 7.13 (m, 2H), 6.81 (m, 2H), 6.39 (s, 1H), 6.07 (s, 1H), 6.01 (s, 1H), 5.94 (s,

2H), 3.95 (s, 3H), 3.70 (s, 3H).

Compound 2 was isolated as a white powder. The HRMS showed a molecular mass of m/z 313.0708
[M+H]" (calculated for C;;H;30¢, 313.0712), indicating a molecular formula of C,;H,,0¢. By comparing
our NMR data with the literature (Figures S9-S10), 2 was identified as betavulgarin, 2-hydroxy-6,7-

methylenedioxy-5-methoxyisoflavone.'

Betavulgarin (2): White powder; "HNMR (400 MHz, acetone-ds, ppm): 6y 4.01 (s, 3H), 6.24 (s, 2H), 6.93
(s, 1H), 6.96 (m, 2H), 7.29 (m, 2H), 8.23 (s, 1H), 9.04 (s, OH); HPLC-UV/vis (aqg MeOH and ACN): Apax
218, 246, 324 nm; LC-MS (ESI, positive mode, m/z): 313 [M+H]", 376 [M+Cu]’; HR-ASAP-MS (ESI,

positive mode, m/z): 313.0708 [M+H]" calcd for C,7H,505, 313.0712.
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Compound 3 was isolated as a yellowish gum. LC-MS analysis gave a mass of m/z 315 [M+H]"
indicating a molecular formula of C,;H4,O¢; this was confirmed by the HR-MS analysis (m/z 315.0864
[M+H]"; calculated for C,7H;505, 315.0869) (Figures S11 and S16). UV spectrum and a three proton spin
system, 3-H (8;=4.11 ppm), 2a-H (8;=4.51 ppm), and 2p-H (8;=4.66 ppm), of the '"H NMR data were
typical of an isoflavanone skeleton (Figures S11 and S12). Seventeen carbons in the *C NMR and
DEPT135 spectra, including the dioxymethylene carbon (6c=102.9 ppm, C6a), the methoxyl carbon
(0c=60.8 ppm) and the methylene carbon (6c=71.0 ppm, C2), were also typical of an isoflavonoid (Figure
S13). The hydroxy proton (65=8.73 ppm, OH) showed correlations with the C1’ and C2' carbons of the B
ring in the HMBC spectrum (Figure S15). From 1D and 2D analysis (Table S2) along with the CD
analysis suggested that 3 has the S-stereoisomer configuration, with a negative Cotton effect between 290
and 340 nm, corresponding to a n—n* transition energy (Figure S17), we identified the chemical

structure of 3 as (3.5) 2'-hydroxy-5-methoxy-6,7-methylenedioxy isoflavanone, not previously reported.

(3S) 2'-Hydroxy-5-methoxy-6,7-methylenedioxyisoflavanone (3): Yellowish gum; CD (deg, film): Ag =
1.5 (180 nm), Ae = —1.2 (244 nm), Ae = —0.27 (310 nm); '"H NMR and "°C NMR, see Table 2; IR (film):
Vinax 3575, 2918, 2850, 1625, 1475, 1250, 1100, 930, 776 cm™'; HPLC-UV/vis (aqg MeOH and ACN): Ay
245, 283, 342 nm; LC-MS (ESI, positive mode, m/z): 315 [M+H]’, 378 [M+Cu]"; HR-ASAP-MS (ESI,

positive mode, m/z): 315.0864 [M+H]+ calcd for C;7H;50¢, 315.0869.

Compound 4 was isolated as a yellowish gum and purified by RP-HPLC (Table S2). The LC-MS analysis
showed a major peak at m/z 329 [M+H]", leading to a molecular formula of C;3H;sOs, verified by the
mass at m/z 328.0945 [M]" (calculated for C,sH,¢O¢, 328.0947) in the HR-MS data (Figures S18 and S22).
The '"H NMR spectrum displayed resonances for two aromatic ring protons in a di-substituted phenyl
moiety (6y=7.2-7.8 ppm, 4'-H, 5'-H, 6’-H, 7'-H) and a phenyl moiety with the dioxymethylene group at

(0y=6.03 ppm, la-H), together with a methine proton (6y=6.54 ppm, 3-H) and two methoxyl protons
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(8;=3.72, 3.89 ppm) (Figure S19). The *C NMR and HMQC spectra exhibited resonances for 18 carbons,
including the dioxymethylene carbon (8c=102.5 ppm, Cla), two methoxyl carbons (6c=60.4, 57.0 ppm), a
methine carbon (6c=90.1 ppm, C3), and a primary alcohol (6c=56.4 ppm) (Figures S19 and S20). In the
HMBC spectrum, the methine proton (0y=6.54 ppm, 3-H) showed correlations to the dioxymethylene
carbons, C1 and C2 (6c=131.6, 152.2 ppm), C4 (6c=155.9 ppm), and C5 (6c=104.9 ppm) (Figure S21).
The primary alcohol proton (6y=4.58 ppm) showed correlations with three carbons, C3' (5c=119.9 ppm),
C2' (6¢=147.5 ppm) and C3'a (6c=130.0 ppm), in the di-substituted phenyl ring. From 1D and 2D analysis
(Table S2), the structure of 4 was identified as a novel seco-pterocarpan, 1,2-methylenedioxy-4-methoxy-
seco-pterocarpan. We have given 4 the trivial name of ‘humeone’ in recognition of plant collection along

the Hume Weir.

1,2-Methylenedioxy-4-methoxy-seco-pterocarpan (4): Yellowish gum; CD (deg, film): Age = —3.6 (195
nm), Ae = +0.2 (300 nm); 'H NMR and C NMR, see Table 2; IR (film) vy, 2912, 2843, 1468, 1440,
1202, 1074, 932, 739 cm™'; HPLC-UV/vis (aq MeOH and ACN): Apax 245, 294 nm; LC-MS (ESI, positive
mode, m/z): 311 [M-H,0]", 329 [M+H]"; HR-ASAP-MS (ESI, positive mode, m/z): 328.0945 [M]" calcd

for C18H1606, 328.0947.

3'-Methoxy-biliatresone (1m): yellowish gum; 'H NMR and C NMR, see Table 1; HPLC-UV/vis (aq
MeOH and ACN): A 281, 310 nm; HRMS (ESI, positive mode, m/z): 361.1270 [M+H]" calcd for
C19H,HO;, 361.1287; LC-MS (ESI, positive mode, m/z): 361 [M+H]" (calcd for C;oH, 0;), and 383

[M+Na]" (calcd for C H,NaO-).

Demethylene biliatresone (1d): 'H NMR (400MHz, acetone-dq; ppm): 8y 7.11 (t, J=8, 1H), 7.06 (d, J=7.6,
1H), 6.84 (d, J=8, 1H), 6.77 (t, J/=7.6, 1H), 6.43 (s, 1H), 5.97 (s, 2H), 4.03 (s, 2H), 3.86 (s, 3H), 3.76 (s,

3H); HPLC-UV/vis (ag MeOH and ACN): Ay 285, 267 nm; LC-MS (ESI, positive mode, m/z): 317
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+ calculated for C;7H 70, . .
[M+H]" (calculated for C;7H,,05, 317.103)

Synthesis of 1,2-diaryl-2-propen-1-one (5)

The 1,2-diaryl-ethanone (5 g, 25.5mmol) in MeOH (45 mL) was treated with piperidine (0.2 mL), acetic
acid (0.2 mL) and 37% formalin (5.4 mL). The mixture was refluxed for 3 h at 95-100°C. After cooling,
ice-cold 3% NaHCO; was gradually added into the reaction mixture to pH 7.4 (approx. 150mL). The
reactant was put in the refrigerator for 18 h to precipitate the semi-solid product. Supernatant was
removed and then added water and CH,Cl, to liquid-liquid extraction. The CH,Cl, fraction containing the

product was collected and dried. It was a colorless oil (94% yield).”

1,2-Diaryl-2-propen-1-one (5): colorless oil; '"H NMR (400MHz, acetone-ds, ppm): 8y 7.99 (d, J=8.2, 2H),
7.52 (dd J=7.4, 4H), 7.38 (m, 4H), 6.15 (s, 1H), 5.63 (s, 1H); °C NMR (100 MHz, acetone-ds, ppm): ¢
196.9, 148.3, 137.3, 137.2, 133.2, 129.8, 128.8 128.7, 127.1, 120.4; LC-MS (ESI, positive mode, m/z):

209 [M+H]" (calcd for C;sH;30) and 231 [M+Na]" (calcd for C;sH;,NaO).

Zebrafish Toxicity Assay

Plant extracts, fractions and compounds were suspended in anhydrous DMSO to give stock samples.
Zcbrafish larvae reared in 24- and 96-well plates were exposed to the sample for 24-72 h (final
concentration 1% DMSO in the medium) with various concentrations. For the initial extract and fractions,
concentrations of 5-50 ug/ml were tested. The final compounds were tested at 0.0625-1.0 pug/ml. The
embryo medium with extract was exchanged daily. Following treatment of the zebrafish larva, the
fluorescent long chain fatty acid Bodipy-C16 (Invitrogen) was added to the water as previously
described.” Gallbladder and intestinal fluorescence in the treated and control larva were examined with a
stereomicroscope (Olympus MVX-10). All assays were performed in triplicate and controls for

swallowing were performed with each sample.
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Supplementary Data

Figure S1. The toxic plants Dysphania glomulifera and D. littoralis. (A) We collected the plants from
the pasture associated with the 2007 outbreak. The Murray River reservoir impounded by the Hume
Dam (formerly the Hume Weir) is visible in the background. (B) A grouping of the plants at the
collection site. D. glomulifera and D. littoralis often grow together and can be differentiated only

microscopically. Images courtesy of author Steven J. Whittaker, 2007.
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Dried and Ground Plants

Filtration
Residue
Pet. Ether (Fr2) CH,Cl,:MeOH Water (Fr3)
Diol Silica gel
Flash column chromatography
| ] I |
Hex fr CH,CI, fr EtOAc fr MeOH fr Water fr
RP-HPLC
]
| I | | | |
Sub-fr 1 Sub-fr 2 Sub-fr 3 Sub-frs 4-5 Sub-fr 6 Sub-fr 7
RP-HPLC
| | | |
—| Compound 1 Compound 2 Compound 3 Compound 4

—| Water adduct 1w

RP-HPLC
—1 MeOH adduct 1m

| Demethylene 1d

B.
Toxic components % of dry weight
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Figure S2. The isolation scheme of compounds (1-4) (A) and yield of the toxic components (B). The

bolded fractions and compounds showed toxicity in the zebrafish assay.
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Figure S24. RP-HPLC analysis of the water adduct 1w (a), MeOH adduct 1m (b), and 1 (¢) purified in
the EtOH-based solvent. (A) LC chromatogram prior to purification of all compounds. (B) LC
chromatogram analyzed in the water/MeOH/ACN (4:3:3, v/v/v) mobile phase with each of the purified
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use of MeOH-based solvent. The red circles are for 1d.
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Figure S29. HMBC spectra for a mixture of the MeOH adduct 1m (red) and 1 (blue) (100 MHz,

CD;0D). Major interactions are indicated in the compound structures.
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Figure S30. HRMS spectrum of a mixture of 1m and 1. (A) MS spectrum for a mixture of 1m and 1 in

MeOH carrier solvent. (B) MS spectrum for 1m, the MeOH adduct, extracted from (A) spectrum data.
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Figure S31. LC-MS (ESI, positive mode, m/z) analysis of the minor peak 1d (red open circle) with 1m
and 1. (A) LC chromatogram in water/ACN (1:1, v/v) mobile phase and flow rate 0.3 mL-min”. (B) MS
analysis of the LC chromatogram: 1m (tg 19.68 min), 1d (tg 22.18 min), and 1 (tg 24.83 min). The minor

peak at tg 22.18 min was collected to identify the chemical structure of 1d.
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Figure S32. Purification and identification of the chemical structure of 1d. (A) RP-HPLC chromatogram
after conversion of 1d, caused by addition of MeOH, to 1m (tg 20.11 min) and 1 (tg 24.70 min). The peak
1d (tg 22.69 min) was purified with the water/ACN solvent. (B) 'H NMR spectrum (400MHz, acetone-dg)
of the purified 1d and comparison with that of 1. (C) HMBC spectrum (100MHz, acetone-dg) of the
purified 1d. Major HMBC correlations of the ethanone bridge (-CH,-) signals indicated with the green
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Figure S33. NMR spectra for the synthetic 5. (A) '"H NMR spectrum (400 MHz, acetone-d,) and (B) "*C
NMR and DEPT135 spectra (100 MHz, acetone-ds). The DEPT135 spectrum showed CH, peak of a

methylene carbon (6~=120.4 ppm, C11).
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Figure S34. LC-MS (ESI, positive mode, m/z) analysis of the synthetic 5. (A) LC chromatogram of 5 in
the water/MeOH/ACN solvent. Two peaks appeared at the retention times of tg 36.0 and tz 48.6 min,
respectively. (B) MS analysis of the two peaks shown in the LC chromatogram. The peak at tz 36.0
showed a mass at m/z 241 [M+H]", 263 [M+Na]", and 279 [M+K]’, indicating a molecular formula of
CiH160,, (calc. 240.1150) formed by conjugation of MeOH (CH30H; 32 amu), while the peak at tz 48.6
exhibited a mass at m/z 209 [M+H]", 231 [M+Na]", and 247 [M+K]" corresponding to the molecular
formula of C;sH;,0 (calc. 208.0888) of 5.
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Table S1. 1D and 2D NMR data of compounds 1m and 1.

1m® 1 1°
No. &y (Jin Hz) 3¢ HMBC 8 (J in Hz) 3¢ HMBC 8y (J in Hz) Sc HMBC
1 131.6 C 131.9 C 131.5 C
la 5.85d(2.0) 102.8 CH, 1,2 592s 102.9 CH, 1,2 6.01s 102.5 CH, 1,2
2 152.4 C 152.7 C 151.9 C
3 6.29 s 903 CH 1.2,5,6,1' 6.38 s 903 CH 1.2,5,6,1' |648s 904 CH 1,2,4,5
4 154.7 C 154.9 C 154.1 C
5 117.1 C 115.7 C 115.8 C
6 142.2 C 142.7 C 142.0 C
1’ 203.4 C 197.6 C 195.7 C
2! 5.17dd (7.6, 5.6) 52.4 CH 1,3, 1", 2", 6" 149.9 C 149.5 C
3 4.12 dd (7.6, 10) 738 CH, 12, 1", OCH; |6.00d(1.2) 1298 CH, 1,2, 1" 6.04d(0.8,16) 130.1 CH, 1,2,1"
3.61dd (5.6, 10) 12, 1" 6.06 d (1.2) 6.08 d (1.2, 16)
1" 123.5 C 126.1 125.9
2" 156.8 C 156.1 155.5
3" 6.72 m 116.3 CH 2", 5" 6.81 m 116.7 CH 2", 5" 6.88 1 (8) 116.9 CH 2" 5"
4" 7.07t(7.6) 130.4 CH 2", 6" 7.12 m 130.5 CH 2", 6" 7.17t(8) 130.2 CH 2" 6"
5" 6.731(7.6) 120.3 CH 1", 3" 6.811t(7.6) 120.3 CH 1", 3", 4" 6.831(7.6) 120.3 CH 1", 3"
6" 7.02t(7.6) 129.4 CH 2", 4" 7.11 m 132.1 CH 2',2", 4" 7.15m 131.9 CH 2'.2", 4"
3.36s 59.0 OCH; 3 3.68s 57.2 OCH; 4 3.73s 57.2 OCH; 4
3.64s 57.2 OCH; 4 393s 60.5 OCH; 6 392s 60.4 OCH; 6
3.76s 60.4 OCH; 6 8.05s OH 1", 3"

Spectra were recorded at 400 MHz for "H NMR and 100 MHz for '*C NMR. ? measured in CD;0D; ® measured in acetone-ds.
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Table S2. 1D and 2D NMR data of compounds 3 and 4.

3 4
No. &, (Jin Hz) 3¢ HMBC No. &y(JinHz) 3¢ HMBC
2 ig?ggg:gz }8:22 71.0 CH, 3,4,8a,1' 1 1316 C
411d(52) 497 CH  2,4,1,2,6 la  6.04s 102.5 CH, 1,2
190.3 2 1522 C
4a 110.4 3 6.54s 90.1 CH 1,2,5,4,6,2'
5 144.2 4 1559 C
6 133.9 5 1049 C
6a  6.04dd(0.8,48) 1029 CH, 6,7 6 1438 C
7 1552 C l'a 1558 C
8  6.29s 93.9 CH  4a,5,6,7,8a,4 |2 1475 C
8a 161.4 3 1199 C
i 124.1 3a 1300 C
2! 156.2 4 744d(76) 1116 CH 1'a, 3'a, 5'
3 6.89d(7.6) 1165 CH  1,2,5 5 727m 1229 CH 3a
4 710m 1203 CH  2,3.,6 6 723m 1246 CH 1'a, 7'
5 6.791(7.6) 1205 CH  1,2,3.6 7' 7.80d(73) 1214 CH 1'a, 6
6  7.13d(7.6) 1309 CH  3,2.4 372 570 OCH; 4
3.92s 60.8 OCH, 3.89s 603 OCH; 6
8.73s OH 4.58s 564 CH,OH 2'3' 3%

*Spectra were recorded in acetone-dg at 400 MHz for 'H NMR and 100 MHz for *C NMR.
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