Supporting information

Broad negative thermal expansion operation-temperature window achieved by adjusting Fe-Fe magnetic exchange coupling in La(Fe,Si)₁₃ compounds

Shaopeng Li,[†], § Rongjin Huang,^{*},[†] Yuqiang Zhao,[†], § Wen Li,[†], § Wei Wang,[†] Chuanjun Huang,[†] Pifu Gong,[‡], § Zheshuai Lin,[‡] and Laifeng Li^{*},[†]

[†] State Key Laboratory of Technologies in Space Cryogenic Propellants, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, P.R. China

[‡] Beijing Center for Crystal R&D, Key Lab of Functional Crystals and Laser Technology, Technical Institute of Physics and Chemistry (TIPC), Chinese Academy of Sciences (CAS), Beijing, P.R. China

§ University of Chinese Academy of Sciences, Beijing, P.R. China

* To whom correspondence should be addressed. E-mail: huangrongjin@mail.ipc.ac.cn; laifengli@mail.ipc.ac.cn

The calculated method details of Fe^{I} - Fe^{II} interatomic distance for $LaFe_{13-x}Si_{x}(x=2.8, 2.9, 3.0, 3.1)$

For LaFe_{13-x}Si_x in tetragonal phase exhibiting no negative thermal expansion (NTE) effects, only the cubic phase in the two-phase mixture was considered. In order to investigate the relationship between Si content x and the Fe-Fe interatomic distance, the first-principles geometry optimization calculations for LaFe_{13-x}Si_x ($2.8 \le x \le 3.1$) at 0 K are performed using the plane-wave pseudopotential method¹ implemented in CASTEP package.² Virtual Crystal Approximation (VCA)^{3,4} is also implemented in the calculations for the statistical distribution in the periodic structure. The initial structures for different Si contents were extrapolated from LaFe₁₁Si₂ determined by experiment. The normal-conserving pseudopotential⁵ and the generalized gradient approximation (GGA) with Perdew, Burke and Emzerhof (PBE) functionals⁶ are chosen to describe the exchange and correlation (XC) potentials in the calculation of the optical properties. The plane-wave cutoff energy was set at 550eV and the Monkhorst-Pack k-point meshes⁷ were set with a density of 4×4×4 points in the Brillouin zone.

REFERENCES

- 1. Payne, M. C.; Teter, M. P.; Allan, D. C.; Arias, T. A.; Joannopoulos, J. D. Rev. Mod. Phys. 1992, 64, 1045-1097.
- Clark, S. J.; Segall, M. D.; Pickard, C. J.; Hasnip, P. J.; Probert, M. J.; Refson, K.; Payne, M. C. Z Kristallgr 2005, 220, 567-570.
- 3. Nordheim, L. I. Ann. Phys. 1931, 9, 607-640.
- 4. Jaros, M. Rep. Prog. Phys. 1985, 48, 1091.
- 5. Lin, J. S.; Qteish, A.; Payne, M. C.; Heine, V. Phys. Rev. B 1993, 47, 4174-4180.
- 6. Perdew, J. P.; Burke, K.; Wang, Y. Phys. Rev. B 1996, 54, 16533-16539.
- 7. Monkhorst, H. J.; Pack, J. D. Phys. Rev. B 1976, 13, 5188-5192.