Supporting Information

An Effective Top-down LC/MS+ Method for Assessing Actin Isoforms as a Potential Cardiac Disease Marker

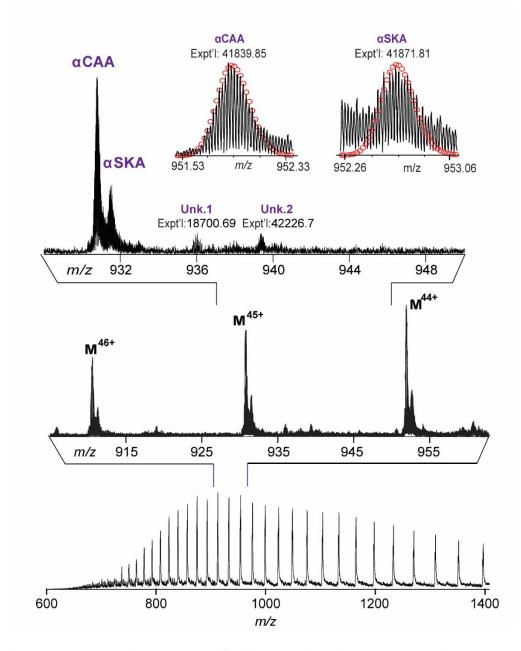
Yi-Chen Chen^{1,2⊥}, Serife Ayaz-Guner^{1⊥}, Ying Peng^{1,3}, Nicole M. Lane¹, Matthew R. Locher⁴, Takushi Kohmoto⁴, Lars Larsson⁵, Richard L. Moss^{1,3}, Ying Ge^{1,2,3}

¹Department of Cell and Regenerative Biology, ²Department of Chemistry, ³Human Proteomics Program, ⁴Department of Surgery, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, Wisconsin, USA, ⁵Department of Physiology and Pharmacology, Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden

*To whom correspondence may be addressed: Ying Ge, Ph.D., 1300 University Ave., SMI 130, Madison, WI, 53706. E-mail: ge2@wisc.edu; Tel: 608-263-9212; Fax: 608-265-5512.

 $^{^{\}perp}$ These two authors contributed equally.

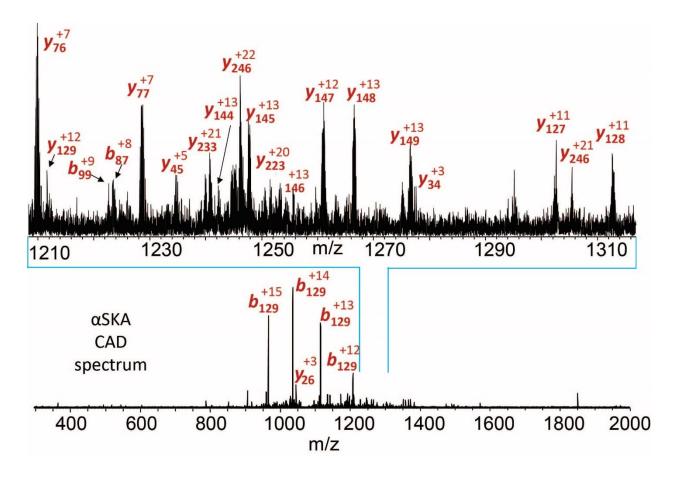
Supplementary Tables

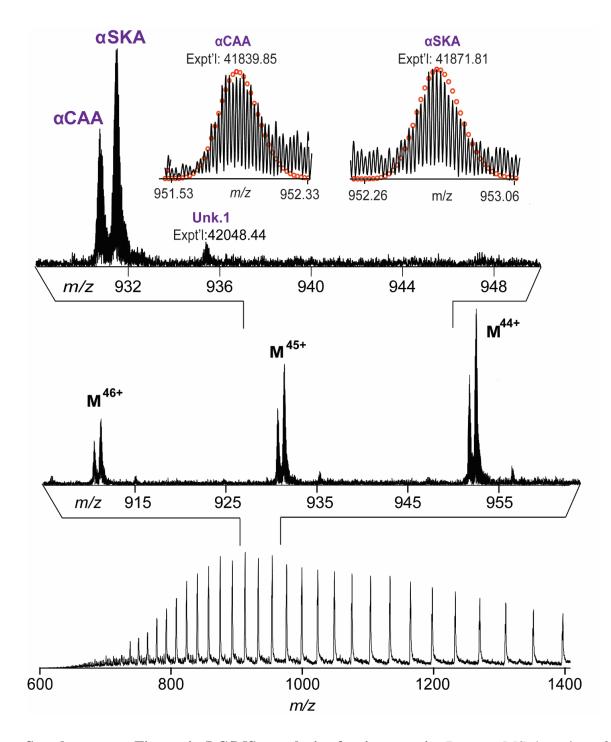

Supplementary Table 1. Investigation of the impact of the number of isotopomers on the quantification of relative abundances. The calculation is based on three MS spectra of α -actin isolated from swine hearts (Figure 5).

# of isotopomer	αCAA%	aSKA%
3	37.1	62.9
5	37.0	63.0
7	37.2	62.8
11	37.2	62.8

Supplementary Table 2. Individual values of relative abundances of α CAA and α SKA from each human heart. The calculated values are based on the data presented in Figure 6. Three biological replicates in control (Ctrl), Ctrl-1, Ctrl-2, Ctrl-3, and dilated cardiomyopathy (DCM), DCM-1, DCM-2, DCM-3, respectively.

Samples	αCAA %	aSKA %
Ctrl1	73.3	26.7
Ctrl2	75.6	24.4
Ctrl 3	87.4	12.6
DCM 1	57.0	43.0
DCM 2	58.2	41.8
DCM 3	53.5	46.5


Supplementary Figures


Supplementary Figure 1. LC/MS+ analysis of human α -actin. Bottom; MS detection of human α -actin in on-line LC/MS using low-resolution MS (shown in multiply charged ions); middle, off-line FTMS analysis of intact α -actin (M⁴⁶⁺, M⁴⁵⁺, M⁴⁶⁺); and top, isotopically resolved molecular ions α CAA and α SKA with two unknown proteins. Circles represent the theoretical isotopic abundance distribution of the isotopomer peaks corresponding to the assigned mass.

```
P68032 | ACTC MCDDEETTALVCDNGSGLVKAGFAGDDAPRAVFPSIVGRPRHQGVMVGMGQKDSYVGDEA 60
P68133|ACTS MCDEDETTALVCDNGSGLVKAGFAGDDAPRAVFPSIVGRPRHQGVMVGMGQKDSYVGDEA 60
         P68032 | ACTC OSKRGILTLKYPIEHGIITNWDDMEKIWHHTFYNELRVAPEEHPTLLTEAPLNPKANREK 120
P68133 | ACTS OSKRGILTLKYPIEHGIITNWDDMEKIWHHTFYNELRVAPEEHPTLLTEAPLNPKANREK 120
         P68032 | ACTC MTQIMFETFNVPAMYVAIQAVLSLYASGRTTGIVLDSGDGVTHNVPIYEGYALPHAIMRL 180
P68133|ACTS MTQIMFETFNVPAMYVAIQAVLSLYASGRTTGIVLDSGDGVTHNVPIYEGYALPHAIMRL 180
         P68032 | ACTC DLAGRDLTDYLMKILTERGYSFVTTAEREIVRDIKEKLCYVALDFENEMATAASSSSLEK 240
P68133|ACTS DLAGRDLTDYLMKILTERGYSFVTTAEREIVRDIKEKLCYVALDFENEMATAASSSSLEK 240
         P68032|ACTC SYELPDGQVITIGNERFRCPETLFQPSFIGMESAGIHETTYNSIMKCDIDIRKDLYANNV 300
P68133|ACTS SYELPDGOVITIGNERFRCPETLFOPSFIGMESAGIHETTYNSIMKCDIDIRKDLYANNV 300
         P68032 | ACTC LSGGTTMYPGIADRMQKEITALAPSTMKIKIIAPPERKYSVWIGGSILASLSTFQQMWIS 360
P68133 | ACTS MSGGTTMYPGIADRMQKEITALAPSTMKIKIIAPPERKYSVWIGGSILASLSTFQQMWIT 360
         P68032 | ACTC KOEYDEAGPSIVHRKCF 377
P68133 | ACTS KOEYDEAGPSIVHRKCF 377
         ************
```

Supplementary Figure 2. The sequence alignment of human α -cardiac actin (α CAA) and α -skeletal actin (α SKA). The sequence alignment of human α CAA (P68032), and α SKA (P68133) from UnitProtKB/Swiss-Prot database. Human α CAA and α SKA vary by two juxtaposed amino acids (Asp2Glu3 for α CAA, and Glu2Asp3 for α SKA) and two amino acids substitution (Met299 and Thr358 in α SKA, versus Leu299 and Ser358 in α CAA), resulting in 32 Da difference. The two juxtaposed amino acids and the two amino acids substitution are both indicated in red.

Supplementary Figure 3. MS/MS mapping of α SKA. Representative MS/MS spectra of *b* and *y* ions from CAD spectra of α SKA.

Supplementary Figure 4. LC/MS+ analysis of swine α -actin. Bottom; MS detection of swine α -actin proteins in on-line LC/MS using low-resolution MS (shown in multiply charged ions); middle, off-line FT analysis of intact α -actin (M⁴⁶⁺, M⁴⁵⁺, M⁴⁶⁺); and top, isotopically resolved molecular ions α CAA and α SKA with one unknown protein. Circles represent the theoretical isotopic abundance distribution of the isotopomer peaks corresponding to the assigned mass.