Supporting Information : Atomistic Mechanisms for the Nucleation of Aluminium Oxide Nanoparticles

Julien Lam,* David Amans,* Christophe Dujardin, Gilles Ledoux, and Abdul-Rahman Allouche
Université Lyon 1, F-69622 Villeurbanne, France, UMR5306 CNRS, Institut Lumiere Matiere, PRES-Université de Lyon, F-69361 Lyon, France
E-mail: julien.lam@univ-lyon1.fr; david.amans@univ-lyon1.fr

SI. 1 Isomer data

For each molecular formula $\mathrm{Al}_{\mathrm{x}} \mathrm{O}_{\mathrm{y}}$, geometries along with point-zero energies for all the selected isomers are reported in the supplementary material attached to the Letter in a xyz format where the number of atoms and the point-zero energy [Hartree] are given in the commentary line. The positions are given in Angstrom. The name $i_{-} j . x y z$ of each files denotes the molecular formula $\mathrm{Al}_{\mathrm{i}} \mathrm{O}_{\mathrm{j}}$.

SI. 2 Gas composition

From the dissociation energy, the vibrational and rotational constants, the Gibbs free energy of formation $\Delta_{f} G_{A l_{x} O_{y}^{(i)}}$ of each $\mathrm{Al}_{\mathrm{x}} \mathrm{O}_{\mathrm{y}}^{(\mathrm{i})}$ is computed as a function of the temperature (T) and the pressure (P_{\circ}). i denotes the $\mathrm{Al}_{\mathrm{x}} \mathrm{O}_{\mathrm{y}}$ isomer considered. For each isomer i of each $\mathrm{Al}_{\mathrm{x}} \mathrm{O}_{\mathrm{y}}$, the Gibbs free energy G was calculated using the electronic energy E_{0} (calculated at MP2/6-311++G(3df,3pd) level of theory), the entropy $S_{\text {total }}$, and the energy $E_{\text {total }}$ resulting from translational, vibrational and rotational motion :

$$
G=E_{0}+E_{t o t a l}+R T-T S_{\text {total }}
$$

[^0]where R is the gas constant. $S_{\text {total }}$ and $E_{\text {total }}$ were calculated using the geometries and the harmonic frequencies computed at B3LYP/6$311+\mathrm{G}(3 \mathrm{df}, 3 \mathrm{pd})$ level of theory. They are defined as follow:
\[

$$
\begin{gathered}
E_{t o t a l}=E_{t r a n s}+E_{v i b}+E_{r o t} \\
S_{t o t a l}=S_{t r a n s}+S_{v i b}+S_{\text {rot }}
\end{gathered}
$$
\]

where trans, vib and rot must be understood as translation, vibration and rotation. The energies were calculated as follow. $E_{\text {rot }}=R T$ for linear molecules and $\frac{3}{2} R T$ for non linear molecules.

$$
\begin{gathered}
E_{\text {trans }}=\frac{3}{2} R T \\
E_{\text {vib }}=R \sum_{p=0}^{N} \Theta_{p}\left(\frac{1}{2}+\frac{1}{\exp \left(\Theta_{p} / T\right)-1}\right)
\end{gathered}
$$

where $\Theta_{p}=h \nu_{p} / k_{B}, \nu_{p}$ is the harmonic frequency of mode number $p, N=3 \times$ (number of atoms) -5 for linear molecules and $3 \times$ (number of atoms) -6 for non linear molecules .
The entropy was calculated as follow:

$$
S_{\text {trans }}=R\left[\ln \left(\left(\frac{2 \pi m k_{B} T}{h^{2}}\right)^{3 / 2} \frac{k_{B} T}{P_{\circ}}\right)+\frac{5}{2}\right]
$$

 $S_{\text {rot }}=R\left[\ln \left(\frac{T}{\Theta_{r}}\right)+1\right]$ for linear molecules, and $R\left[\ln \left(\frac{1}{2} \sqrt{\frac{\pi T^{3}}{\Theta_{r x} \Theta_{r y} \Theta_{r z}}}\right)+\frac{3}{2}\right]$ for non linear molecules. $\Theta_{r x}=h^{2} / 8 \pi^{2} I_{x} k_{B}$ where I_{x} is the moment inertia with respect to x axis (respectively y and z).

From the set of $\Delta_{f} G_{A l_{x} O_{y}^{(i)}}$, we can compute the composition of a gas feed with aluminium and oxygen atoms as a function of the temperature, the initial proportion of elements ($\lambda \equiv N_{A l} / N_{O}$) and the pressure. We considered a set of reactions which correspond to the formation of the $\mathrm{Al}_{x} \mathrm{O}_{\mathrm{y}}^{(\mathrm{i})}$ molecules from an atomic gas:

$$
\begin{equation*}
x A l+y O \rightleftarrows A l_{x} O_{y}^{(i)} \tag{1}
\end{equation*}
$$

The gibbs free energy of reactions $\Delta_{r} G_{A l_{x} O_{y}^{(i)}}$ are deduced from the $\Delta_{f} G_{A l_{x} O_{y}^{(i) .}}{ }^{1}$ The composition in the equilibrium state is driven by the dissociation constants :

$$
\begin{equation*}
K_{A l_{x} O_{y}^{(i)}}=\frac{P_{A l_{x} O_{y}^{(i)}} P_{\circ}^{(x+y)-1}}{P_{A l}^{x} P_{O}^{y}} \tag{2}
\end{equation*}
$$

where $P_{A l_{x} O_{y}^{(i)}}, P_{A l}$ and P_{O} are respectively the partial pressure of the $\mathrm{Al}_{\mathrm{x}} \mathrm{O}_{\mathrm{y}}^{(\mathrm{i})}$ molecule, the partial pressure of aluminium atoms and the partial pressure of oxygen atoms. Each $K_{A l_{x} O_{y}^{(i)}}$ is expressed using the Van't Hoff law:

$$
\begin{equation*}
K_{A l_{x} O_{y}^{(i)}}=\exp \left(-\frac{\Delta_{r} G_{A l_{x} O_{y}^{(i)}\left(T, P_{\circ}\right)}}{k_{B} T}\right) \tag{3}
\end{equation*}
$$

Assuming a perfect gas, we define the quantities $P_{A l}^{\text {tot }}$ and $P_{O}^{\text {tot }}$ which respectively map the total number of aluminium atoms and oxygen atoms:

$$
\begin{align*}
P_{A l}^{t o t} & =\sum_{x, y, i} x P_{A l_{x} O_{y}^{(i)}} \\
& =\sum_{x, y, i} x K_{A l_{x} O_{y}^{(i)}} P_{A l}^{x} P_{O}^{y} P_{\circ}^{1-(x+y)} \tag{4}\\
P_{O}^{t o t} & =\sum_{x, y, i} y P_{A l_{x} O_{y}^{(i)}} \\
& =\sum_{x, y, i} y K_{A l_{x} O_{y}^{(i)}} P_{A l}^{x} P_{O}^{y} P_{\circ}^{1-(x+y)}
\end{align*}
$$

The proportion of elements follows the ratio $\lambda=$ $P_{A l}^{\text {tot }} / P_{O}^{\text {tot }}$. The mass conservation leads to $P_{\circ}=$ $P_{A l}^{\text {tot }}+P_{O}^{\text {tot }}$. As a consequence, each $\left(P_{\circ}, \lambda\right)$ pair defines the quantities $P_{A l}^{t o t}$ and $P_{O}^{t o t}$. The set of

SI. 4 Fit of the ration $N_{A l O} / N_{A l}$

Figure 1: Comparison between the experimental measurements (black dots) and the numerical calculations for different values of λ and P 。 at short time scale ($10 \mu \mathrm{~s}-24 \mu \mathrm{~s})$.

In figure 1, corrected experimental measurements are plotted along with several theoretical curves in order to assess the quality of agreement between experimental measurements and theoretical calculations.

SI. 5 Ratio (2:3)/(1:1)

Figure 2: Ratio in pressure between molecules following $\left(\mathrm{Al}_{2} \mathrm{O}_{3}\right)_{\mathrm{n}}$ and those following $(\mathrm{AlO})_{\mathrm{n}}$ as a function of λ calculated at 1500 K .

Figure 2 shows the ratio in pressure between molecules following $\left(\mathrm{Al}_{2} \mathrm{O}_{3}\right)_{\mathrm{n}}$ and those following $(\mathrm{AlO})_{\mathrm{n}}$ as a function of λ. The plateau observed for $\lambda<2 / 3$ corresponds to the numerical error.

References

(1) McQuarrie, D. A.; Simon, J. D. Molecular Thermodynamics; University Science Books, 1999.
(2) Lam, J.; Motto-Ros, V.; Misiak, D.; Dujardin, C.; Ledoux, G.; Amans, D. Investigation of Local Thermodynamic Equilibrium in Laser-Induced Plasmas: Measurements of Rotational and Excitation Temperatures at Long Time Scales. Spectroc. Acta Pt. B 2014, 101, 86-92.

[^0]: *To whom correspondence should be addressed

