Supporting Information

Ulleungamides A and B, Modified α, β-Dehydropipecolic AcidContaining Cyclic Depsipeptides from Streptomyces sp. KCB13F003

Sangkeun Son, ${ }^{\dagger, \dagger}$ Sung-Kyun Ko, ${ }^{\dagger, \ddagger}$ Mina Jang, ${ }^{\dagger, \star}$ Jae Kyoung Lee, ${ }^{\dagger}$ In-Ja Ryoo, ${ }^{\dagger}$ Jung-Sook Lee, ${ }^{\S}$ Kyung Ho Lee, ${ }^{\|}$Nak-Kyun Soung,,${ }^{\ddagger}$ Hyuncheol Oh, ${ }^{\perp}$ Young-Soo Hong, ${ }^{\dagger, \ddagger}$ Bo Yeon Kim, ${ }^{\|, \ddagger}$ JaeHyuk Jang, ${ }^{*} \uparrow \uparrow$ and Jong Seog Ahn*, \dagger, \ddagger
${ }^{\dagger}$ Chemical Biology Research Center and ${ }^{\|}$Incurable Diseases Therapeutics Research Center (WCI), Korea Research Institute of Bioscience and Biotechnology, Cheongju 363-883, Korea
${ }^{*}$ Department of Biomolecular Science, University of Science and Technology, Daejeon 305-333, Korea
${ }^{\S}$ Microbial Resource Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon 306-809, Korea
${ }^{\perp}$ College of Pharmacy, Wonkwang University, Iksan 570-749, Korea

Corresponding Author

*(J.S.Ahn.) Tel: +82-43-240-6160. Fax: +82-43-240-6169. E-mail:jsahn@kribb.re.kr. (J.-H. Jang) Tel: +82-43-240-6164. Fax: +82-43-240-6169. E-mail: jangjh@kribb.re.kr.

Table of Contents

Experimental Section

General experimental procedures
Microbial source
Cultivation
Extraction and isolation
Methyl esterification
Determination of the absolute configuration at C-5 and C-26 by modified Mosher's method
Determination of the absolute configuration at C-9, C-15, C-32, and C-36 by advanced Marfey's analysis
Determination of the absolute configuration at C - 33 by $2,3,4,6$-tetra- O-acetyl- β-d-glucopyranosyl isothiocyanate (GITC) derivatization
Determination of the absolute configuration at C-47 by phenylglycine methyl ester (PGME) derivatization
Determination of the absolute configuration of 4,5-diol moiety by Snatzke's method
Cell proliferation assay
Antimicrobial assay
NMR, HRESIMS, and CD Spectra
NMR spectral data of $\mathbf{1}$ in DMSO- d_{6}
NMR spectral data of 2 in DMSO- d_{6}
${ }^{1} \mathrm{H}$ NMR spectrum of $\mathbf{1}$ in DMSO- $d_{6}(900 \mathrm{MHz})$
${ }^{1} \mathrm{H}$ NMR spectrum of $\mathbf{1}$ in DMSO- $d_{6}(800 \mathrm{MHz})$
${ }^{1} \mathrm{H}$ NMR spectrum of $\mathbf{1}$ in DMSO- $d_{6}(800 \mathrm{MHz})$ expanded in the region of $7.5-13.0 \mathrm{ppm}$
${ }^{13} \mathrm{C}$ NMR spectrum of $\mathbf{1}$ in DMSO- $d_{6}(200 \mathrm{MHz})$
COSY spectrum of $\mathbf{1}$ in DMSO- $d_{6}(800 \mathrm{MHz})$
DQF-COSY spectrum of $\mathbf{1}$ in DMSO- $d_{6}(900 \mathrm{MHz})$
HSQC-DEPT spectrum of $\mathbf{1}$ in DMSO- $d_{6}(800 \mathrm{MHz})$
TOCSY spectrum of $\mathbf{1}$ in DMSO- $d_{6}(900 \mathrm{MHz})$
HSQC-TOCSY spectrum of 1 in DMSO- $d_{6}(800 \mathrm{MHz})$
HMBC spectrum of $\mathbf{1}$ in DMSO- $d_{6}(800 \mathrm{MHz})$
HMBC spectrum of $\mathbf{1}$ in DMSO- $d_{6}(900 \mathrm{MHz})$ (1)
HMBC spectrum of $\mathbf{1}$ in DMSO- $d_{6}(900 \mathrm{MHz})(2)$
ROESY spectrum of $\mathbf{1}$ in DMSO- $d_{6}(800 \mathrm{MHz})$
${ }^{1} \mathrm{H}$ NMR spectrum of 2 in DMSO- $d_{6}(900 \mathrm{MHz})$
${ }^{1} \mathrm{H}$ NMR spectrum of $\mathbf{2}$ in DMSO- $d_{6}(900 \mathrm{MHz})$ expanded in the region of $7.5-13.0 \mathrm{ppm}$
${ }^{13} \mathrm{C}$ NMR spectrum of $\mathbf{2}$ in DMSO- $d_{6}(225 \mathrm{MHz})$
COSY spectrum of $\mathbf{2}$ in DMSO- $d_{6}(900 \mathrm{MHz})$
DQF-COSY spectrum of $\mathbf{2}$ in DMSO- $d_{6}(900 \mathrm{MHz})$
HSQC-DEPT spectrum of 2 in DMSO- $d_{6}(900 \mathrm{MHz})$
TOCSY spectrum of $\mathbf{2}$ in DMSO- $d_{6}(900 \mathrm{MHz})$
HMBC spectrum of $\mathbf{2}$ in DMSO- $d_{6}(900 \mathrm{MHz})$
ROESY spectrum of 2 in DMSO- $d_{6}(900 \mathrm{MHz})$
${ }^{1} \mathrm{H}$ NMR spectrum of bis-S-MTPA ester 1c in DMSO- $d_{6}(900 \mathrm{MHz})$ HSQC-DEPT spectrum of bis-S-MTPA ester $\mathbf{1 c}$ in DMSO- $d_{6}(900 \mathrm{MHz})$
ROESY spectrum of bis- S-MTPA ester 1c in DMSO- $d_{6}(900 \mathrm{MHz})$
${ }^{1} \mathrm{H}$ NMR spectrum of bis- R-MTPA ester 1d in DMSO- $d_{6}(900 \mathrm{MHz})$
HSQC-DEPT spectrum of bis- R-MTPA ester $\mathbf{1 d}$ in DMSO- $d_{6}(900 \mathrm{MHz})$
${ }^{1} \mathrm{H}$ NMR spectrum of S-PGME amide $\mathbf{1 e}$ in DMSO- $d_{6}(800 \mathrm{MHz})$ HSQC-DEPT spectrum of S-PGME amide $\mathbf{1 e}$ in DMSO- $d_{6}(800 \mathrm{MHz})$ ${ }^{1} \mathrm{H}$ NMR spectrum of R-PGME amide $\mathbf{1 f}$ in DMSO- $d_{6}(800 \mathrm{MHz})$ HSQC-DEPT spectrum of R-PGME amide $\mathbf{1 f}$ in DMSO- $d_{6}(800 \mathrm{MHz})$
${ }^{1} \mathrm{H}$ NMR spectrum of S-PGME amide of 2 in DMSO- $d_{6}(700 \mathrm{MHz})$
${ }^{1} \mathrm{H}$ NMR spectrum of R-PGME amide of $\mathbf{2}$ in DMSO- $d_{6}(700 \mathrm{MHz})$
$\Delta \delta S-R$ values around C-47 obtained for S - and R-PGME amides of 2
Time evolution of ICD spectra of $\mathbf{1}$ in solution of dimolybdenum tetraacetate in DMSO
Key ROESY correlations of major and minor conformers of $\mathbf{1}$
HRESIMS data of $\mathbf{1}$
HRESIMS data of 2
CD spectrum of $\mathbf{1}$ in MeOH
CD spectrum of 2 in MeOH

Experimental Section

1-1 General experimental procedures

ODS ($75 \mu \mathrm{~m}$, Cosmosil) was used for vacuum liquid chromatography with LP grade solvents (SK chemicals). Analytic $\mathrm{C}_{18}(4.6 \times$ $150 \mathrm{~mm}, 5 \mu \mathrm{~m}$, YMC), semi-preparative $\mathrm{C}_{18}\left(10 \times 250 \mathrm{~mm}, 10 \mu \mathrm{~m}\right.$, Optimapak), and preparative $\mathrm{C}_{18}(20 \times 250 \mathrm{~mm}, 10 \mu \mathrm{~m}$, GROMSIL) columns were used for HPLC on a YL9100 HPLC system (Younglin) equipped with an YL9160 PDA detector (Younglin) using HPLC grade solvents (Burdick \& Jackson). UV spectra were obtained on a Shimadzu UV-1601 spectrophotometer. Specific rotations were measured on a JASCO P-1020 polarimeter using a 100 mm glass microcell. Circular dichroism (CD) spectra were measured on Jasco J-715 spectropolarimeter at 298 K using a quartz cuvette of 0.1 cm path length. The NMR spectra were recorded on a Bruker Biospin Advance II 900 NMR spectrometer (900 MHz for ${ }^{1} \mathrm{H}$ and 225 MHz for ${ }^{13} \mathrm{C}$), Bruker AVANCE HD 800 NMR spectrometer (800 MHz for ${ }^{1} \mathrm{H}$ and 200 MHz for ${ }^{13} \mathrm{C}$), and Bruker AVANCE HD 700 NMR spectrometer (700 MHz for ${ }^{1} \mathrm{H}$ and 175 MHz for ${ }^{13} \mathrm{C}$) at Korea Basic Science Institute (KBSI) in Ochang, Korea. NMR spectra were recorded in DMSO- d_{6} and chemical shifts were referenced to residual solvent signal. High resolution electrospray ionization mass spectrometry (HRESIMS) data were acquired on a Q-TOF mass spectrometer (SYNAPT G2, Waters) at KBSI in Ochang, Korea. A liquid chromatography-mass spectrometry (LCMS) was performed using an LTQ XL linear ion trap (Thermo Scientific, USA) equipped with an electrospray ionization (ESI) source that was coupled to a rapid separation LC (RSLC; ultimate 3000, Thermo Scientific) system (ESI-LC-MS) using a HSS T3 column (Waters, UK) $(2.1 \times 150 \mathrm{~mm} ; 2.5$ um particle size) with a linear gradient of the binary solvent system consisting of solvent A (water with 0.1% formic acid) and solvent B (acetonitrile) at a flow rate of $0.3 \mathrm{~mL} / \mathrm{min}$. A linear gradient was initiated with 5% B and linearly increased to 100% at $0-15 \mathrm{~min}$. The ESI (negative ion) parameters were the source voltage (+5 KV), entrance capillary voltage $(+18 \mathrm{~V})$, entrance capillary temperature $\left(275^{\circ} \mathrm{C}\right)$, and tube lens voltage $(+120 \mathrm{~V})$. The scan range was fixed from $\mathrm{m} / \mathrm{z} 50$ to 1500 . The data-dependent mass spectrometry experiments were controlled using the menu driven software provide with the Xcalibur system (version 2.2 SP1.48; Thermo Scientific).

1-2 Microbial source

Soil samples were collected at $5-10 \mathrm{~cm}$ depth in Ulleung Island and air-dried. Actinobacteria were isolated by dilution plating method on HV agar medium (1.0 g humic acid, $0.5 \mathrm{~g} \mathrm{Na}_{2} \mathrm{HPO}_{4}, 1.7 \mathrm{~g} \mathrm{KCl}, 0.05 \mathrm{~g} \mathrm{MgSO}_{4} \cdot 7 \mathrm{H}_{2} \mathrm{O}, 0.01 \mathrm{~g} \mathrm{FeSO}_{4} \cdot 7 \mathrm{H}_{2} \mathrm{O}, 1 \mathrm{~g} \mathrm{CaCl} 2$, and 12 g agar per 1 L distilled water, pH 7.2) supplemented with cycloheximide ($100 \mu \mathrm{~g} / \mathrm{mL}$). Strain KCB13F003 was recognized after two weeks of incubation at $28{ }^{\circ} \mathrm{C}$ and maintained on SY agar medium (10 g starch, 1 g yeast extract, 1 g tryptone, 17 g agar per 1 L distilled water). The strain exhibited the highest 16S rRNA gene sequence similarities to Streptomyces chattanoogensis NBRC 12754 (99.4%), Streptomyces lydicus ATCC 25470 (99.4\%), and Streptomyces staurosporininus BK179 (99.4%). Therefore, the strain KCB13F003 was identified and named as Streptomyces sp. KCB13F003.

1-3 Cultivation

Streptomyces sp. KCB13F003 maintained on SY agar medium was inoculated into 500 mL baffled Erlenmeyer flask containing 100 mL of GLY medium (15.8 mL glycerol, 10 g lactose, 5 g malt extract, 5 g yeast extract, and $1 \mathrm{~g} \mathrm{CaCO}{ }_{3}$ per 1 L distilled water). The cultures were grown at $28^{\circ} \mathrm{C}$ for 3 days on a rotary shaker operating at 125 rpm .3 mL of seed medium was inoculated to each 250 mL of the same production medium in 1 L baffed Erlenmeyer flasks ($30 \times 250 \mathrm{~mL}$). Fermentation was carried out at $28^{\circ} \mathrm{C}$ for 5 days with agitation at 115 rpm .

1-4 Extraction and isolation
The fermentation broth (7.5 L) was centrifuged and the supernatant was adsorbed onto Amberlite XAD-7. The resin was collected and transferred to an open column, and eluted with MeOH . The eluate was concentrated in vacuo to yield white crude extract. The cell pellet was extracted with acetone and concentrated in vacuo. The combined crude extracts from the supernatant and cell pellet were suspended in $\mathrm{H}_{2} \mathrm{O}$ and partitioned with EtOAc using a separation funnel to yield yellow oily extract. The extract (10.0 g) was fractionated by reversed-phase C_{18} flash column chromatography using a stepwise gradient of $\mathrm{MeOH}-\mathrm{H}_{2} \mathrm{O}$ (from 20:80, 40:60, 60:40, 80:20 to 100:0; 1 L for each step). The $80 \% \mathrm{MeOH}$ fraction was subjected to preparative HPLC (GROM-SIL, $\mathrm{C}_{18}, 20 \times 250 \mathrm{~mm}, 10$ $\mu \mathrm{m}, 6.5 \mathrm{~mL} / \mathrm{min}$) using a gradient elution of $45-80 \% \mathrm{CH}_{3} \mathrm{CN} / \mathrm{H}_{2} \mathrm{O}$ in 35 min to yield 4 subfractions. Further purification of the first subfraction by semi-preparative HPLC (Optimapak, $\mathrm{C}_{18}, 10 \times 250 \mathrm{~mm}, 10 \mu \mathrm{~m}, 3.0 \mathrm{~mL} / \mathrm{min}$) with a gradient solvent system of $40-$ $52 \% \mathrm{CH}_{3} \mathrm{CN} / \mathrm{H}_{2} \mathrm{O}$ over 35 min provided ulleungamide B(2) ($48.0 \mathrm{mg}, t_{\mathrm{R}}=19.6 \mathrm{~min}$). The second subfraction was purified by semipreparative HPLC (Optimapak, $\mathrm{C}_{18}, 10 \times 250 \mathrm{~mm}, 10 \mu \mathrm{~m}, 3.0 \mathrm{~mL} / \mathrm{min}$) using a gradient elution of $40-70 \% \mathrm{CH}_{3} \mathrm{CN} / \mathrm{H}_{2} \mathrm{O}$ to afford ulleungamide $\mathrm{A}(\mathbf{1})\left(24.0 \mathrm{mg}, t_{\mathrm{R}}=21.2 \mathrm{~min}\right)$.

Ulleungamide $\mathrm{A}(\mathbf{1})$: white powder; $[\alpha]^{21}{ }_{\mathrm{D}}+88.4(c 0.05, \mathrm{MeOH})$; UV(MeOH) $\lambda_{\max }(\log \varepsilon) 204$ (3.6), 210 (3.3); for NMR data, see Table S1; HRESIMS $m / z 986.4861[\mathrm{M}+\mathrm{H}]^{+}$(calcd for $\mathrm{C}_{51} \mathrm{H}_{68} \mathrm{~N}_{7} \mathrm{O}_{13}, ~ 986.4875$).
Ulleungamide B (2): white powder; [$\alpha]^{25}{ }^{\mathrm{D}}+69.6(c 0.05, \mathrm{MeOH})$; UV(MeOH) $\lambda_{\max }(\log \varepsilon) 204$ (3.6); 210 (3.2); for NMR data, see Table S2; HRESIMS m/z 1024.4642 [M + Na] ${ }^{+}$(calcd for $\mathrm{C}_{51} \mathrm{H}_{67} \mathrm{~N}_{7} \mathrm{O}_{14}, 1024.4644$).

1-5 Methyl esterification
Solution of compound $\mathbf{1}(2.7 \mathrm{mg})$ in $\mathrm{MeOH}(0.5 \mathrm{~mL})$ were treated with $100 \mu \mathrm{~L}$ of trimethylsilyldiazomethane (2 M in diethyl ether) at room temperature for 3 h . The product formation was confirmed by LC/MS (ESIMS $\mathrm{m} / \mathrm{z} 1000[\mathrm{M}+\mathrm{H}]^{+}$), and the reaction mixture was purified by semi-preparative HPLC (Optimapak, $\mathrm{C}_{18}, 10 \times 250 \mathrm{~mm}, 10 \mu \mathrm{~m}, 3.0 \mathrm{~mL} / \mathrm{min}$) eluting with a gradient solvent system of $40-80 \% \mathrm{CH}_{3} \mathrm{CN} / \mathrm{H}_{2} \mathrm{O}$ over 35 min to afford methylated product $\mathbf{1 b}\left(1.9 \mathrm{mg}, t_{\mathrm{R}}=21.2 \mathrm{~min}\right)$.

1-6 Determination of the absolute configuration at C-5 and C-26 by modified Mosher's method
Compound $\mathbf{1 b}(1.9 \mathrm{mg})$ was divided into two 20 mL vials, and each was dissolved in 1.0 mL of anhydrous pyridine. To each solution of $\mathbf{1 b}$ was added a slight excess of dimethylaminopyridine (DMAP). Reaction mixtures were stirred for 5 min and treated
with $40 \mu \mathrm{~L}$ of (R) - α-methoxy- α-(trifluoromethyl)phenylacetyl chloride (MTPA-Cl) and $40 \mu \mathrm{~L}$ of (S)-MTPA-Cl, respectively. The reaction was continued for 24 h at room temperature. Following confirmation of successful product formation by LC/MS (ESIMS $m / z 1432[\mathrm{M}+\mathrm{H}]^{+}$), the reaction was quenched by addition of $50 \mu \mathrm{~L}$ of $\mathrm{H}_{2} \mathrm{O}$. The crude product mixtures were purified by semipreparative HPLC (Optimapak, $\mathrm{C}_{18}, 10 \times 250 \mathrm{~mm}, 10 \mu \mathrm{~m}, 3.0 \mathrm{~mL} / \mathrm{min}$) using a gradient solvent system of $70-100 \% \mathrm{CH}_{3} \mathrm{CN} / \mathrm{H}_{2} \mathrm{O}$ over 20 min to yield bis- S-MTPA ester $(\mathbf{1 c})\left(0.6 \mathrm{mg}, t_{\mathrm{R}}=19.4 \mathrm{~min}\right)$ and bis- R-MTPA ester $(\mathbf{1 d})\left(0.6 \mathrm{mg}, t_{\mathrm{R}}=18.9 \mathrm{~min}\right)$.

1-7 Determination of the absolute configuration at C-9, C-15, C-32, and C-36 by advanced Marfey's analysis Compound $1(0.9 \mathrm{mg})$ was hydrolyzed in 0.5 mL of 6 N HCl at $100^{\circ} \mathrm{C}$ for 1 h . Afterwards, the hydrolysate was evaporated in vacuo and divided into two portions. To a hydrolysate of each were added $100 \mu \mathrm{~L}$ of 1 N NaHCO 3 . Either $100 \mu \mathrm{~L}$ of N - α-(5 -fluoro-2,4-dinitrophenyl)-L-leucinamide (L-FDLA) or D-FDLA ($1 \% \mathrm{w} / \mathrm{v}$ in acetone) was added to each hydrolysate and the mixtures were heated at $40^{\circ} \mathrm{C}$ for $1 \mathrm{~h} .20 \mu \mathrm{~L}$ of 2 N HCl was added to neutralize the mixtures and a $20 \mu \mathrm{~L}$ aliquot of each reaction mixture was dissolved in $20 \mu \mathrm{~L}$ of $\mathrm{CH}_{3} \mathrm{CN}$. The resulting mixture was analyzed by LC-MS as described in general experimental procedures. The L- and DFDLA derivatives for compound 2 were also obtained using an identical method.

Retention times ($t_{\mathrm{R}}, \mathrm{min}$) of the L- and D-FDLA derivatives for compound $\mathbf{1}$ were as follows: Pip 13.35, 12.94; Phe 14.29, 13.13; γ -OH-Pip 11.53, 11.25; Thr 10.82, 11.84; N-Me-Phe 13.64, 13.43.
Retention times ($t_{\mathrm{R}}, \mathrm{min}$) of the L- and D-FDLA derivatives for compound 2 were as follows: Pip 13.37, 12.97; Phe 14.31, 13.15; γ -OH-Pip 11.57, 11.28; Thr 10.86, 11.88; N-Me-Phe 13.65, 13.44.
Elution orders of the L-and D-FDLA derivatives of authentic L-amino acids: L-Pip ($\mathrm{D} \rightarrow \mathrm{L}$), $\mathrm{L}-\mathrm{Phe}(\mathrm{L} \rightarrow \mathrm{D}), \mathrm{L}-\mathrm{Thr}(\mathrm{L} \rightarrow \mathrm{D})$, $\mathrm{L}-$ allo-Thr $(\mathrm{L} \rightarrow \mathrm{D}), N$-Me-L-Phe ($\mathrm{L} \rightarrow \mathrm{D}$).
Retention times ($t_{\mathrm{R}}, \mathrm{min}$) of the L- and D-FDLA derivatives for ($2 S, 4 R$)-4-hydroxypipecolic acid (Manchester Organics): 11.52, 11.24
1-8 Determination of the absolute configuration at C-33 by 2,3,4,6-tetra- O-acetyl- β-d-glucopyranosyl isothiocyanate (GITC) derivatization
To the hydrolysate of $\mathbf{1}(0.3 \mathrm{mg})$ solution in $200 \mu \mathrm{~L}$ of $\mathrm{H}_{2} \mathrm{O}$ were added $200 \mu \mathrm{~L}$ of $\mathrm{Et}_{3} \mathrm{~N}(6 \% \mathrm{w} / \mathrm{v}$ in acetone) and $200 \mu \mathrm{~L}$ of GITC (1% w / v in acetone). After stirring at room temperature for 20 min , the reaction mixture was diluted with $100 \mu \mathrm{~L}$ of 5% acetic acid, and a $5 \mu \mathrm{~L}$ of aliquot was analyzed by LC/MS as described in general experimental procedures ($t_{\mathrm{R}}=9.59$, ESIMS $\mathrm{m} / \mathrm{z} 509[\mathrm{M}+\mathrm{H}]^{+}$). The GITC derivatives of standard amino acids, L-Thr and L-allo-The, were obtained and analyzed by LC/MS in the same manner $\left(t_{\mathrm{R}}=\right.$ 9.59 and 9.48 min , respectively).

1-9 Determination of the absolute configuration at C-47 by phenylglycine methyl ester (PGME) derivatization
Compound $1(2.6 \mathrm{mg})$ was divided into two 4 mL vials, and each was dissolved in 1.0 mL of tetrahydrofuran (THF). Each vial was treated with 7.6 mg of 1-ethyl-3-(3-dimethylaminopropyl)carbodiimide hydrochloride (EDC) and 6 mg of S - or R-PGME. The reaction was continued at room temperature for 15 h , and the product formation was confirmed by LC/MS (ESIMS m/z 1133 [M + $\left.\mathrm{H}]^{+}\right)$. The reaction mixtures were evaporated in vacuo, and the (S)-PGME amide ($\mathbf{1 e}$) ($0.9 \mathrm{mg}, t_{\mathrm{R}}=19.4 \mathrm{~min}$) and R-PGME ($\mathbf{1 f}$) (0.8 $\mathrm{mg}, t_{\mathrm{R}}=20.7 \mathrm{~min}$) amide were obtained by semi-preparative HPLC (Optimapak, $\mathrm{C}_{18}, 10 \times 250 \mathrm{~mm}, 10 \mu \mathrm{~m}, 3.0 \mathrm{~mL} / \mathrm{min}$) using a gradient solvent system of $50-65 \% \mathrm{CH}_{3} \mathrm{CN} / \mathrm{H}_{2} \mathrm{O}$ over 30 min . The S - and R-PGME amides of compound $\mathbf{2}$ were also obtained using the same method ($t_{\mathrm{R}}=14.4 \mathrm{~min}$ and 15.7 , respectively).

1-10 Determination of the absolute configuration of 4,5-diol moiety by Snatzke's method
1 mL of stock solution of dimolybdenum tetraacetate $\left[\mathrm{Mo}_{2}(\mathrm{OAc})_{4}\right]$ in $\mathrm{DMSO}(0.7 \mathrm{mg} / \mathrm{mL})$ was added to 0.5 mg of compound $\mathbf{2}$ and the CD spectrum was recorded immediately after mixing. The CD spectrum was recorded every 10 min until a stationary spectrum was reached (40 min after mixing). The inherent CD from 2 was subtracted to give the induced CD of the complex. The observed signs of the diagnostic bands at 322 (band IV) and 282 nm (band V) were correlated to the absolute configuration at 4,5-diol moiety. The same procedure was also used for $\mathbf{1}$ and the CD spectrum was recorded until 32 min after mixing.

1-11 Cell proliferation assay

The sensitivity of the normal (NRK, MRC-5, and 267B1) and cancer cell lines (HeLa, MCF-7, and PC-3) to $\mathbf{1}$ and $\mathbf{2}$ was evaluated with the methylthiazole tetrazolium (MTT) assay. ${ }^{1}$ NRK, HeLa, MCF-7, and PC-3 cells were cultured in DMEM (HyClone) medium at $37{ }^{\circ} \mathrm{C}$ under a $5 \% \mathrm{CO}_{2}$ atmosphere. MRC-5 and 267B1 were cultured in RPMI 1640 (HyClone) media at $37{ }^{\circ} \mathrm{C}$ under a $5 \% \mathrm{CO}_{2}$ atmosphere. Each medium was supplemented with 100 units penicillin, $100 \mu \mathrm{~g} / \mathrm{mL}$ streptomycin, and 10% fetal bovine serum (HyClone). Cells (5×10^{3} cells $/ \mathrm{mL}$) were seeded into a 96 -well plate and then treated with various concentrations of $\mathbf{1}$ and $\mathbf{2}$ dissolved in DMSO (maximum concentrations were $50 \mu \mathrm{M}$). After 48 h incubation, $10 \mu \mathrm{~L}$ of MTT solution (AMRESCO) ($5 \mathrm{mg} / \mathrm{mL}$ in PBS) was added to each well and incubated for 2 h . Then, the supernatant were removed, and the precipitates were dissolved in $100 \mu \mathrm{~L}$ DMSO. The absorbance at 570 nm was measured in a microplate reader.

1-12 Antimicrobial assay
The following microorganisms were used in the assay; Staphylococcus aureus KCTC 1916, Salmonella typhimurium KCTC 1926, Bacillus subtilis KCTC 1022, Escherichia coli KCTC 1039, Pseudomonas aeruginosa KCTC 1750, Klebsiella pneumoniae KCTC 2246, Enterococcus faecalis KCTC 3206, Candida albicans KCTC 7678, Penicillium griseofulvum KCTC 6435, and Alternaria brassicicola ATCC 96836. Each strain was precultured for 24 h in the following media; nutrient broth (3 g beef extract, and 5 g peptone per 1 L distilled water, adjusted to pH 6.8 before sterilization) for S. typhimurium, B. subtilis, E. coli, P. aeruginosa, K. pneumoniae, E. faecalis, LB broth (10 g tryptone, 5 g yeast extract, and 5 g NaCl per 1 L distilled water) for S. aureus, and potato dextrose broth (Difco) for C. albicans, P. griseofulvum, and A. brassicicola. The precultured broth (1% (v / v) of agar medium) was inoculated into the corresponding 0.7% agar medium which was autoclaved and cooled to $45^{\circ} \mathrm{C} .5 \mathrm{~mL}$ of the resulting suspension was poured into the 90 mm Petri dish containing 15 mL of prepoured LB agar and distributed evenly on the plate. After the agar overlay was solidified, 6 mm filter paper disks containing $100 \mu \mathrm{~g}, 50 \mu \mathrm{~g}$, and $25 \mu \mathrm{~g}$ of $\mathbf{1}$ and $\mathbf{2}$ dissolved in DMSO were placed, and
the plates were incubated at $28^{\circ} \mathrm{C}$ (B. subtilis, C. albicans, P. griseofulvum, and A. brassicicola) or $37^{\circ} \mathrm{C}(S$. aureus, S. typhimurium, E. coli, P. aeruginosa, K. pneumoniae, and E. faecalis) for 24 h. The growth inhibitory effects were determined by measuring the diameter of inhibition zone. Only compound 1 indicated inhibition zones against S. aureus and S. typhimurium. Kanamycin, chloramphenicol, and tetracycline served as control.

Diameter of inhibition zone in mm at $100,50,25 \mu \mathrm{~g} /$ disk.

organism	ulleungamide A $(\mathbf{1})$	kanamycin	chloramphenicol	tetracycline
Staphylococcus aureus	$19,16.5,14$	$19,17.5,15$	$21,18.5,16$	$22,21,20$
Salmonella typhimurium	$13,9,0$	$0,0,0$	$19,17,14$	$25,22,21$

Refererence

(1) Mosmann, T. J. Immunol. Methods 1983, 65, 55-63.

Table S1. NMR spectral data of $\mathbf{1}$ in DMSO- d_{6}

	δ_{C}, type	δ_{H}, mult (J in Hz)	$\mathrm{COSY}^{\text {b }}$	HMBC	ROESY b
5-hydroxy-6-methyl-2,3-dehydropipecolic acid					
1	$\begin{aligned} & \text { 162.3, C } \\ & {[162.4]} \end{aligned}$				
2	$\begin{aligned} & 129.4, \mathrm{C} \\ & {[129.5]} \end{aligned}$				
3	$\begin{aligned} & 120.2, \mathrm{CH} \\ & {[119.7]} \end{aligned}$	$\begin{aligned} & 5.98, \operatorname{brt}(7.5) \\ & {[5.85, \operatorname{brt}(7.5)]} \end{aligned}$	4a, 4b	1,2, 4, 5	4a, 4b
4a	$\begin{aligned} & 27.3, \mathrm{CH}_{2} \\ & \text { [27.3] } \end{aligned}$	$\begin{aligned} & 2.28, \mathrm{ovl}^{\mathrm{a}} \\ & {\left[2.28, \mathrm{ovl}^{a}\right]} \end{aligned}$	3, 4b, 5	2, 3, 5	3, 4b, 5, 7
4b		$\begin{aligned} & 2.01, \mathrm{ovl}^{a} \\ & {\left[2.01, \mathrm{ovl}^{a}\right]} \end{aligned}$	3, 4a	2, 3, 5, 6	3, 4a, 5
5	$\begin{aligned} & \text { 65.2, CH } \\ & \text { [65.2] } \end{aligned}$	$\begin{aligned} & 3.75, \mathrm{~s} \\ & {[3.75, \mathrm{~s}]} \end{aligned}$	4a, 5-OH, 6	3	4a, 4b, 6, 7
6	$\begin{aligned} & 53.6, \mathrm{CH} \\ & {[53.6]} \end{aligned}$	$\begin{aligned} & 3.93, \mathrm{~m} \\ & {[3.93, \mathrm{~m}]} \end{aligned}$	5,7	2, 4, 5, 7, 8	5, 7, 9, 10a, 10b
7	14.5, CH_{3}	0.97, ovl ${ }^{\text {a }}$	6	5,6	4a, 5, 6, 9, 10a
5-OH		$4.79, \mathrm{ovl}^{\text {a }}$	5		
Pipecolic acid					
8	$\begin{aligned} & \text { 170.6, C } \\ & {[170.6]} \end{aligned}$				
9	50.2, CH	5.56, ovl ${ }^{\text {a }}$	10a, 10b	8, 10, 11, 13, 14	6,7, 10b, 11a, 13b
10a	$\begin{aligned} & 26.7, \mathrm{CH}_{2} \\ & {[26.8]} \end{aligned}$	1.94, m	9, 10b, 11a, 11b		6, 7, 10b, 11b,
10b		$1.59, \mathrm{ovl}^{\text {a }}$	9, 10a, 11a	9,12	9, 10a, 11a
11a	19.6, CH_{2}	$1.53, \mathrm{ovl}^{a}$	10a, 10b, 11b, 12a, 12b	10	9, 10b, 11b, 12a, 13b
11b		1.31, m	10a, 11a, 12a, 12b	12	10a, 11a, 12b
12a	24.7, CH_{2}	$1.52, \mathrm{ovl}^{a}$	11a, 11b, 12b, 13a, 13b	10	11a, 12b, 13b
12b		1.24 , m	11a, 11b, 12a, 13a, 13b	13	11b, 12a, 13a
13a	42.7, CH_{2}	3.89, brd (13.3)	12a, 12b, 13b	9, 11, 12, 14	12b, 13b, 15
13b		3.10, brt (12.5)	12a, 12b, 13a		9, 11a, 12a, 13a, 15
Phenylalanine					
14	170.0, C				
15	$\begin{aligned} & 48.4, \mathrm{CH} \\ & {[48.3]} \end{aligned}$	$\begin{aligned} & 5.15, \operatorname{dd}(16.2 \text {, } \\ & 8.4) \end{aligned}$	15-NH, 16a, 16b	14, 16, 17, 23	13a, 13b
16a	37.6, CH_{2}	3.00 ovl $^{\text {a }}$	15, 16b	15, 18, 22	
16 b		$\begin{aligned} & 2.82 \text {, dd (13.6, } \\ & 8.5) \end{aligned}$	15, 16a	14, 15, 18, 22	
17	137.6, C				
18	129.3, CH	7.20, ovl ${ }^{\text {a }}$		16, 20, 22	
19	128.0, CH	$7.23, \mathrm{ovl}^{\text {a }}$		17, 21	
20	126.2, CH	7.16, ovl ${ }^{\text {a }}$		18, 22	
21	128.0, CH	7.23, ovl ${ }^{\text {a }}$		17, 19	
22	129.3, CH	$7.20, \mathrm{ovl}^{a}$		16, 18, 20	
$15-\mathrm{NH}$		$\begin{aligned} & 8.90, \mathrm{~m} \\ & {[8.89, \mathrm{~m}]} \end{aligned}$	15	15, 23	24, 25b
4-hydroxypipecolic acid					
23	170.8, C				
24	$\begin{aligned} & 52.4, \mathrm{CH} \\ & {[52.4]} \end{aligned}$	4.29, m	25a, 25b	23, 25, 26, 28, 29	15-NH, 25a, 25b, 30a
25a	$\begin{aligned} & 33.2, \mathrm{CH}_{2} \\ & {[33.3]} \end{aligned}$	$1.82, \mathrm{ovl}^{\text {a }}$	24, 25b, 26		24, 25b, 26
25b		1.41, m	24, 25a, 26	23, 24, 26, 27	15-NH, 24, 25a, 28b
26	61.9, CH	3.65, brs	25a, 25b, 27a, 26-OH	24, 28	25a, 27a, 27b
27a	$\begin{aligned} & 31.3, \mathrm{CH}_{2} \\ & {[31.3]} \end{aligned}$	$1.59, \mathrm{ovl}^{\text {a }}$	26, 27b, 28a, 28b	28	26, 27b, 28a
27b		1.45, m	27a, 28a, 28b		26, 27a, 28a, 28b
28a	$\begin{aligned} & 34.1, \mathrm{CH}_{2} \\ & {[34.2]} \end{aligned}$	4.17, m	27a, 27b, 28b	24, 26, 27, 29	24, 27a, 27b, 28b
28b		3.19, ovl ${ }^{\text {a }}$	27a, 27b, 28a	26, 27, 29	25b, 28a
$26-\mathrm{OH}$ Glycine		4.43, brs	26		
29	168.0, C				
30a	$\begin{aligned} & 40.5, \mathrm{CH}_{2} \\ & {[40.4]} \end{aligned}$	$\begin{aligned} & 4.54, \mathrm{~m} \\ & {[4.54, \mathrm{~m}]} \end{aligned}$	30b, 30-NH	29	24, 30b
30b		$\begin{aligned} & 3.48, \mathrm{~m} \\ & {[3.48, \mathrm{~m}]} \end{aligned}$	$30 \mathrm{a}, 30-\mathrm{NH}$	29	13b, 30a, 30-NH,
30-NH		8.04, m	30a, 30b	31	30b, 32, 33

31	167.4, C				
32	$\begin{aligned} & 54.6, \mathrm{CH} \\ & {[54.6]} \end{aligned}$	$\begin{aligned} & 4.77, \text { ovl }^{a} \\ & {\left[4.85, \text { dd }^{(9.1,}\right.} \\ & 2.9)] \end{aligned}$	33, 32-NH	31,35	$30-\mathrm{NH}, 33,34,32-\mathrm{NH}$
33	$\begin{aligned} & \text { 71.4, CH } \\ & \text { [71.3] } \end{aligned}$	$\begin{aligned} & 5.48, \mathrm{~m} \\ & {[5.53, \mathrm{~m}]} \end{aligned}$	32, 34	1,34	$30-\mathrm{NH}, 32,34$
34	$\begin{aligned} & 15.9, \mathrm{CH}_{3} \\ & {[15.8]} \end{aligned}$	$\begin{aligned} & 0.97, \text { ovl }^{a} \\ & {[0.94, \mathrm{~d}(6.1)]} \end{aligned}$	33	32, 33	32, 33
32-NH		$\begin{aligned} & 7.69, \mathrm{~d}(8.8) \\ & {[8.15, \mathrm{~d}(8.4)]} \end{aligned}$	32	35	32, 36, 44
N -methylphenylalanine					
35	170.9, C				
36	$\begin{aligned} & 56.7, \mathrm{CH} \\ & \text { [59.4] } \end{aligned}$	$\begin{aligned} & 5.57, \mathrm{ovl}^{a} \\ & {[5.11, \mathrm{t}(7.3)]} \end{aligned}$	37a, 37b	35, 37, 38, 44, 45	32-NH, 37a, 39, 43
37a	$\begin{aligned} & 34.7, \mathrm{CH}_{2} \\ & {[35.6]} \end{aligned}$	$\begin{aligned} & 3.20 \text {, dd (14.4, } \\ & 5.4) \end{aligned}$	36, 37b	35, 36, 38, 39, 43	36, 37b, 39, 43, 44
37b		$\begin{aligned} & {\left[3.32, \mathrm{ovl}^{a}\right]} \\ & 2.90, \mathrm{dd}^{(13.8,} \\ & 11.0) \\ & {\left[3.00, \mathrm{ovl}^{a}\right]} \end{aligned}$	36, 37a	35, 36, 39, 43	37a, 39, 43
38	$\begin{aligned} & \text { 137.8, C } \\ & \text { [137.5] } \end{aligned}$				
39	$\begin{aligned} & \text { 128.8, CH } \\ & \text { [128.9] } \end{aligned}$	$\begin{aligned} & 7.26, \mathrm{ovl}^{a} \\ & {[7.34, \mathrm{~d}(7.4)]} \end{aligned}$		37, 41, 43	
40	$\begin{aligned} & 128.0, \mathrm{CH} \\ & {[128.3]} \end{aligned}$	$\begin{aligned} & 7.23, \mathrm{ovl}^{a} \\ & {[7.28, \mathrm{~m}]} \end{aligned}$		38, 42	
41	$\begin{aligned} & \text { 126.1, CH } \\ & {[126.4]} \end{aligned}$	$\begin{aligned} & 7.16, \mathrm{ovl}^{a} \\ & {\left[7.20, \text { ovl }^{a}\right]} \end{aligned}$		39,43	
42	$\begin{aligned} & \text { 128.0, CH } \\ & {[128.3]} \end{aligned}$	$\begin{aligned} & 7.23, \mathrm{ovl}^{a} \\ & {[7.28, \mathrm{~m}]} \end{aligned}$		38, 40	
43	$\begin{aligned} & 128.8, \mathrm{CH} \\ & {[128.9]} \end{aligned}$	$\begin{aligned} & 7.26, \text { ovl }^{a} \\ & {[7.34, \mathrm{~d}(7.4)]} \end{aligned}$		37, 39, 41	
44	$\begin{aligned} & 31.4, \mathrm{CH}_{3} \\ & {[28.9]} \end{aligned}$	$\begin{aligned} & 2.94, \mathrm{~s} \\ & {[2.76, \mathrm{~s}]} \end{aligned}$		36, 45	32-NH, 36, 46b
$\begin{aligned} & \text { 2-isoprd } \\ & 45 \end{aligned}$	succinic acid 172.0, C [171.7]				
46a	$\begin{aligned} & 31.8, \mathrm{CH}_{2} \\ & {[31.9]} \end{aligned}$	$\begin{aligned} & 2.52, \mathrm{ovl}^{a} \\ & {[2.60, \mathrm{~m}]} \end{aligned}$	46b		
46b		$\begin{aligned} & 2.10, \text { brd }(13.9) \\ & {[2.42, \mathrm{~m}]} \end{aligned}$	46a, 47		44, 46a
47	$\begin{aligned} & 46.8, \mathrm{CH} \\ & {[47.1]} \end{aligned}$	$\begin{aligned} & 2.48, \text { ovl }^{a} \\ & {[2.52, \mathrm{~m}]} \end{aligned}$	46b, 48	45,51	49, 50
48	$\begin{aligned} & 29.2, \mathrm{CH} \\ & {[29.5]} \end{aligned}$	$\begin{aligned} & 1.73, \mathrm{~m} \\ & {[1.85, \mathrm{~m}]} \end{aligned}$	47, 49, 50	46, 47, 49, 50, 51	49, 50
49	$\begin{aligned} & 19.7, \mathrm{CH}_{3} \\ & {[20.0]} \end{aligned}$	$\begin{aligned} & 0.78, \mathrm{~d}(6.4) \\ & {\left[0.88, \text { ovl }^{a}\right]} \end{aligned}$	48	47, 48, 50	47, 48
50	$\begin{aligned} & \text { 19.7, } \mathrm{CH}_{3} \\ & {[19.8]} \end{aligned}$	$\begin{aligned} & 0.76, \text { d }(6.4) \\ & {\left[0.89, \text { ovl }^{a}\right]} \end{aligned}$	48	47, 48, 49	47, 48
51	$\begin{aligned} & \text { 175.6, C } \\ & \text { [175.6] } \end{aligned}$				
51-OH		11.87, brs			

${ }^{a}$ Overlapped with other signals
${ }^{b}$ Correlations between signals in the region of $7.15-7.30 \mathrm{ppm}$ cannot be determined due to highly overlapped cross-peaks in COSY and ROESY spectra.
Detectable chemical shifts for ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ of the minor conformer are presented in brackets.

Table S2. NMR spectral data of $\mathbf{2}$ in DMSO- d_{6}

31	167.3, C				
32	$\begin{aligned} & 54.5, \mathrm{CH} \\ & \text { [54.4] } \end{aligned}$	$\begin{aligned} & \text { 4.77, dd }(9.02 .8) \\ & {[4.89, \operatorname{dd}(9.2,3.3)]} \end{aligned}$	33, 32-NH	31,35	$30-\mathrm{NH}, 33,34,32-\mathrm{NH}, 36$
33	$\begin{aligned} & \text { 71.7, CH } \\ & \text { [71.4] } \end{aligned}$	$\begin{aligned} & 5.49, \mathrm{~m} \\ & {\left[5.54, \mathrm{ovl}^{a}\right]} \end{aligned}$	32, 34	1	$30-\mathrm{NH}, 32,34,32-\mathrm{NH}$
34	$\begin{aligned} & 15.7, \mathrm{CH}_{3} \\ & {[15.6]} \end{aligned}$	$\begin{aligned} & 0.97, \mathrm{~d}(6.1) \\ & {\left[0.90, \text { ovl }^{a}\right]} \end{aligned}$	33	32, 33	32, 33
32-NH		$\begin{aligned} & 7.79, \text { brs } \\ & {[8.36, \mathrm{~d}(9.1)]} \end{aligned}$	32	35	32, 33, 36
N -methylphenylalanine					
35	170.9, C				
36	$\begin{aligned} & 56.8, \mathrm{CH} \\ & \text { [59.3] } \end{aligned}$	$\begin{aligned} & 5.53, \mathrm{ovl}^{a} \\ & {\left[5.13, \mathrm{ovl}^{a}\right]} \end{aligned}$	37a, 37b	35, 37, 44, 45	32, 32-NH, 37a, 39, 43, 44
37a	$\begin{aligned} & 34.7, \mathrm{CH}_{2} \\ & {[35.8]} \end{aligned}$	$\begin{aligned} & 3.22, \mathrm{dd}_{(14.1,5.7)}\left[3.31, \text { ovl }^{a}\right] \end{aligned}$	36, 37b	36,38, 39, 43	36, 37b, 39, 43
37b		$\begin{aligned} & 2.89, \mathrm{dd}^{(14.1,10.5)} \\ & {\left[2.96, \mathrm{ovl}^{a}\right]} \end{aligned}$	36, 37a	36,38, 39, 43	37a, 39, 43
38	$\begin{aligned} & \text { 137.8, C } \\ & \text { [137.4] } \end{aligned}$				
39	$\begin{aligned} & \text { 128.8, CH } \\ & {[128.9]} \end{aligned}$	7.26, ovl ${ }^{\text {a }}$		37, 41, 43	
40	$\begin{aligned} & 128.0, \mathrm{CH} \\ & {[128.3]} \end{aligned}$	7.23, ovl ${ }^{\text {a }}$		38.42	
41	$\begin{aligned} & \text { 126.1, CH } \\ & \text { [126.4] } \end{aligned}$	7.16, ovl ${ }^{\text {a }}$		39, 43	
42	$\begin{aligned} & \text { 128.0, } \mathrm{CH} \\ & {[128.3]} \end{aligned}$	7.23, ovl ${ }^{\text {a }}$		38, 40	
43	$\begin{aligned} & \text { 128.8, } \mathrm{CH} \\ & \text { [128.9] } \end{aligned}$	7.26, ovl ${ }^{\text {a }}$		37, 39, 41	
44	$\begin{aligned} & 31.5, \mathrm{CH}_{3} \\ & {[28.9]} \end{aligned}$	$\begin{aligned} & 2.92, \mathrm{~s} \\ & {[2.76, \mathrm{~s}]} \end{aligned}$		36, 45	36, 46a, 46b, 47
$\begin{aligned} & \text { 2-isopr } \\ & 45 \end{aligned}$	Isuccinic acid 171.9, C [171.7]				
46a	$31.9, \mathrm{CH}_{2}$	$\begin{aligned} & 2.53, \text { ovl }^{a} \\ & {\left[2.62, \mathrm{dd}^{(16.4,}\right.} \\ & 10.3)] \end{aligned}$	$\begin{aligned} & 46 b, 47 \\ & 46 a, 47 \end{aligned}$	$\begin{aligned} & 45,47,51 \\ & 45,47,51 \end{aligned}$	$\begin{aligned} & 44,46 \mathrm{~b} \\ & 44,46 \mathrm{a}, 47 \end{aligned}$
46b		$\begin{aligned} & 2.09, \mathrm{dd}(16.1,3.5) \\ & {[2.41, \mathrm{~m}]} \end{aligned}$			
47	$\begin{aligned} & \text { 46.8, CH } \\ & \text { [47.1] } \end{aligned}$	$\begin{aligned} & 2.46, \mathrm{ovl}^{a} \\ & {\left[2.54, \mathrm{ovl}^{a}\right]} \end{aligned}$	46a, 46b, 48	46, 48, 49, 50, 51	44, 46b, 48, 49
48	$\begin{aligned} & 29.3, \mathrm{CH} \\ & {[29.5]} \end{aligned}$	$\begin{aligned} & 1.73, \mathrm{~m} \\ & {[1.86, \mathrm{~m}]} \end{aligned}$	47, 49, 50	46, 47, 49, 50, 51	47, 49, 50
49	$\begin{aligned} & 19.7, \mathrm{CH}_{3} \\ & {[20.1]} \end{aligned}$	$\begin{aligned} & 0.78, \mathrm{~d}(6.9) \\ & {\left[0.90, \text { ovl }^{a}\right]} \end{aligned}$	48	47, 48, 50	47, 48, 50
50	$\begin{aligned} & 19.7, \mathrm{CH}_{3} \\ & {[19.7]} \end{aligned}$	$\begin{aligned} & 0.76, \mathrm{~d}(6.9) \\ & {\left[0.90, \text { ovl }^{a}\right]} \end{aligned}$	48	47, 48, 49	48, 49
51	$\begin{aligned} & \text { 175.6, C } \\ & \text { [175.6] } \end{aligned}$				
$51-\mathrm{OH}$		11.85, brs			

${ }^{a}$ Overlapped with other signals
${ }^{b}$ Correlations between signals in the region of 7.15-7.30 cannot be determined due to highly overlapped cross-peaks in COSY and ROESY spectra.
Detectable chemical shifts for ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ of the minor conformer are presented in brackets.

Figure S1. ${ }^{1} \mathrm{H}$ NMR spectrum of $\mathbf{1}$ in DMSO- $d_{6}(900 \mathrm{MHz})$

Figure S2. ${ }^{1} \mathrm{H}$ NMR spectrum of $\mathbf{1}$ in DMSO- $d_{6}(800 \mathrm{MHz})$

Figure S3. ${ }^{1} \mathrm{H}$ NMR spectrum of $\mathbf{1}$ in DMSO- $d_{6}(800 \mathrm{MHz})$ expanded in the region of $7.5-13.0 \mathrm{ppm}$

Figure S4. ${ }^{13} \mathrm{C}$ NMR spectrum of $\mathbf{1}$ in DMSO- $d_{6}(200 \mathrm{MHz})$

170
(pom)

Figure S5. COSY spectrum of $\mathbf{1}$ in DMSO- $d_{6}(800 \mathrm{MHz})$

Figure S6. DQF-COSY spectrum of $\mathbf{1}$ in DMSO- $d_{6}(900 \mathrm{MHz})$

Figure S7. HSQC-DEPT spectrum of $\mathbf{1}$ in DMSO- $d_{6}(800 \mathrm{MHz})$

Figure S8. TOCSY spectrum of $\mathbf{1}$ in DMSO- $d_{6}(900 \mathrm{MHz})$

Figure S9. HSQC-TOCSY spectrum of $\mathbf{1}$ in DMSO- $d_{6}(800 \mathrm{MHz})$

Figure S10. HMBC spectrum of $\mathbf{1}$ in DMSO- $d_{6}(800 \mathrm{MHz})$

Figure S11. HMBC spectrum of $\mathbf{1}$ in DMSO- $d_{6}(900 \mathrm{MHz})(1)$

Figure S12. HMBC spectrum of $\mathbf{1}$ in DMSO- $d_{6}(900 \mathrm{MHz})(2)$

Figure S13. ROESY spectrum of $\mathbf{1}$ in DMSO- $d_{6}(800 \mathrm{MHz})$

Figure S14. ${ }^{1} \mathrm{H}$ NMR spectrum of $\mathbf{2}$ in DMSO- $d_{6}(900 \mathrm{MHz})$

Figure S15. ${ }^{1} \mathrm{H}$ NMR spectrum of $\mathbf{2}$ in DMSO- $d_{6}(900 \mathrm{MHz})$ expanded in the region of $7.5-13.0 \mathrm{ppm}$

Figure S16. ${ }^{13} \mathrm{C}$ NMR spectrum of $\mathbf{2}$ in DMSO- $d_{6}(225 \mathrm{MHz})$

Figure S17. COSY spectrum of $\mathbf{2}$ in DMSO- $d_{6}(900 \mathrm{MHz})$

Figure S18. DQF-COSY spectrum of $\mathbf{2}$ in DMSO- $d_{6}(900 \mathrm{MHz})$

Figure S19. HSQC-DEPT spectrum of $\mathbf{2}$ in DMSO- $d_{6}(900 \mathrm{MHz})$

Figure S20. TOCSY spectrum of $\mathbf{2}$ in DMSO- $d_{6}(900 \mathrm{MHz})$

Figure S21. HMBC spectrum of $\mathbf{2}$ in DMSO- $d_{6}(900 \mathrm{MHz})$

Figure S22. ROESY spectrum of $\mathbf{2}$ in DMSO- $d_{6}(900 \mathrm{MHz})$

Figure S23. ${ }^{1} \mathrm{H}$ NMR spectrum of bis-S-MTPA ester $\mathbf{1 c}$ in DMSO- $d_{6}(900 \mathrm{MHz})$

Figure S24. HSQC-DEPT spectrum of bis- S-MTPA ester $\mathbf{1 c}$ in DMSO- $d_{6}(900 \mathrm{MHz})$

Figure S25. ROESY spectrum of bis-S-MTPA ester $\mathbf{1 c}$ in DMSO- $d_{6}(900 \mathrm{MHz})$

Figure S26. ${ }^{1} \mathrm{H}$ NMR spectrum of bis- R-MTPA ester $\mathbf{1 d}$ in DMSO- $d_{6}(900 \mathrm{MHz})$

Figure S27. HSQC-DEPT spectrum of bis- R-MTPA ester $\mathbf{1 d}$ in DMSO- $d_{6}(900 \mathrm{MHz})$

Figure S28. ${ }^{1} \mathrm{H}$ NMR spectrum of S-PGME amide $\mathbf{1 e}$ in DMSO- $d_{6}(800 \mathrm{MHz})$

Figure S29. HSQC-DEPT spectrum of S-PGME amide $\mathbf{1 e}$ in DMSO- $d_{6}(800 \mathrm{MHz})$

Figure S30. ${ }^{1} \mathrm{H}$ NMR spectrum of R-PGME amide $\mathbf{1 f}$ in DMSO- $d_{6}(800 \mathrm{MHz})$

Figure S31. HSQC-DEPT spectrum of R-PGME amide $\mathbf{1 f}$ in DMSO- $d_{6}(800 \mathrm{MHz})$

Figure S32. ${ }^{1} \mathrm{H}$ NMR spectrum of S-PGME amide of $\mathbf{2}$ in DMSO- $d_{6}(700 \mathrm{MHz})$

Figure S33. ${ }^{1} \mathrm{H}$ NMR spectrum of R-PGME amide of $\mathbf{2}$ in DMSO- $d_{6}(700 \mathrm{MHz})$

Figure S34. $\quad \Delta \delta_{S-R}$ values around C-47 obtained for S - and R-PGME amides of 2

$$
\mathrm{R}=(S)-\text { or }(R)-\mathrm{PGME}
$$

Figure S35. Time evolution of ICD spectra of $\mathbf{1}$ in solution of dimolybdenum tetraacetate in DMSO

Figure S36. Key ROESY correlations of major and minor conformers of $\mathbf{1}$

major conformer of 1

minor conformer of 1

Figure S37. HRESIMS data of $\mathbf{1}$

Elemental Composition Report

Single Mass Analysis
Tolerance $=50.0$ PPM / DBE: $\min =-1.5, \max =50.0$
Element prediction: Off
Number of isotope peaks used for i-FIT = 3
Minimum:

Maximum:		5.0	50.0	50.0			
Mass	Calc. Mass	mDa	PPM	DBE	i-FIT	Norm	Formula
986.4861	986.4875	-1.4	-1.4	21.5	210.4	0.704	C51 H68 N7 O13

Figure S38. HRESIMS data of $\mathbf{2}$

Elemental Composition Report

Single Mass Analysis
Tolerance $=5.0$ PPM / DBE: $\min =-1.5, \max =50.0$
Element prediction: Off
Number of isotope peaks used for i-FIT $=3$

Figure S39. CD spectrum of $\mathbf{1}$ in MeOH

Figure S40. CD spectrum of $\mathbf{2}$ in MeOH

