Supplementary Material

High-efficiently simultaneous oxidation of organoarsenic and immobilization of arsenic in Fenton enhanced plasma system

Ping Hu[†], Yukun Liu[†], Bo Jiang^{†, ‡}, Xing Zheng[§], JingtangZheng^{†,*}, Mingbo Wu^{†,*}

† State Key Laboratory of Heavy Oil Processing, China University of Petroleum,

Qingdao 266580, Shandong, P.R. China

‡ Qingdao Technological University, Qingdao266580, China

§ Bei Jing Sinen En-Tech Co., Ltd, Beijing 100080, China

Corresponding author. Tel.: +86 86984637; fax: +86 546 8395190.

E-mail address: jtzheng03@163.com (J.T. Zheng)

wumb@upc.edu.cn (M.B. Wu)

Author: bjiang86upc@163.com (B. Jiang)

Submitted to: Industrial & Engineering Chemistry Research

Number of Pages: 12

Number of Figures: 9

Number of Texts: 0

Supplementary Table caption

Table S1. The mineral compositions of precipitate generated in GDP system mediated by various additive Fe(II) after 17 min treatment (input energy 58W, $[ROX]_0=100 \mu M, pH 4.0$).

Supplementary Figure captions

- Figure S1. Schematic diagram of the GDP reactor.
- Figure S2. Effect of the input energy on active species generation: hydroxyl radical (a) and hydrogen peroxide (b) (Typical condition: input energy 58W, $[ROX]_0$ = 100 µM, pH 4.0).
- Figure S3. The yields of H_2O_2 in ROX free solution, ROX and ROX/500 μ M Fe(II) modified solution in GDP system within 17 min (input energy 58W, [ROX]₀ = 100 μ M, [Fe(II)]₀ = 500 μ M, pH 4.0)
- **Figure S4.** The photographs of precipitations after 17 min GDP treatment with the present of various Fe(II) addition (input energy 58W, $[ROX]_0 = 100 \ \mu M$, pH 4.0).
- **Figure S5.** The effect of solution pH on the formation of As(V) (a) and the oxidation of Fe(II) (b) after 17min GDP/Fenton treatment (input energy 58W, $[ROX]_0 = 100 \ \mu M$, $[Fe(II)]_0 = 500 \ \mu M$).
- Figure S6. Eh–pH diagrams for the system As–Fe at 25 °C and 1 bar, Σ As is set at a 10^{-3} M, b 10^{-5} M.

Figure S7. The fluorescence intensity of 7-hydroxycoumarin produced within 4.0 min

treatment at different EtOH addition in GDP/Fenton (input energy 58W,

 $[ROX]_0 = 100 \ \mu M$, $[Fe(II)]_0 = 500 \ \mu M$, pH 4.0).

- Figure S8. The fluorescence intensity of 7-hydroxycoumarin produced within 4.0 min treatment at different F⁻ addition in GDP/Fenton (input energy 58W, $[ROX]_0 = 100 \ \mu\text{M}, [Fe(II)]_0 = 500 \ \mu\text{M}, \text{pH 4.0})$
- **Figure S9.** The curve-fitted narrow scan XPS spectra of Fe 2p of the precipitate collected after17 min GDP/Fenton treatment (input energy 58W, $[ROX]_0 = 100 \ \mu M$, $[Fe(II)]_0 = 500 \ \mu M$, pH 4.0).

Table S1

Precipitation	Initial Fe(II) concentration (µM)				
	50	100	200	500	1000
$As(V)_{solid}/As_{ini.}$	10%	19%	41%	79%	82%
$As(t)_{solid}/As_{ini.}$	12%	21%	44%	85%	87%
Fe(II) _{solid} /Fe _{ini.}	2%	14%	16%	20%	12%
Fe(t) _{solid} /Fe _{ini.}	48%	55%	68%	81%	79%

Figure S1

The reaction vessel was a jacketed glass cylinder with inner diameter of 7.0 cm and height of 17.0 cm. The anode was a pointed stainless steel needle (diameter: 1.0 mm). The cathode was a graphite rod (diameter: 6 mm) placed in another glass tube and separated from the anodic compartment by a glass frit of medium porosity. During the treatment, the bulk solution in the jacketed reaction vessel was maintained at 298±2K by circulation cold water, argon-purged by argon shield through gas inlet pipe and magnetically stirred by magnetic stirrer constant speed stirring.

Figure S2

Figure S3

Figure S4

Figure S5

Figure S7

Figure S8

Figure S9

