Supporting Information for:

Prediction of nanoparticle and colloid attachment on unfavorable mineral surfaces using representative discrete heterogeneity

Jacob Trauscht, Eddy Pazmino, and William P. Johnson ${ }^{1}$

Department of Geology and Geophysics, University of Utah,
Salt Lake City, Utah 84112, United States

Hamaker constants

A combined Hamaker constant (A_{132}) for interaction of CML (phase 1) with muscovite (phase 2) across water (phase 3) was obtained using the approximation below, as subscripted for the three phases (Israelachvili, 2011):

$$
A_{132} \approx\left(\sqrt{A_{11}}-\sqrt{A_{22}}\right)\left(\sqrt{A_{22}}-\sqrt{A_{33}}\right)
$$

where A_{ij} is the Hamaker constant of polystyrene, muscovite, albite, or water in vacuum. Hamaker constants for polystyrene and water in vacuum were taken from literature and were $A_{22}=6.5 \times 10^{-20} \mathrm{~J}$ and $A_{33}=3.7 \times 10^{-20} \mathrm{~J}$ respectively (Israelachvili, 2011). The Hamaker constant of muscovite in vacuum was averaged from three sources to yield $A_{11}=8.9 \times 10^{-20} \mathrm{~J}$ (Ackler et al., 1996; Bergström, 1997; Israelachvili, 2011). Combining values:

$$
A_{132} \approx\left(\sqrt{8.9 \times 10^{-20}}-\sqrt{6.5 \times 10^{-20}}\right)\left(\sqrt{6.5 \times 10^{-20}}-\sqrt{3.7 \times 10^{-20}}\right)=2.72 \times 10^{-21}
$$

A Hamaker constant for albite in vacuum was not available in existing literature; however, one was calculated on the basis of Lifshitz Theory (Israelachvili, 2011):

$$
A_{11} \approx \frac{3}{4} k T\left(\frac{\varepsilon_{1}-\varepsilon_{3}}{\varepsilon_{1}+\varepsilon_{3}}\right)^{2}+\frac{3 h v_{e}}{16 \sqrt{2}} \frac{\left(n_{1}^{2}-n_{3}^{2}\right)^{2}}{\left(n_{1}^{2}+n_{3}^{2}\right)^{3 / 2}}
$$

where k is the Boltzmann constant, T is temperature in kelvins, ε_{1} is the dielectric constant of albite, ε_{3} is the dielectric constant of the medium ($\varepsilon_{3}=1$ for a vacuum), h is Planck's constant, v_{e} is the mean electronic UV adsorption frequency for albite, n_{1} is the refractive index of albite, n_{3} is the refractive index of the solution ($n_{3}=1$ for vacuum). Since no electronic adsorption frequency $\left(v_{e}\right)$ was available for albite, it was estimated as $3 \times 10^{15}(1 / \mathrm{s})$ based on values reported for other silicate minerals, which showed a narrow range of values from 3.2 E 15 (silica) and 3.0E15 (mica) (Israelachvili, 2011). The dielectric constant of albite was averaged from two sources ($\varepsilon_{1}=6.5 \pm 0.5$) (Olhoeft, 1989; Rosenholtz, 1936). The refractive index of albite was averaged ($n_{1}=1.535+/-0.004$) from the three principal crystal

[^0]faces using the higher-end values in those ranges to reflect composition with significant anorthite endmember content in the solid solution (Deer et al., 2001). Inserting values:
\[

$$
\begin{aligned}
& A_{11} \approx \frac{3}{4}\left(1.38 \times 10^{-23} \frac{m^{2} k g}{s^{2} K}\right)(298.15 \mathrm{~K})\left(\frac{6.5-1}{6.5+1}\right)^{2} \\
&+\frac{3\left(6.626 \times 10^{-34} \frac{\mathrm{~m}^{2} \mathrm{~kg}}{\mathrm{~s}}\right)\left(3 \times 10^{15} \mathrm{~s}^{-1}\right)}{16 \sqrt{2}} \frac{\left(1.535^{2}-1^{2}\right)^{2}}{\left(1.535^{2}+1^{2}\right)^{\frac{3}{2}}}=8.05 \times 10^{-20} \mathrm{~J}
\end{aligned}
$$
\]

Inserting values yielded A_{132} for albite:

$$
A_{132} \approx\left(\sqrt{8.05 \times 10^{-20}}-\sqrt{6.5 \times 10^{-20}}\right)\left(\sqrt{6.5 \times 10^{-20}}-\sqrt{3.7 \times 10^{-20}}\right) J=1.80 \times 10^{-21} J
$$

Calculation of Collector Efficiency (η)

The colloid deposition rate across the area of observation $\left(A_{\text {obs }}\right)$ was used to calculate the collector efficiency (η) via the following equation:

$$
\eta=\frac{\left(\frac{\# \text { attached }}{\text { time }}\right)_{A_{O B S}}}{\left(\frac{\# \text { injected }}{\text { time }}\right)_{A_{J E T}}}=\frac{\frac{\# \text { attached }}{\text { time }}}{C_{o} Q}
$$

where C_{0} is the injected concentration of colloids and Q is the flow rate of the fluid that enters the cell (across the area of the jet, $A_{j e t}$). The product $C_{o} \mathrm{Q}$ is equal to the number of particles injected per unit time across the area of the jet $\left(A_{j e t}\right)$. In simulations, colloid injection was performed across a smaller radius ($R_{\text {lim }}$) than $R_{j e t}$ for computational efficiency, since beyond this limiting radius (distance from the impinging jet axis) particles had zero chance of reaching the near surface fluid. An appropriate $R_{\text {lim }}$ results in equivalent η despite increases in $R_{\text {lim }}$ up to a limiting size where the number of colloids deposited becomes too small for accurate quantification (e.g., Pazmino 2014a). The radius of the area of observation $\left(A_{o b s}\right)$ in simulations was chosen to circumscribe the same area as the experiment-based $A_{o b s}$ $\left(450 \times 336 \mu \mathrm{~m}^{2}\right)$, and served as the exit radius in the simulations.

Maxwell Approach Implementation

Hahn and O'Melia (2004) proposed that the fraction of colloids retained in the secondary minimum
($\alpha_{2 \text { min }}$) is equal to:

$$
\alpha_{2 \min }=1-\int_{v_{p_{(h o t)}}}^{\infty} f_{M a x\left(v_{p}\right) d v_{p}}
$$

Where v_{p} is the particle velocity, and $f_{\max (v p)}$ is the Maxwell-Boltzmann distribution cast in terms of velocity (Kubo et al., 1966):

$$
f_{\operatorname{Max}\left(v_{p}\right)}=4 \pi\left(\frac{m_{p}}{2 \pi k T}\right)^{(3 / 2)} v_{p}^{2} e^{\left(\frac{-\frac{1}{2} m_{p} v_{p}{ }^{2}}{k T}\right)}
$$

where m_{p} is the particle mass, and k the Boltzmann constant and T the absolute temperature. The integral of $f_{\max (v p)}$ represents the fraction of the population of colloids with kinetic energy greater than the corresponding secondary minimum energy depth ($\Phi_{2 \text { min }}$), where the integral lower limit is the velocity threshold at which the colloid is "hot" enough to escape the secondary minimum:

$$
v_{p(h o t)}=\left(\frac{2 \Phi_{2 \text { min }}}{m_{p}}\right)^{0.5}
$$

Table SI-1: Artificial Groundwater Composition (Taken from Ferris et al.,2004)

Electrolyte	Concentration (mM)
K 2 SO 4	0.00403
MgSO 4	0.448
CaCl 2	1.75
NaNO 3	0.0044
NaHCO 3	1.10
KHCO 3	0.0623

Table SI-2: Zeta potential values used in simulations where CML=carboxylate modified polystyrene latex. Values determined from measurement on a dynamic light scattering instrument.

Material	Particle Size (um)	Electrolyte	$\begin{aligned} & \text { Concentratio } \\ & \mathrm{n}(\mathrm{mM}) \end{aligned}$	pH	ζ-potential average (mV)	ζ-potential std. dev. (mV)
CML	0.25	NaCl	6	6.7	-35.7	4.6
CML	1.1	NaCl	6	6.7	-78.5	2.0
CML	2	NaCl	6	6.7	-79.2	0.6
CML	0.25	NaCl	20	6.7	-26	5.4
CML	1.1	NaCl	20	6.7	-48.9	5.1
CML	2	NaCl	20	6.7	-61.5	1.0
CML	0.25	NaCl	6	8	-40.8	2.9
CML	1.1	NaCl	6	8	-91	2.1
CML	2	NaCl	6	8	-80.5	1.0
CML	0.25	NaCl	20	8	-26.5	1.1
CML	1.1	NaCl	20	8	-62.2	1.3
CML	2	NaCl	20	8	-66.5	1.0
CML	0.25	CaSO_{4}	1.5	6.7	-34.9	3.3
CML	1.1	CaSO_{4}	1.5	6.7	-48.3	1.4
CML	2	CaSO_{4}	1.5	6.7	-43.7	0.5
CML	0.25	CaSO_{4}	6	6.7	-16.5	2.0
CML	1.1	CaSO_{4}	6	6.7	-32.9	0.9
CML	2	CaSO_{4}	6	6.7	-29.3	0.7
CML	0.25	AGW	1.8	6.7	-32.3	2.1
CML	1.1	AGW	1.8	6.7	-44.9	1.5
CML	2	AGW	1.8	6.7	-41.7	1.3

Table SI-3. Exemplary Simulation Parameters.
Flow and Geometry Parameters

Particle Radius	Average Jet velocity	Jet Radius	Injection Radius	Exit Radius	Chamber Height
$\mathbf{a}_{\mathbf{p}}(\mathrm{m})$	$\mathbf{v}_{\text {jet }}(\mathrm{m} / \mathrm{s})$	$\mathbf{R}_{\text {jet }}(\mathrm{m})$	$\mathbf{R}_{\text {lim }}(\mathrm{m})$	$\mathbf{R}_{\text {exit }}(\mathrm{m})$	$\mathbf{z}_{\text {max }}(\mathrm{m})$
$1.00 \mathrm{E}-06$	$1.70 \mathrm{E}-03$	$5.00 \mathrm{E}-04$	$4.00 \mathrm{E}-06$	$2.19 \mathrm{E}-04$	$1.22 \mathrm{E}-03$

Physical Parameters of Materials

Particle Density	Water Density	Viscosity	Temperature	Exit Radius	Chamber Height
$\rho_{\mathrm{p}}\left(\mathrm{kg} / \mathrm{m}^{3}\right)$	$\rho_{\mathrm{w}}\left(\mathrm{kg} / \mathrm{m}^{3}\right)$	$\mu(\mathrm{kg} / \mathrm{m} / \mathrm{s})$	$\mathbf{T}(\mathrm{m})$	$\mathbf{R}_{\text {exit }}(\mathrm{m})$	$\mathbf{z}_{\text {max }}(\mathrm{m})$
$1.06 \mathrm{E}+03$	$9.98 \mathrm{E}+02$	$9.98 \mathrm{E}-04$	$2.98 \mathrm{E}+02$	$2.19 \mathrm{E}-04$	$1.22 \mathrm{E}-03$
Colloid Elastic Parameters		Diffusion Force Scaling Parameter			
Hysteresis Loss	Young's Modulus		Multiplier of		
Factor		Diffusion Vector			
$\boldsymbol{\beta}\left(\mathrm{kg} / \mathrm{m}^{3}\right)$	$\mathbf{K}_{\text {int }}(\mathrm{m})$	$\mathbf{D}_{\text {fact }}(-)$			
$1.06 \mathrm{E}+03$	$9.98 \mathrm{E}+02$		$1.35 \mathrm{E}+00$		

van der Waals and Steric Force Parameters

Hamaker Constant	vdW Characteristic Wavelenght	Maximum Steric Repulsion	Steric Decay Length	Buffer Distance from Steric Minimum
$\mathbf{A}_{132}(\mathrm{~J})$	$\lambda(\mathrm{m})$	$\mathbf{W}_{0}(\mathrm{~J} / \mathrm{m})$	$\lambda_{0}(\mathrm{~m})$	$\mathbf{d}_{\text {sep }}(\mathrm{m})$
$3.84 \mathrm{E}-21$	$1.00 \mathrm{E}-07$	$2.10 \mathrm{E}-01$	$6.35 \mathrm{E}-11$	$5.00 \mathrm{E}-10$

Water Chemistry and Surface Charge Parameters

Ionic Strenght	Electrolyte Valence	Collector Zeta	Particle Zeta
IS $\left(\mathrm{mol} / \mathrm{m}^{3}\right)$	$\mathbf{z i}_{\mathbf{i}}(-)$	$\zeta_{\mathrm{c}}(\mathrm{V})$	$\zeta_{\mathrm{p}}(\mathrm{V})$
$2.00 \mathrm{E}+01$	1	$-5.30 \mathrm{E}-02$	$-4.10 \mathrm{E}-02$

Heterodomain Parameters
Fluid Flow Field Parameters

| Number of
 Heterodomains per tile | Tile Size | Heterodomain Zeta
 Potential | Flow Field
 Coefficient 1 | Flow Field
 Coefficient 2 | Chamber Aspect
 Ratio Coefficeint |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $\mathbf{N}_{\text {Het }}(\#)$ | $\mathbf{T}_{\text {size }}(\mathrm{m})$ | $\zeta_{\text {het }}(\mathrm{V})$ | $\alpha_{1}(-)$ | $\alpha_{2}(-)$ | $\chi(-)$ |
| $3.84 \mathrm{E}-21$ | $1.50 \mathrm{E}-05$ | $5.30 \mathrm{E}-02$ | $-1.00 \mathrm{E}-01$ | $6.60 \mathrm{E}-02$ | $9.00 \mathrm{E}-01$ |

Simulation and	Parameters	Ouput Settings			
Number of Particles	Simulation Time	Multiplier of d_{t} for bulk trajectory	Multiplier of d_{t} for contact trajectory	Number of Lines of Trajectory Array	Write to Array Interval
$\mathbf{N}_{\text {part }}$ (\#)	$\mathrm{T}_{\text {time }}(\mathrm{s})$	MULT (-)	MULT2 (-)	$\mathrm{N}_{\text {OUT }}$ (\#)	PI1 (\#)
10000	$1.00 \mathrm{E}+04$	1.00E+02	$1.00 \mathrm{E}+00$	5000	500

Figure SI-1: Schematic of the impinging jet flow chamber. Fluid flow field is represented by color coded flow lines (red high velocity, blue low velocity). The jet is 1 mm in diameter and the impinging plane is located 1.2 mm below the jet exit. Images of attached colloids are acquired via an inverted microscope across an area of observation of $450 \times 336 \mu \mathrm{~m}$ on the impinging plane aligned with the center of the jet.

Figure SI-2. Number of colloids on surface as a function of time, experimental data from an impinging jet experiment on muscovite, $5.94 \times 10^{-3} \mathrm{~m} / \mathrm{s}, 6 \mathrm{mM}, \mathrm{pH} 6.7$.

Figure SI-3. Experimentally-observed collision efficiencies (α) as a function of colloid size for soda-lime glass (red triangles), muscovite (blue diamonds) and albite (green squares) at multiple ionic strengths $(6 \mathrm{mM}, 20 \mathrm{mM}), \mathrm{pH}$ values (6.7 and 8.0) and fluid velocities ($1.71 \mathrm{E}-03,5.94 \mathrm{E}-03 \mathrm{~m} / \mathrm{s}$). Colored textured lines represent unfavorable condition mechanistic particle trajectory simulations (blue dashdot=muscovite, red dot=glass, green dash=albite). A Pareto size distribution of heterodomains was approximated using a 1:4 ratio of 120 nm to 60 nm (radius) heterodomains was utilized to represent soda-lime glass collectors and muscovite and albite collectors. Surface coverage by heterodomains is reported adjacent to simulation line.

Figure SI-4: Experimentally-observed collision efficiencies (α) as a function of colloid size for soda-lime glass (red triangles), muscovite (blue diamonds) and albite (green squares) at multiple ionic strengths $(6 \mathrm{mM}, 20 \mathrm{mM})$, pH values (6.7 and 8.0) and fluid velocities ($1.71 \mathrm{E}-03,5.94 \mathrm{E}-03 \mathrm{~m} / \mathrm{s}$). Colored textured lines represent unfavorable condition predictions (blue dash-dot=muscovite, red dot=glass, green dash=albite). Unfavorable condition predictions were performed using the correlation equation developed by Elimelech (1992).

Figure SI-5: Experimentally-observed collision efficiencies (α) as a function of colloid size for soda-lime glass (red triangles), muscovite (blue diamonds) and albite (green squares) at multiple ionic strengths $(6 \mathrm{mM}, 20 \mathrm{mM})$, pH values (6.7 and 8.0) and fluid velocities ($1.71 \mathrm{E}-03,5.94 \mathrm{E}-03 \mathrm{~m} / \mathrm{s}$). Colored textured lines represent unfavorable condition predictions (blue dash-dot=muscovite, red dot=glass, green dash=albite). Unfavorable condition predictions were performed using the Maxwell approach provided by Hahn and O"Melia (2004).

Figure SI-6: Experimentally-observed collision efficiencies (α) as a function of colloid size for soda-lime glass (symbols), at multiple ionic strengths ($6 \mathrm{mM}, 20 \mathrm{mM}$), pH values (6.7 and 8.0) and fluid velocities ($1.71 \mathrm{E}-03,5.94 \mathrm{E}-03 \mathrm{~m} / \mathrm{s}$). Dashed lines correspond to optimized Ncol correlation equations fit. Solid lines correspond to optimized 3 -term correlation equation fit.

Figures SI-7: Experimentally-observed collision efficiencies (α) as a function of colloid size for muscovite (symbols), at multiple ionic strengths ($6 \mathrm{mM}, 20 \mathrm{mM}$), pH values (6.7 and 8.0) and fluid velocities ($1.71 \mathrm{E}-$ $03,5.94 \mathrm{E}-03 \mathrm{~m} / \mathrm{s})$. Dashed lines correspond to optimized Ncol correlation equations fit. Solid lines correspond to optimized 3-term correlation equation fit.

Figures SI-8: Experimentally-observed collision efficiencies (α) as a function of colloid size for muscovite (symbols), at multiple ionic strengths ($6 \mathrm{mM}, 20 \mathrm{mM}$), pH values (6.7 and 8.0) and $1.71 \mathrm{E}-03 \mathrm{~m} / \mathrm{s}$ fluid velocity Dashed lines correspond to optimized Ncol correlation equations fit. Solid lines correspond to optimized 3-term correlation equation fit.

Figure SI-9: Predicted α values versus experiments ($n=51$) utilizing the 3 -term correlation equation.

References Cited

Ackler, H. D.; French, R. H.; Chiang, Y.-M., Comparisons of Hamaker Constants for Ceramic Systems with Intervening Vacuum or Water: From Force Laws and Physical Properties. Journal of Colloid and Interface Science 1996, 179 (2), 460-469.
Bergström, L., Hamaker constants of inorganic materials. Advances in Colloid and Interface Science 1997, 70 (0), 125-169.
Deer, W. A.; Howie, R. A.; Zussman, J., Rock-forming Minerals: Feldspars, Volume 4A. Geological Society: 2001.

Hahn, M. W.; O'Melia, C. R., Deposition and Reentrainment of Brownian Particles in Porous Media under Unfavorable Chemical Conditions: Some Concepts and Applications. Environmental Science and Technology 2004, 38 (1), 210-220.
Israelachvili, J., Intermolecular and Surface Forces 3rd Edition. Elseveier 2011. pp 361-370.
Kubo, R., The fluctuation-dissipation theorem. Reports on Progress in Physics 1966, 29, (1), 255.
Olhoeft, G. R., Electrical Properties of Rocks. Physical Properties of Rocks and Minerals 1989.
Pazmino, E.; Trauscht, J.; Dame, B.; Johnson, W. P., Power Law Size-Distributed Heterogeneity Explains Colloid Retention on Soda Lime Glass in the Presence of Energy Barriers. Langmuir 2014a, 30 (19), 5412-5421.

Rosenholtz, J. L. R. S., Dudley T., The Dielectric Constant of Mineral Powders Rensselaer Polytechnic Institute Engineering and Science Series 1936, 52.

[^0]: ${ }^{1}$ Corresponding Author

