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A. List of Symbols used in the Text 

 

°Angle of contact of the liquid drop with a substrate 

G (J) : Free energy of adhesion 

lv  (N/m) : Surface tension of liquid in contact with air 

w  (N/m) : Surface tension of water 

R (m)  : Radius of drop 

FY (N) : Unbalanced Young’s force experienced by the liquid drop 

Fd (N) : Viscous Drag force  

Pa.s) Dynamic viscosity of liquid 

V (m/s) : Velocity of liquid drop 

Ca : Capillary Number 

V* (  / , m/s) : Capillary velocity of a liquid drop 

R* ( )/cos( dxdR  ) : Non-dimensional value of radius of liquid drop obtained by multiplying 

drop radius with the gradient of the average contact angle [ 2/)cos(coscos ra   ]. 

 

P (Pa) : Laplace pressure within the liquid drop 

m Local height of the drop 

V  (m/s) : Volumetric drop velocity 
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 (m
-1

) : Curvature (i.e. inverse of the radius of curvature) of liquid drop 

)cos(cos ar   : Dynamic hysteresis of contact angle 

ks (N/m) : Spring constant of a liquid drop  

Ro (m) : Equilibrium value of radius of liquid drop 

R  , Ra , Rr (m) : Maximum or minimum value of radius of drop corresponding to advancing (Ra) 

or receding (Rr) states. 

 

uo (J) : Energy barrier associated with the corrugated surface 

 

(m) : Correlation length of the contact line pinning sites 

L  (m): Larkin length 

 (°) : Maximum or minimum value of contact angle of liquid drop with substrate 

corresponding to advancing (a) or receding (r) angles. 

 

 )/( 2 so kuf  

ξ(r) (N/m): Friction factor 

K (m
2
/s

3
) : Noise strength 

f (t) (m/s
2
) : Random noise pulse or time varying acceleration  

c (s) : Duration of the noise pulse 

1x : Position coordinate of the contact line of the drop 

2x : Position coordinate of the bulk of the liquid drop 

m (kg) : Mass of a liquid drop 

 (kg/s) : kinematic friction coefficient 

L (s) : Langevin relaxation time of the contact line ( /m ) 

B  (s) : Langevin relaxation time due to the viscous friction in the bulk of the liquid 

 (Hz) : Frequency of vibration 
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 0 (Hz) : Resonance frequency of eigen mode. 

*( m/ ) (Hz) : Fundamental frequency of vibration   

)/( )( VVV  : Signum function of velocity 

 (m/s
2
) : First-order nonlinear friction force 

A (m) : Amplitude of oscillating time-varying force F(t) 

A0 (m/s) ( 0A ) 

Phase shift 

V1 (m/s) : Velocity of the contact line of the drop 

))(//( 1

*

1  VVV LL   (m/s
2
) : Difference term used for effective linearization

Vd (m/s) : Drift velocity 

f (m/s) : Externally applied fixed bias on the drop in terms of acceleration 

A (m
2
) : Area under the liquid drop in contact with substrate 

(s/m) : Fitting parameter in the function tanh (V)  

x  (m) : Average drift or mean position of displacement 

2x  (m
2
) : Variance of the displacement 

P or P (V): probability density function 

D (m
2
/s) : Diffusivity 

 (s/kg) : Mobility 

Teff (J) : Effective temperature 

 (S/m)Electronic conductivity in non-crystalline solids 

T (K) : Temperature  
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T (K) : Degree of subcooling, i.e the difference between the temperature of steam and that of 

the surface 

 

qJ ( J/m
2
s ) : Heat flux 

 

m (kg/m
2
s) : Condensate flow rate 

mH (J/kg) : Latent heat of vaporization of water per unit mass 

vH (J/m
3
) : Latent heat of vaporization of water per unit volume 

mk (W/mK) : Thermal conductivity of the metal block 

wk (W/mK) : Thermal conductivity of water 

B1, B2 : Constants 

J ( 1/s ) : Diffusive current of the coalesced drops 

L1 (m) : Width of hydrophobic strip 

L2 (m) : Length of hydrophobic strip 

(1/m
2
)Density of drops per unit area 

 

B. Spring Constant of a Drop on a Surface 

In order to find an expression for the spring constant of a spherical cap of a liquid drop (radius R, 

surface tension lv) on a solid substrate, let us start with the total energy (U) of the system:  

           2
2

cos1

2
R

R
U svsl

v 






                                               (B1)                                                                 

Here, sv and sl are the surface free energies of the solid-vapor and solid-liquid interfaces 

respectively.  We now expand U in Taylor series about the state of equilibrium energy Uo:  

    .....
2

1 2

2

2

0 








 oo RR

R

U
RR

R

U
UU



                             (B2) 



5 

 

Since the volume (v) of the drop is constant, we have a relationship between the radius of the drop 

and its contact angle  as follows:  




sin)cos2( 
dR

d
R                                                      (B3) 

Using equation B3, equation B2 becomes:  

  
osvslv RRRUU   cos20 

 

                                2/))cos2((sin2
22

ov RR   
                                     (B4) 

At equilibrium ( 0/  RU ), we have the Young’s equation:  svslv  cos =0. The 

spring constant is given by equation B5:                                                                                                                 

  cos2sin2 2  vsk   

or 

)( fk vs                                                             (B5)    

It is well-known that equation B1 admits a parabolic energy profile. Now on the top of that, we 

superimpose a perturbation due to heterogeneity. An approximate way to introduce this 

perturbation is to consider a rough surface with the following profile: kxyy o sin , k being the 

wave number.  The maximum value of the surface area scales as  
22

0 / Ry  with a corresponding 

energy as 
22

0 /  Ry , where  is a constant (like a spring constant) that multiplied by 
2

0y  gives 

an energy scale (
2

oo yu  )  of heterogeneity. Another way to look at the problem is to define a 

pinning energy of magnitude uo to a defect. If the distance between defects is , the total defect 

energy of an annulus of radium 
R  and width dR  is ~  dRRuo )/( 2 . We balance 

Ruo )/( 2  with  )( os RRk    to obtain the relation:  2/~ soo kRuRR   , which is 
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equation 5 of the text. The physics of disorder deals with a length scale
1-3

, called the “Larkin 

Length” or L , which, in our problem is  2

0

2 )/(~ uksL . When the Larkin length is much larger 

than the defect correlation length (), the contact line fluctuates sufficiently to probe different 

defects and the hysteresis decreases. Metastable states manifest when L . Using experimental 

data and equation 5, we estimate that  is on the order ofL in our problem.  

  

C. Brownian Motion with Non-linear Friction 

The Langevin equation for the velocity (V) of an object subjected to a bias f  and a random 

force ),(tf is given as follows:  

),()( tffV
V

dt

dV
 

                                            (C1) 

                                                        ,V
dt

dx
  

Where   is the Langevin relaxation time and  is the hysteresis force per unit mass that is equal 

to   2/coscos~ Rarw    for a water drop,  being its density. The signum function V 

indicates that the friction force changes sign with the direction of motion. An equivalent 

continuum version of equation C1 is the Klein-Kramers
4,5

 equation: 

                                                                                                                                      

                                                                                                                                                 (C2) 

 

For a spatially homogeneous steady state situation, the probability density function P(V) of the 

velocity fluctuation can be obtained
4-6

 from equation C2 or simply from the balances of fluxes in 

the velocity space as follows:  
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 The solutions of the equation (C3)  in the absence of a bias shows that P(V) has both a Gaussian 

and an exponential components.  





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
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
                              (C4)      

The corresponding displacement fluctuation (x) is also non-Gaussian. One important parameter 

that is shown in equation 11 of the text (equation C5, here) is the effective relaxation time 𝜏𝐿
∗. 

     
2*

11

V

V

LL





                                                                  (C5) 

Evaluation  of  both V  and 2V  , however, require a probability distribution of velocity that is 

given by equation (C4). We thus obtain: 

                                                KLL //1/1 2*                                                                (C6)                            

Experimentally, we observed that the probability density function of displacement fluctuation 

can be expressed in terms of a stretched Gaussian equation of the form
6
: 

  mxx
o

PxP p /)(exp)(                                                                (C7) 

Here, xp displacement corresponding to the peak value of P(x), and  is the standard deviation of 

x.   The exponent m is equal to 2 for a Gaussian distribution, but it is usually less than 2 for a 

non-Gaussian distribution. In our experiments, we found that the displacement pdf is nearly 

symmetric with a value of m<2 at short times. But the distribution becomes asymmetric at long 

time, each branch of which can be fitted with equation C7. We note that for a dynamics governed 

by a linear friction and a Gaussian white noise, the distribution should be symmetric Gaussian at 
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all time-scales. A skewed Gaussian distribution as found in our experiments results from non-

linear  and a bias.  In extending this type of stochastic model to the coalescence induced 

diffusive motion, one has to be careful that the noise inducing such a motion is far from being 

random Gaussian. Among other things, one expects that there will be a pause time between two 

coalescence events, which will have a certain distribution. Long ago, it was pointed out by 

Montroll
7
 et al that an unconventional statistics could result from such types of stochastic 

processes.  Non-linear friction coupled with a non-Gaussian noise are expected to give rise to 

additional complexities.  

D. Instability of the Adsorbed Film of Water 

Consider a thin film of water of thickness    on a solid substrate. The free energy of interaction 

of the vapor (1)-water(3) and the water (3)-substrate(2) interfaces can be expressed using 

Lifshitz theory as follows:  


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Here, kB is the Boltzmann constant, h is the Planck’s constant, T is the absolute temperature, c is 

the speed of light in vacuum, p is an integration parameter and n is a quantum number associated 

with the frequency of thermal photon 
n . The zero frequency term in equation D1 is to be 

multiplied by ½. 
i  are the dielectric permittivities expressed in the complex frequency axis 

ni : 







0

22

" )(2
1)(

n

n

d
i


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
                                                      (D3) 

Where, )("   is the loss component of the frequency dependent dielectric permeability )( . 

From equation D2, it is evident that the sign of the interaction, i.e. whether it is attractive or 
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repulsive depend on the sign of the product 
21 , which depends on the frequency of the photon 

contributing to interaction. A simple rule is that the interaction will be repulsive if the dilectric 

permeability follows either of the sequences,  
231     or  

231   . This  condition, i.e. 

substratewaterair   , is satisfied for air-water-substrate interfaces in the high frequency range 

(ultraviolet to x-ray region). However, the interaction will be attractive if the above sequence is 

broken, which the case in the low frequency interaction of the vapor-water and the water-

substrate interfaces, since 
substratewaterair   . Overall interaction is contributed by all the 

frequencies ranging from zero to x-ray range. However, as the high frequency interaction 

dominates for very thin films, we expect that the corresponding interaction of the vapor-water 

and water-substrate interfaces would be repulsive. If this interaction overwhelms the 

hydrophobic attraction across the vapor-water and water-substrate interfaces, the water film  

 

Figure S1. Schematic of different forces acting on a thin film of water in contact with a solid 

substrate. The Marangoni flow, depending upon its origin, can either stabilize or destabilize the 

perturbation of the surface.  
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could be stable and thus it will grow. However, as the film continues to grow via condensation of 

vapor, it will reach to a certain thickness, when the effect of retardation (the exponential term in 

equation D1) due to finite speed of light will frustrate the repulsive interaction arising from the 

high frequency photons. Only the low frequency photons will contribute for thick films and the 

interaction will be attractive. Thus, if the thickness of the film overshoots due to condensation, 

such a film will be unstable. Now consider a perturbation to the film as shown in figure S1. If 

there is a non-negligible resistance to heat transfer from vapor to the liquid (e.g due to non-

condensable gases) , the temperature (T1) of the surface of the thinner part of the film will have a 

different temperature than that (T2) of the thicker part. If the vapor and the liquid are absolutely 

pure and there is no resistance to lateral heat conduction on the surface, T1 should be less T2. In 

that case, thermal Marangoni flow will tend to stabilize the surface. However, if the vapor phase 

has binary components, e.g. water-methanol mixture, then due to differential concentration of 

one of the components, Marangoni flow could occur from the thinner to the thicker part of the 

film, which will increase the surface perturbation.  We suspect T1 could be greater T2 in some 

special cases when the heat transfer resistance in the later direction on or near the surface is 

significant, resulting in a surface Marangoni flow that would favor the growth or perturbation. In 

all cases, the differential Laplace pressure between the convex and concave parts of the surface 

will tend to stabilize the surface.  However, when the film thins enough, a strong hydrophobic 

attraction (which varies exponentially with thickness) across the vapor-water and water-substrate 

interfaces could dominate the interaction and the film would thus break up (this is, perhaps, the 

strongest force behind the instability of a thin film on a non-wetting surface). The breakup of 

such a film could also be aided if small vapor bubbles are present in the film that will grow by 
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nucleation. The net result is that the water film could grow to a certain critical thickness, which 

would ultimately break up leading to a fluctuating water film on the substrate.  

E. Additional Citations  

Because of the limited numbers of references allowed for this article, we were not able to discuss 

all the works relevant to our subject. We make an effort to cite some of the references here.  

A detailed review of the various methods to prepare surface chemical gradients can be found in 

reference 12. The effect of vibration in the mitigation of hysteresis as studied by other 

investigators can be found in references 13 to 18.  The origin of non-linearity due to the coupling 

of horizontal and vertical vibration can be found in various modes of shape fluctuations arising 

from the coalescence of two drops are reported in reference 19. 

Elastic force induced motion of a drop was reported in an interesting paper by Style
20

 et al. Some 

relevant studies on the attraction and motion of particles by elastic forces in a gel and a 

membrane were reported in 21 to 23.  A recent reference to noise induced critical dynamics can 

be found in ref 24. We also point out a recent interesting study in water collection
25

 using the 

coalescence of condensed drops.  
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