Supporting Information

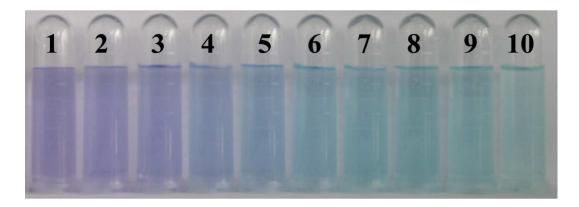
Naked-Eye and Near-Infrared Fluorescence Probe for Hydrazine and Its Applications in *In Vitro* and *In Vivo* Bioimaging

Jianjian Zhang^a, Lulu Ning^a, Jiting Liu^b, Jianxi Wang^a, Bianfei Yu^a, Xiaoyan Liu^a, Xiaojun Yao^a, Ziping, Zhang^b, Haixia Zhang^a,*

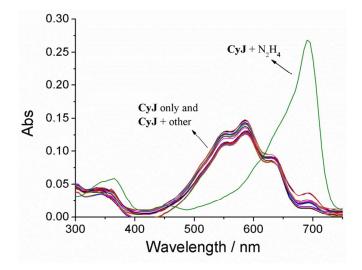
^aState Key Laboratory of Applied Organic Chemistry, and Key Laboratory of Special Function Materials and Structure Design, Ministry of Education, Lanzhou University, Lanzhou 730000, China;


^bKey Lab of Ministry of Education for Protection and Utilization of Special Biological Resources, Ningxia University, Yinchuan 750021, China.

*Corresponding author


Tel.: +86 931 8912058;

Fax: +86 931 8912582.


E-mail: zhanghx@lzu.edu.cn

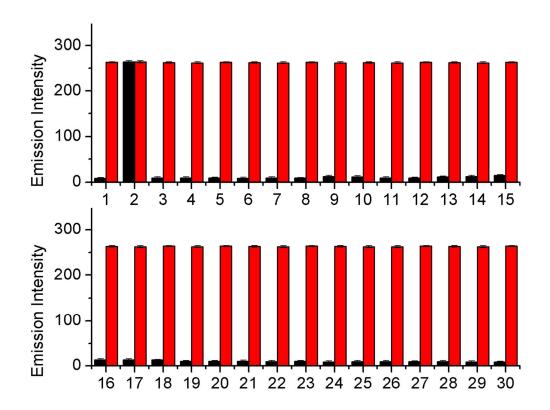

Figure S1. (A) Absorption and (B) fluorescence emission spectra of **CyOH** (5 μ M, black line) and **CyJ** (5 μ M), before (blue line) and after reacting with N₂H₄ (150 μ M, red line) in H₂O/DMSO solution (4: 1, v/v, 10 mM HEPES, pH = 7.4), $\lambda_{ex} = 675$ nm.

Figure S2. The color change of **CyJ** (5 μ M) upon addition of N₂H₄ in HEPES (10 mM, pH = 7.4) containing 20% DMSO. Each picture was recorded at 10 min after the addition of N₂H₄ (1-10 : 0, 0.5, 1.5, 2.0, 5.0, 15.0, 25.0, 50.0, 100.0, 250.0 μ M).

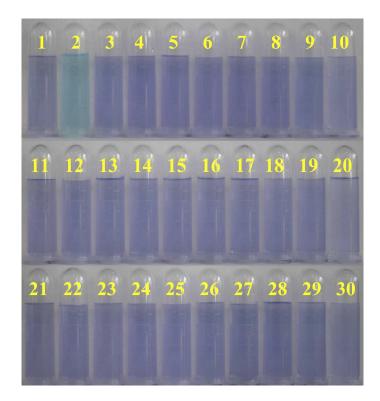


Figure S3. UV response of **CyJ** (5 μ M) to various analytes (150 μ M), each spectrum was recorded at 10 min after addition of the analytes (N₂H₄, Cys, GSH, Glu, NH₂OH, urea, aniline, thiourea, K⁺, Na⁺, Ca²⁺, Mg²⁺, Cu²⁺, Zn²⁺, Al³⁺, Fe³⁺, Fe²⁺, Hg²⁺, F⁻, Br⁻, Cl⁻, Γ , ClO₄⁻, SO₄²⁻, AcO⁻, CO₃²⁻, H₂PO₄⁻, N₃⁻, BF₄⁻);

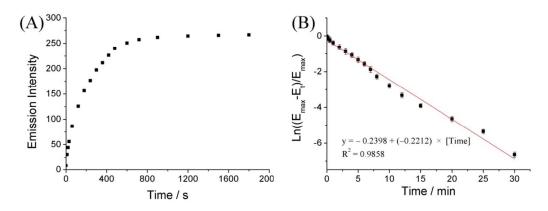


Figure S4. Fluorescence intensity of **CyJ** (5 μ M) in the presence of various analytes (150 μ M) (N₂H₄, Cys, GSH, Glu, NH₂OH, urea, aniline, thiourea, K⁺, Na⁺, Ca²⁺, Mg²⁺, Cu²⁺, Zn²⁺, Al³⁺, Fe³⁺, Fe²⁺, Hg²⁺, F⁻, Br⁻, Cl⁻, I⁻, ClO₄⁻, SO₄²⁻, AcO⁻, CO₃²⁻, H₂PO₄⁻, N₃⁻, BF₄⁻) in HEPES buffer (10 mM, pH = 7.40) containing 20% DMSO at 10 min, λ_{ex} = 675 nm. Black bars represent the addition of 30 equiv of the appropriate analytes (1 : Blank, 2 : N₂H₄, 3 : Cys, 4 : GSH, 5 : Glu, 6 :

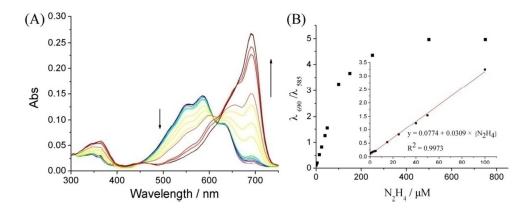

NH₂OH, 7 : urea, 8 : aniline, 9 : thiourea, 10 : K^+ , 11 : Na⁺, 12 : Ca²⁺, 13 : Mg²⁺, 14 : Cu²⁺, 15 : Zn²⁺, 16 : Al³⁺, 17 : Fe³⁺, 18 : Fe²⁺, 19 : Hg²⁺, 20 : F⁻, 21 : Br⁻, 22 : Cl⁻, 23 : l⁻, 24 : ClO₄⁻, 25 : SO₄²⁻, 26 : AcO⁻, 27 : CO₃²⁻, 28 : H₂PO₄⁻, 29 : N₃⁻, 30 : BF₄⁻) to a 5 μ M solution of **CyJ**. Red bars represent the addition of **CyJ** (5 μ M) to the mixture solution of 150 μ M the appropriate analytes and 150 μ M N₂H₄. The data were reported as the mean ± standard deviation of triplicate experiments.

Figure S5. The color change of **CyJ** (5 μ M) with various analytes (150 μ M). The pictures were recorded at 10 min after addition of the analytes (1 : Blank, 2 : N₂H₄, 3 : Cys, 4 : GSH, 5 : Glu, 6 : NH₂OH, 7 : urea, 8 : aniline, 9 : thiourea, 10 : K⁺, 11 : Na⁺, 12 : Ca²⁺, 13 : Mg²⁺, 14 : Cu²⁺, 15 : Zn²⁺, 16 : Al³⁺, 17 : Fe³⁺, 18 : Fe²⁺, 19 : Hg²⁺, 20 : F⁻, 21 : Br⁻, 22: Cl⁻, 23 : l⁻, 24 : ClO₄⁻, 25 : SO₄²⁻, 26 : AcO⁻, 27 : CO₃²⁻, 28 : H₂PO₄⁻, 29 : N₃⁻, 30 : BF₄⁻).

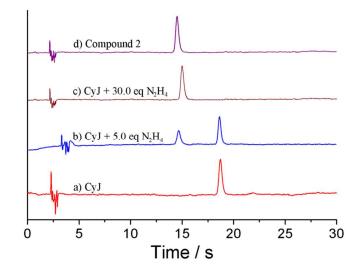


Figure S6. (A) Time-dependent fluorescence changes of **CyJ** (5 μ M) upon addition of N₂H₄ (150 μ M) in HEPES (10 mM, pH 7.4) containing 20% DMSO. $\lambda_{ex} = 675$ nm, $\lambda_{em} = 706$ nm. (B) Pseudo first-order kinetic plot of reaction of probe **CyJ** (5 μ M) with N₂H₄ (150 μ M), for k = 24.6 M⁻¹s⁻¹.

Figure S7. (A) UV titration of **CyJ** (5 μ M) upon addition of N₂H₄ in HEPES (10 mM, pH = 7.4) containing 20% DMSO. Each spectrum was recorded at 10 min after the addition of N₂H₄ (0, 0.5, 1.5, 2.5, 4, 5, 15, 25, 40, 50, 100, 150, 250, 500, 750 μ M). (B) Absorbance ratio R ($\lambda_{690}/\lambda_{585}$) changes of **CyJ** upon addition of N₂H₄. Inset: Absorbance ratio R ($\lambda_{690}/\lambda_{585}$) changes of **CyJ** as a function of concentrations of N₂H₄ (0–100 μ M).

HPLC was carried out using a C18 column (Hedera ODS-2, 5 μ m, 250 mm × 4.6 mm) with a Varian 210 HPLC system. The mobile phase was a mixture of acetonitrile and ammonium acetate buffer (0.025 *M*, pH = 6.0) (8:2, v/v). The flow rate was 1 mL/min and detection at 613 nm. The reaction solutions of **CyJ** (5 μ M) and N₂H₄ (25 μ M, 150 μ M) in HEPES buffer (10 mM, pH = 7.4) was as the samples.

Figure S8. HPLC chromatograms of **CyJ** (a), the reaction solutions of **CyJ** with different amount of N_2H_4 (b, c), and **CyOH** (d). Conditions: incubation for 10 min at room temperature in HEPES (10 mM, pH = 7.4) containing 20% DMSO.

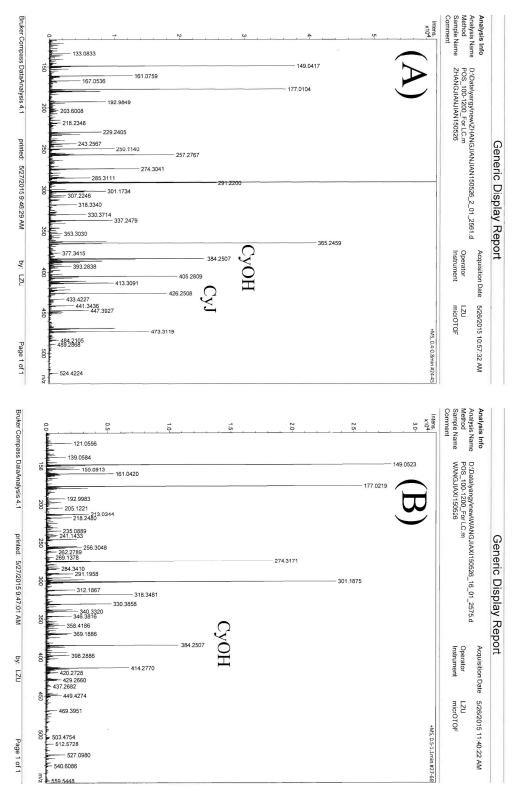
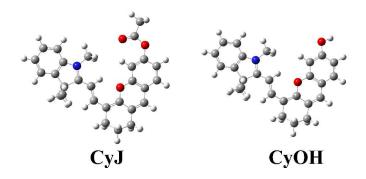
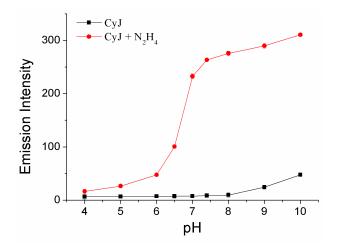
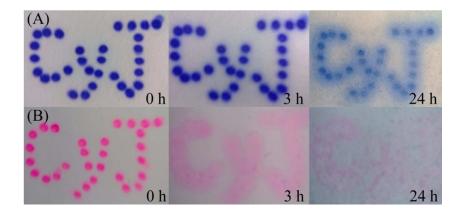


Figure S9. The micrOTOF mass spectra of CyJ treating with N_2H_4 . (A) CyJ + 5.0 equiv N_2H_4 ; (B) CyJ + 30.0 equiv N_2H_4 .

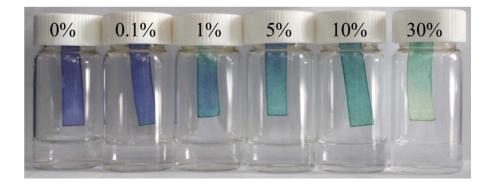
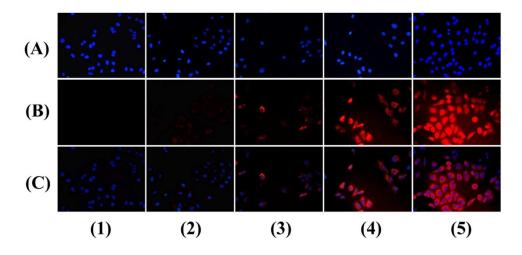

Figure S10. The optimized conformation of CyJ and CyOH. In the ball-and-stick model, carbon, oxygen and nitrogen atoms are colored in gray, red and blue, respectively.

Figure S11. Fluorescence intensity of **CyJ** (\blacksquare) and **CyJ** (5 μ M) with N₂H₄ (150 μ M, \bullet) in 10 min at various pH values, respectively. The data were reported as the mean \pm standard deviation of triplicate experiments.

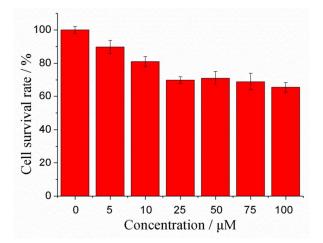
Figure S12. Diffusion-resistance experiments for **CyJ** (A) and Rhodamine **B** (B). The compounds were spotted on silica-gel plates, immersed in water.

Figure S13. Color changes of **CyJ** (1.0 mM) coated filter paper after exposure to different concentrations of hydrazine aqueous solution.

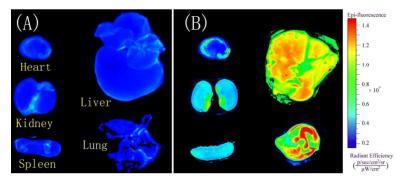
	-	_		
Sample	Hydrazine added	Hydrazine found	Recovery	R.S.D.
	(µM)	(µM)	(%)	$(\%)^b$
Tap water	5.0	5.21	104	1.7
	30.0	29.75	99	2.1
Yellow River water	5.0	5.24	105	2.2
	30.0	30.95	103	2.5
Diluted Human	5.0	5.12	102	2.5
Serum (10%)	30.0	31.80	106	2.1
Sample 1 ^c	5.0	9.76	98	1.7
(hydrazine 5.0 µM)	30.0	35.89	103	1.7
Sample 2^c	5.0	15.26	102	2.1

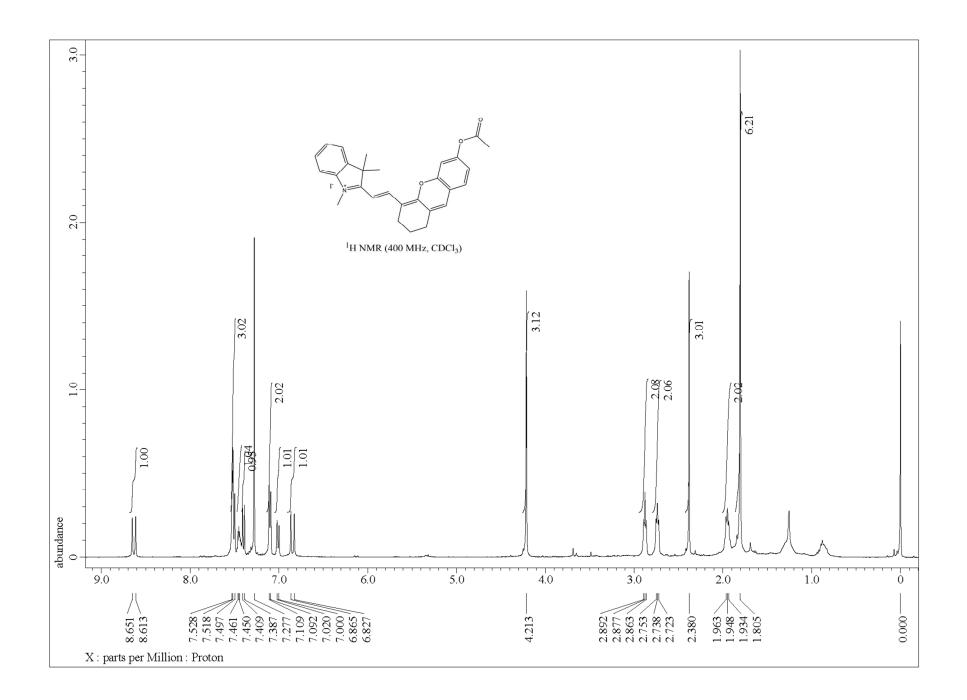

Table S1. Determination of hydrazine in water samples ^a

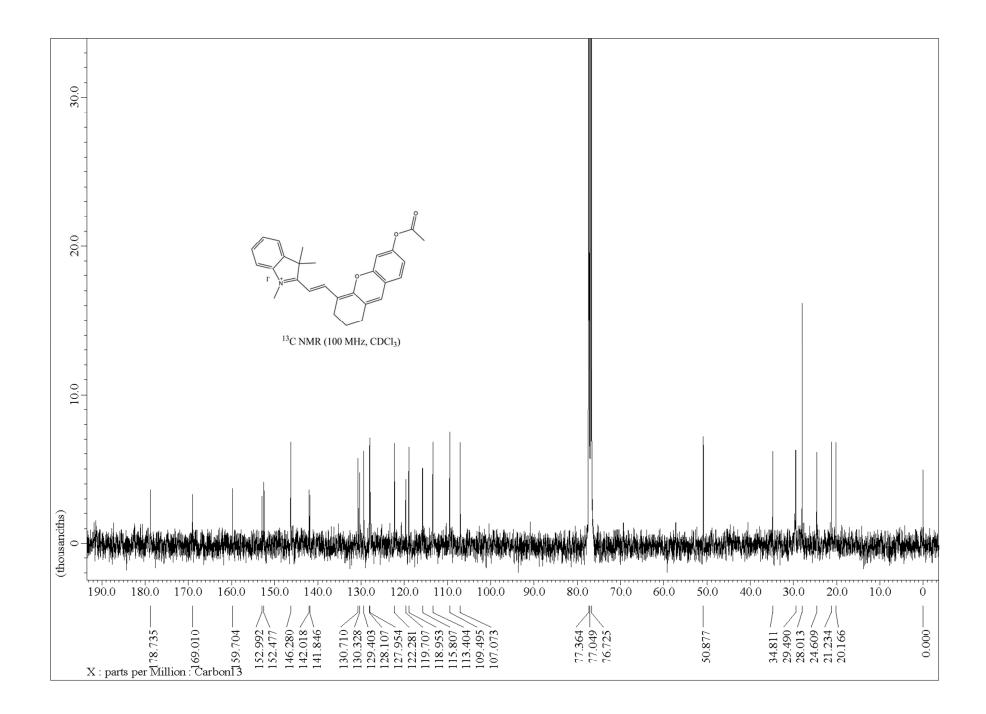
(hydrazine 10.0 μM) 30.0 41.98 105 ^{*a*} Conditions: $\lambda_{ex}/\lambda_{em} = 675/706$ nm, DMSO/HEPES = 20:80, 10 min reaction at 25 °C.


^b Each condition was measured three times.

^c Synthetic samples containing other metal ions (common metal ions in serum: K⁺, Na⁺, Ca²⁺, Mg²⁺, Cu²⁺, Zn²⁺, Al³⁺, Fe³⁺, Fe²⁺) in HEPES buffer containing 20% DMSO.


2.4


Figure S14. Confocal microscope images of pretreated *HeLa* cells with different concentration of N_2H_4 (2-5: 0.0, 5.0, 30.0, 150.0 μ M) for 15 min, then incubated with **CyJ** (10 μ M) for another 15 min; 1: control. (A) Fluorescence images for cells co-stained with 4', 6-diamidino-2-phenylindole (DAPI) to identify cell nuclei (blue dots); (B) Fluorescence images from **CyJ**; (C) Merge.



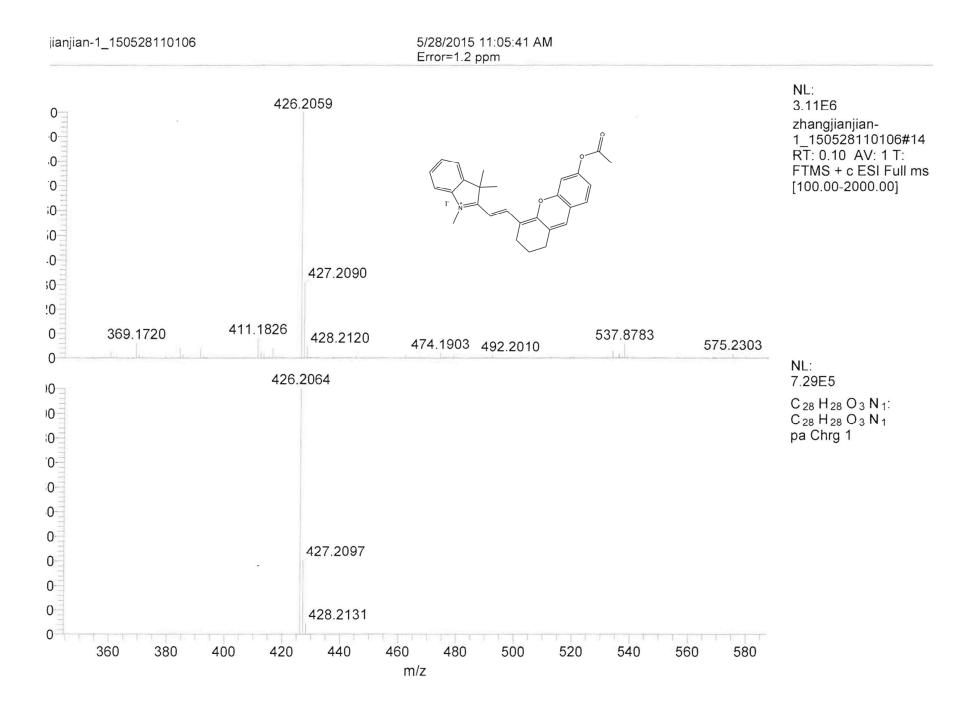

Figure S15. MTT assay for the survival rate of *HeLa* cells treated with various concentrations of **CyJ** for 24 h. Error bars represent the standard deviations of 6 trials.

Figure S16. *In vivo* images of tissues from mouse incubated with **CyJ** (50 μ M) or N₂H₄ (300 μ M). Fluorescence images of heart, kidney, spleen, liver, and lung. (A) The tissues not incubated with anything; (B) The tissues directly treated with **CyJ** (50 μ M) and followed by incubated with N₂H₄ (300 μ M), each for 20 min.

