Simultaneous Reduction of Metal Ions by Multiple Reducing Agents Initiate the Asymmetric Growth of Metallic Nanocrystals

Mahmoud A. Mahmoud

Laser Dynamics Lab., School of Chemistry and Biochemistry, Georgia Institute of Technology,
Atlanta, Georgia 30332-0400
*E-mail:mmahmoud@gatech.edu

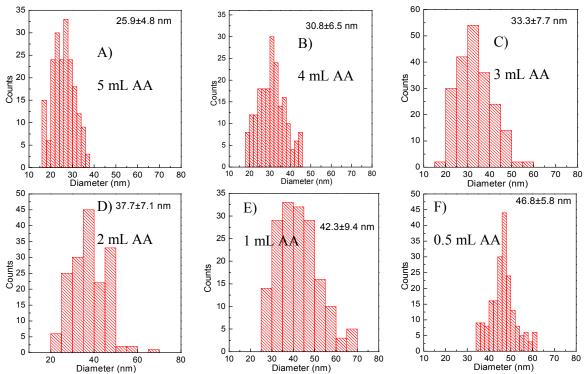


Figure S1 Statistical analysis of the diameters of AgNDs prepared by SMART at different concentrations of AA; the amount of AA was decreased from Figure 1 A through F. ImageJ was used to determine the diameters of the AgNDs measured from 3 TEM images for each batch.

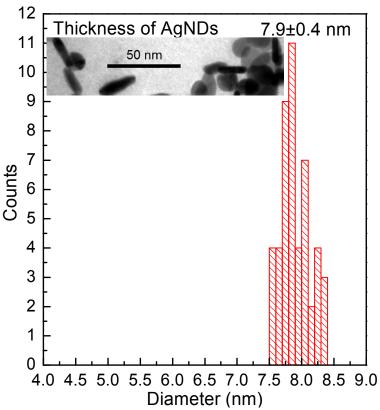


Figure S2 Statistical analysis of the thickness of the 30.8±6.5 nm AgNDs, prepared by SMART. The analysis carried out for 48 particles measured from 5 TEM images. The inset is TEM image of the 30.8±6.5 nm AgNDs. The thickness of the AgNDs was found to be 7.9±0.2 nm

Table S1. The final concentration of silver nitrate, polyvinyl pyrrolidone (PVP, MW=55,000), L-ascorbic acid, and sodium borohydride after mixing them.

Diameter of	Silver Nitrate	PVP	L-Ascorbic	Sodium
AgNDs (nm)	(mM)	(mM)	Acid (mM)	Borohydride (mM)
25.9±4.8	17.89×10^{-2}	14.41x10 ⁻²	0.194	29.82x10-4
30.8±6.5	17.85×10^{-2}	14.38x10 ⁻²	0.387	29.74 x10-4
33.3±7.7	17.76×10^{-2}	14.31x10 ⁻²	0.770	29.60x10-4
37.7±7.1	17.67×10^{-2}	14.24x10 ⁻²	1.149	29.45x10-4
42.3±9.4	17.58×10^{-2}	14.17x10 ⁻²	1.524	29.31x10-4
46.8±5.8	17.50×10^{-2}	14.10x10 ⁻²	1.896	29.17x10-4

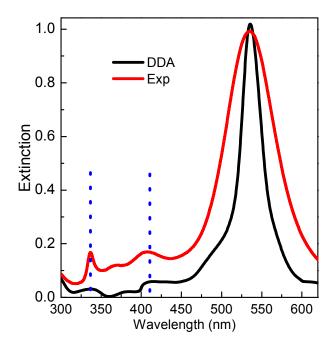


Figure S3. LSPR spectrum of 30 nm AgND of 8 nm thickness calculated by DDA technique (black) and LSPR spectrum measured for 30.8 ± 6.5 nm AgNDs.