# Supporting Information

# A Kinetic Approach to Investigate the Mechanistic Pathways of Oxygen Reduction Reaction on Fe-Containing N-Doped Carbon Catalysts

Azhagumuthu Muthukrishnan<sup>1</sup>, Yuta Nabae<sup>2</sup>, Takeyoshi Okajima<sup>1</sup>,

Takeo Ohsaka<sup>1</sup>,\*

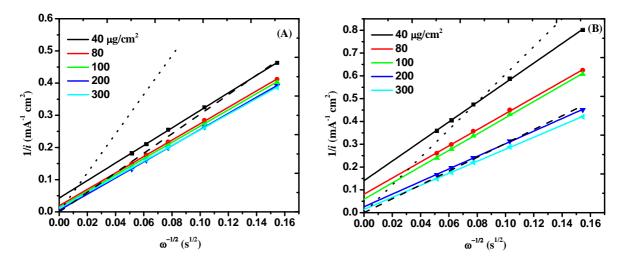
<sup>1</sup>Department of Electronic Chemistry, Interdisciplinary Graduate School of Science and Engineering, Tokyo Institute of Technology, G1-5, 4259 Nagatsuta, Midori-ku,

Yokohama 226-8502, Japan.

<sup>2</sup>Department of Organic and Polymeric Materials, Graduate School of Science and Engineering, Tokyo Institute of Technology, 2-12-1, Ookayama, Meguro-ku, Tokyo 152-8552, Japan.

E-mail: ohsaka@echem.titech.ac.jp (T. Ohsaka)

## Koutecký-Levich analysis


The RRDE voltammograms were analysed using the Koutecký-Levich equation as shown below

$$\frac{1}{i_{\rm D}} = \frac{1}{i_{\rm k}} + \frac{1}{i_{\rm DL}}$$
(S1)

where  $i_k$  is the kinetic current density at a given potential and  $i_{DL}$  can be estimated from the Levich equation ( $i_{DL} = 0.62nFD_{O_2}^{2/3}v^{-1/6}C_{O_2}^b\omega^{1/2}$ ; F is the Faraday constant,  $D_{O_2}$  and  $C_{O_2}^b$  are the diffusion coefficient ( $1.4 \times 10^{-5}$ ) and bulk concentration ( $1.13 \times 10^{-6}$  mol cm<sup>3</sup>) of O<sub>2</sub> dissolved in solution, respectively, v is the kinematic viscosity of the solution ( $0.01 \text{ cm}^2 \text{ s}^{-1}$ ) and  $\omega$  is the rotational speed). The  $1/i_D$  vs.  $\omega^{-1/2}$  plots are linear at mass-transport limiting region (at 0.1 V vs. RHE) as shown in Figure S1(A) for various loading densities of Fe-N-C catalysts. The  $i_k$  is estimated form the intercept of the 1/i vs.  $\omega^{-1/2}$  (Koutecký-Levich) plot, which increases with increasing the loading density (Table S1). The number of electrons (n), estimated from the slope of the Koutecký-Levich plot, increases with increasing the loading density and is found to be very close to 4 at 300  $\mu$ g/cm<sup>2</sup>. The  $i_k$  values at higher loading densities indicate that the ORR is solely controlled by the mass-transport of O<sub>2</sub> molecules to the electrode surface. As shown in Figure S1(A), the experimental plots give almost the same slope as expected for 4-electron ORR.

A similar methodology is adopted for the N-C catalyst to estimate the  $i_k$  and n at various loading densities. At low loading density (40 µg cm<sup>-2</sup>), n is close to 2 whereas the value of n is increased to 3.8 at 300 µg/cm<sup>2</sup>. Also,  $i_k$  value increases with increasing the loading density. The values of n and  $i_k$  are summarized in the Table S1 for both Fe-N-C and N-C catalysts. The  $i_k$  value of the Fe-N-C catalyst is 3.3 times larger than that of the N-C catalyst at 40 µg cm<sup>-2</sup>. However, this difference is decreased at high loading density, i.e., at 300 µg cm<sup>-2</sup>, is

only 1.6 times, indicating the increased ORR performance. It can be seen from Figure S1(B) that the plot at the low loading density (e.g.,  $40 \ \mu g \ cm^{-2}$ ) gives the slope close to that obtained for the 2-electron reduction and the slopes close to that expected for the 4-elelctron reduction are obtained at the loading densities greater than 200  $\mu g \ cm^{-2}$ .



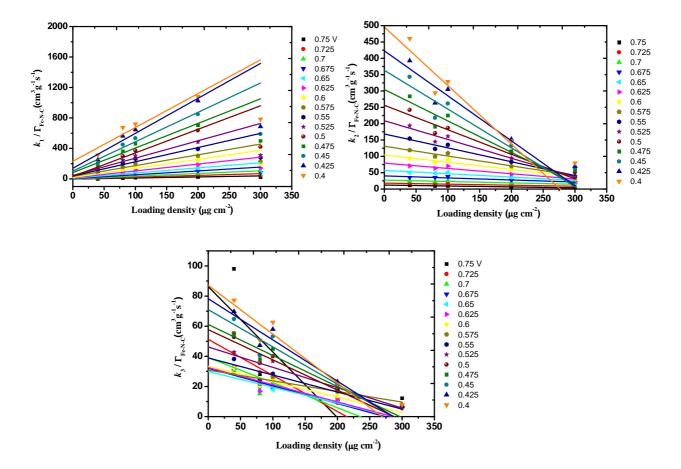
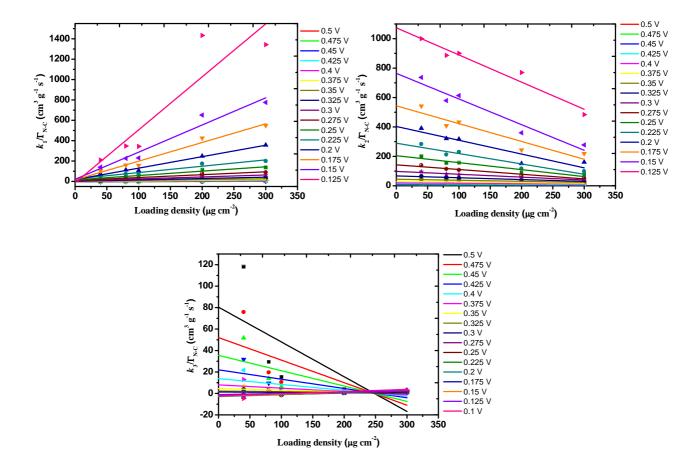

**Figure S1**: Koutecký-Levich plots for the Fe-N-C (A) and N-C (B) catalysts at the limiting current region (0.1 V) for various loading densities. The theoretical plots for the 4-electron (dashed line) and the 2-electron (dotted line) reduction of oxygen are shown.

Table S1. Values of n and  $i_k$  for the Fe-N-C and N-C catalysts at various loading densities.


| Loading density(µg/cm <sup>2</sup> ) | Fe-N-C |                                    | N-C |                                    |
|--------------------------------------|--------|------------------------------------|-----|------------------------------------|
|                                      | n      | $i_{\rm k}$ (mA cm <sup>-2</sup> ) | n   | $i_{\rm k}$ (mA cm <sup>-2</sup> ) |
| 40                                   | 3.7    | 23.3                               | 2.3 | 7.1                                |
| 80                                   | 3.9    | 52.4                               | 2.8 | 12.3                               |
| 100                                  | 4.0    | 71.9                               | 2.8 | 16.9                               |
| 200                                  | 4.0    | 128.7                              | 3.6 | 38.5                               |
| 300                                  | 4.1    | 107.3                              | 3.8 | 68.9                               |

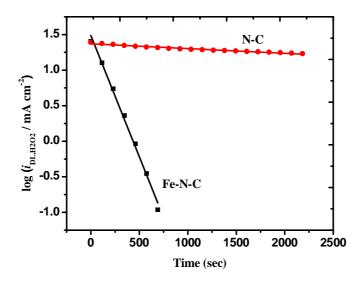
# Evaluation of ORR rate constants at zero loading density

To estimate the rate constants at zero loading density we have employed a method of plotting the loading density vs. rate constant, i.e., a linear fitting of such plots leads to the intercepts which are referred to as rate constants at zero loading density. The loading density normalised rate constants ( $k_1/\Gamma$ ,  $k_2/\Gamma$  and  $k_2/\Gamma$ ) for the Fe-N-C and N-C catalysts are shown in Figures S2 and S3, respectively.



**Figure S2**: The loading density dependence of the loading density-normalised rate constants  $(k_i/\Gamma_{\text{Fe-N-C}})$  for the individual rate constants for the Fe-N-C catalyst.




**Figure S3**: The loading density dependence of the loading density-normalised rate constants  $(k_i/\Gamma_{N-C})$  for the individual rate constants for the N-C catalyst.

## Estimation of H<sub>2</sub>O<sub>2</sub>-disproportionation rate constants

Methodology for the estimation of disproportionation rate constant of  $H_2O_2$  has been already established by Jaouen and Dodelet [*J. Phys. Chem. C* **2009**, *113*, 15422-15432]. Briefly, a known amount (2 mg) of each of the catalysts was added to the known volume (50 mL) of O<sub>2</sub>-saturated 0.1 M HClO<sub>4</sub> and the solution was stirred with a uniform distribution of the catalyst. 51.1 µL of 30%  $H_2O_2$  was added to the solution, resulting in an initial  $H_2O_2$ concentration of 10 mM. Immediately after addition of  $H_2O_2$ , the RRDE voltammetric diffusion-limited current ( $I_{DL,t}$ ) was measured at constant intervals with the Pt/C electrode (the loading density of the Pt/C electrode is 37.2  $\mu$ g/cm<sup>2</sup>) at 1600 rpm rotational speed. The RRDE voltammogram was also measured before the addition of H<sub>2</sub>O<sub>2</sub> in the O<sub>2</sub>-saturated solution and the obtained time-independent current limited by O<sub>2</sub> diffusion is mentioned as  $I_{DL,O2}$ . Finally, the time-dependent H<sub>2</sub>O<sub>2</sub> diffusion-limited current ( $I_{DL,H2O2}$ ) was calculated as follows

$$I_{\rm DL,H_2O_2} = I_{\rm DL,t} - I_{\rm DL,O_2}$$
 (S2)

The rate constants ( $k_4$ ) of the homogeneous disproportionation reaction of H<sub>2</sub>O<sub>2</sub> can be calculated from log( $I_{DL,H_2O_2}$ ) vs. time plots as shown in Figure S4. The slopes for the both catalysts gave the values of  $k_4$ .



**Figure S4.**  $\log(I_{DL,H_2O_2})$  vs. time plots for Fe-N-C and N-C catalysts. The rotating disk electrode voltammetry was carried out using the Pt/C-coated GC electrode (the coating amount of Pt/C: 37 µg cm<sup>-2</sup>) at potential scan rate of 20 mV s<sup>-1</sup> and electrode rotation speed of 1600 rpm in O<sub>2</sub>-saturated 0.1 M HClO<sub>4</sub> solution containing 10 mM H<sub>2</sub>O<sub>2</sub> in the presence of each catalyst of 2 mg. The  $I_{DL,H_2O_2}$  values were taken at 0.2 V.

To compare the thus-estimated disproportionation rate constants with the ORR rate constants, the unit (cm s<sup>-1</sup>) of  $k_1$ ,  $k_2$  and  $k_3$  needs to be converted to the same unit of the homogenous rate constant ( $k_4$ ) by taking into account the thickness (l) of the catalyst coated

on the electrode. The ORR rate constants divided by the thickness of the film leads to the unit of s<sup>-1</sup>. The thickness of the film coated on the GC surface was estimated as  $23\pm3 \mu$ m using 3D leaser Scanning Microscope (Keyence Co., Japan). Finally, the  $k_1/l$ ,  $k_2/l$  and  $k_3/l$  are calculated as 95.7, 12.8 and 1.9 s<sup>-1</sup>, respectively, for the Fe-N-C and 126.1, 66.9 and 0.2 s<sup>-1</sup>, respectively, for the N-C catalyst. The  $k_4$  is normalized by the amount of the catalyst coated on the electrode for the comparison and the estimated values are  $9.2\times10^{-5}$  and  $2.0\times10^{-6}$  s<sup>-1</sup> for Fe-N-C and N-C catalysts, respectively. These values are very low compared with the  $k_1/l$ ,  $k_2/l$  and  $k_3/l$  and hence the disproportionation of H<sub>2</sub>O<sub>2</sub> is negligible. From the mechanistic point of view it is expected that  $k_4$  might influence on  $k_3$ , but not on  $k_1$  and  $k_2$ . As mentioned above,  $k_4$  is too small compared to the  $k_3$ .[Wu *et al.* Langmuir **2015**, *31*, 5529-5536] Hence the catalytic disproportionation reaction of H<sub>2</sub>O<sub>2</sub> on these catalysts is considered to be very slow and it is negligible.

## Wroblowa model

The RRDE voltammetric equations are derived by Damjanovic at el. for the evaluation of the rate constants ( $k_1$ ,  $k_2$  and  $k_3$ ) for a model of ORR shown in Scheme 1 and are expressed as follows.

$$\frac{I_{\rm D}}{I_{\rm R}} = \frac{1}{N} \left[ \left( 1 + 2\frac{k_1}{k_2} \right) + \left( \frac{2k_3 \left( 1 + \frac{k_1}{k_2} \right)}{Z_{\rm H_2O_2}} \right) \omega^{-1/2} \right]$$
(S3)

$$\frac{I_{\rm DL}}{I_{\rm DL} + I_{\rm D}} = 1 + \frac{k_1 + k_2}{Z_{\rm O_2}} \omega^{-1/2}$$
(S4)

with 
$$Z_{\text{H}_2\text{O}_2} = 0.2D_{\text{H}_2\text{O}_2}^{2/3}v^{-1/6}$$
 and  $Z_{\text{O}_2} = 0.2D_{\text{O}_2}^{2/3}v^{-1/6}$ 

where  $I_D$  is the disk current,  $I_R$  is the ring current,  $I_{DL}$  is the disk limiting current,  $\omega$  is the rotational speed of electrode, N is the collection efficiency,  $D_{H2O2}$  and  $D_{O2}$  are the diffusion coefficients of H<sub>2</sub>O<sub>2</sub> and O<sub>2</sub>, respectively and v is the kinematic viscosity of the solution used. By combining the intercepts and slopes of both  $I_D/I_R$  vs.  $\omega^{-1/2}$  and  $I_{DL}/(I_{DL}-I_D)$  vs.  $\omega^{-1/2}$  plots, the individual rate constants are obtained. By taking into account the adsorption equilibrium between the adsorbed and desorbed  $H_2O_2$  near the disk electrode surface, Wroblowa et al. derived the RRDE voltammetric equations for the model for ORR shown in Scheme 2. A liner plot of  $I_{DL}/(I_{DL}-I_D)$  vs.  $\omega^{-1/2}$ , which was confirmed actually in the present case, indicates that  $k_4$  is negligibly small and the relation between  $I_{DL}/(I_{DL}-I_D)$  and  $\omega^{-1/2}$  is exactly the same as equation (S4) and the  $I_D/I_R - \omega^{-1/2}$  relation is expressed by the following equation:

$$\frac{I_{\rm D}}{I_{\rm R}} = \frac{1}{N} \left[ \left( 1 + 2\frac{k_1}{k_2} \right) + A + \left( \frac{Ak_6}{Z_{\rm H_2O_2}} \right) \omega^{-1/2} \right]$$
(S5)

where  $A = \frac{2k_1k_3}{k_2k_5} + \frac{2k_3}{k_5}$ . The intercept and slope of  $I_D/I_R$  vs.  $\omega^{-1/2}$  plot according to equation

(S5) are

$$J = \frac{1}{N} \left( 1 + 2\frac{k_1}{k_2} + A \right)$$
(S6)

and

$$S = \frac{1}{N} \left( \frac{Ak_6}{Z_{\rm H_2O_2}} \right), \tag{S7}$$

respectively. The relation between J and S is given by

$$NJ = \left(1 + 2\frac{k_1}{k_2}\right) + \frac{Z_{H_2O_2}}{k_6}NS$$
(S8)

Finally, some important conclusions have been drawn from the NJ vs. NS plots.

If  $k_1 = 0$  and the plot is linear, the intercept of the *NJ* vs. *NS* plot must be unity. In that case, the ORR is considered to follow the sequential mechanism.

If  $k_1$  is not equal to zero (i.e., the intercept is greater than unity) and the plot is still linear,  $k_1$  and  $k_2$  have similar potential dependence. The values of  $k_6$  and  $k_1/k_2$  can be estimated from the slope and intercept, respectively.

If  $k_1$  is not equal to zero and the plot is not linear,  $k_1$  and  $k_2$  are different functions of potential.