Inhibition of Cancer-Associated Mutant Isocitrate Dehydrogenases by 2-thiohydantoin compounds

Fangrui Wu,^{†,§} Baisong Zheng,^{†,§} Hong Jiang,^{†,§} Mari Kogiso,[¶] Yuan Yao,[†] Chao Zhou,[†] Xiao-Nan Li,[¶]

Yongcheng Song*,†,‡

[†] Department of Pharmacology, [¶] Department of Pediatrics-oncology, [‡] Dan L. Duncan Cancer Center,

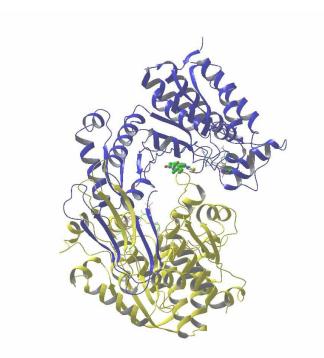
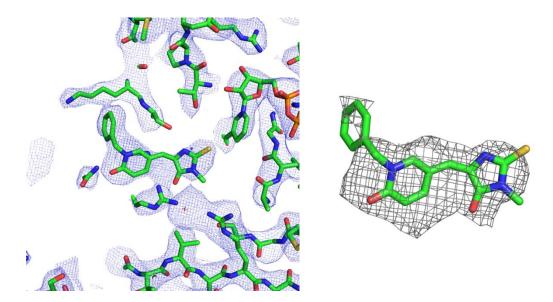
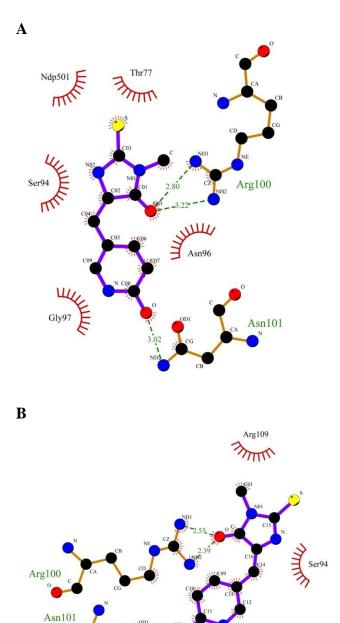

Baylor College of Medicine, 1 Baylor Plaza, Houston, TX 77030, USA.

Table of Contents	
Table S1	Page S2
Figure S1	Page S3
Figure S2	Page S4
Figure S3	Page S5
Figure S4	Page S6
Experimental Section	Page S7


 Table S1. Data processing and refinement statistics

	IDH1 ^{R132H} : 16	IDH1 ^{R132H} :22
A. Data processing		
Wavelength (Å)	1.542	1.542
Space group	$P4_{3}2_{1}2$	$P4_{3}2_{1}2$
Unit cell dimensions		
<i>a, b, c</i> (Å)	82.41, 82.41, 304.30	82.59, 82.59, 306.60
<i>α</i> , <i>β</i> , <i>γ</i> (°)	90.0, 90.0, 90.0	90.00, 90.00, 90.00
Resolution (Å)	46.3-3.2(3.28-3.20)	40.9-3.3(3.38-3.29)
Unique reflections	18114(894)	16627(824)
Completeness (%)	96.0(72.4)	90.6(33.0)
Redundancy	8.7(10.4)	6.2(6.9)
R_{merge} (%)	19.8(67.3)	16.9(72.0)
$I/\sigma(I)^{b}$	10.1(2.6)	8.5(2.1)
B. Refinement		
Resolution (Å)	46.3-3.2(3.28-3.20)	40.9-3.3(3.38-3.29)
Number of reflections used in working set	16668(882)	14621(364)
Number of reflections for R_{free} calculation	898 (50)	784(19)
$R_{ m work}$ (%)	19.1(21.5)	21.0(22.1)
$R_{\rm free}$ (%) ^a	27.7(28.7)	29.7(27.2)
Mean B-factor from Wilson plot ($Å^2$)	46.0	53.1
RMSD of bond length (Å)	0.01	0.01
RMSD of bond angle (°)	1.46	1.40
Ramachandran plot ^b		
Residues in most favored regions	90.1%	88.2%
Residues in additional allowed regions	9.9%	11.8%
Residues in generously allowed regions	0.0%	0.0%
Residues in disallowed regions	0.0%	0.0%


^aA subset of the data (5%) was excluded from the refinement and used to calculate $R_{\text{free.}}$ ^bRamachandran plot is generated by Procheck¹.

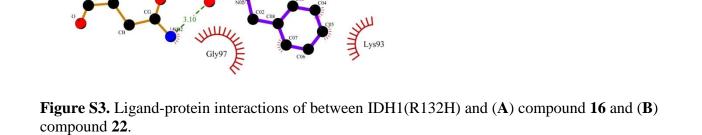


Figure S1. The overall structure of IDH1(R132H) in complex with compound **22** (ball & stick model) and NADPH.

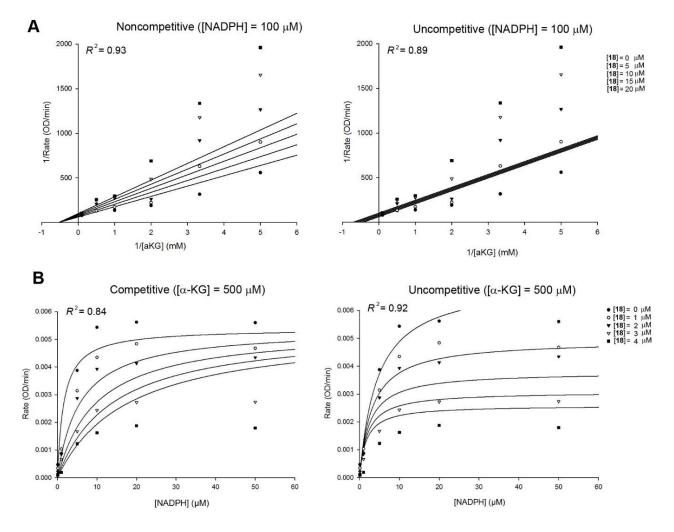


Figure S2. (Left) The $2F_o$ - F_c electron density map of compound **22**, contoured at 1σ ; (Right) The F_o - F_c omit map of **22** at 3σ .

Lys93

Figure S4. Unfavorable fitting models for enzyme kinetic studies of compound **18**. (**A**) Noncompetitive (left) and uncompetitive (right) inhibition models with variable concentrations of α -KG using a Lineweaver-Burk plot; and (**B**) Competitive (left) and uncompetitive (right) inhibition models with variable concentrations of NADPH using a Michaelis-Menten plot.

Experimental Section

All reagents were purchased from Alfa Aesar (Ward Hill, MA) or Aldrich (Milwaukee, WI). Compounds were characterized by ¹H NMR on a Varian (Palo Alto, CA) 400-MR spectrometer and HRMS on a ThermoFisher LTQ-Orbitrap mass spectrometer. Compound purities were determined by a Shimadzu Prominence HPLC with a Phenomenex C18 column (4.6 x 250 mm, Methonal:H₂O 60:40, monitored at 254 and 280 nm). The purities of all compounds were found to be >95%.

General synthetic method. Glycine (6.54g, 87 mmol) in EtOH (12 mL) containing 1 equivalent of 50% aqueous KOH (9.78 g, 87 mmol) was added R¹ isothiocyanate dropwise at 0 °C. The mixture was stirred fro 3 h, and then acidified with 1 M HCl (200 mL) to precipitate the crude α -thioureido acid product. After cooling to 0 °C, the white powder was collected by filtration, which was dissolved in acetone (250 mL) and treated with H₂SO₄ (5 mL). Upon completion of the reaction monitored by TLC, the solvent was removed by reduced pressure and saturated aqueous NaHCO₃ was carefully added at 0 °C. After neutralization, the resulting precipitation was filtered to give 3-R¹-substituted 2-thiohydantoin as a white powder.

A mixture of a 2-thiohydantoin (10 mmol), sodium acetate (0.8 g, 10 mmol), 6methoxynicotinaldehyde (1.5 g, 11 mmol) or another aromatic aldehyde in 15 mL of acetic acid was refluxed for 3 h. The precipitated solid was filtered, washed successively with acetic acid, water, ethanol and diethyl ether to give (6-methoxypyridin-3-yl)methylene-2-thiohydantoin as a yellow or light brown powder, which (8.0 mmol) was refluxed overnight in 6 N HCl (10 mL). Upon cooling to room temperature, the resulting precipitate was filtered and washed with cold diethyl ether to give (2pyridinone-3-yl)methylene-2-thiohydantoin as a brown powder. Other heterocyclic compounds in Chart 1 can be synthesized similarly with the above method.

3-benzyl-5-(3,4-dihydroxybenzylidene)-2-thioxoimidazolidin-4-one (Compound 4). Using the general method A described above, compound **4** was synthesized from 3-benzyl-5-(3,4-dimethoxy

benzylidene)-2-thioxoimidazolidin-4-one, yield = 73%. ¹H NMR (400 MHz, DMSO-*d*₆): δ 11.26 (s, 1H), 8.62 (s, 1H), 8.20 (s, 1H), 7.23 (m, 2H), 7.23-7.10 (m, 4H), 6.93 (d, *J* = 8.0 Hz, 1H), 6.77 (d, *J* = 8.0 Hz, 1H), 6.49 (s, 1H), 4.99 (s, 2H).

3-Benzyl-5-(3,4-dimethoxybenzylidene)-2-thioxoimidazolidin-4-one (Compound 5). Using the general method A described above, compound **5** was synthesized from 3-benzyl-2-thioxoimidazolidin-4-one and 3,4-dimethoxybenzaldehyde, yield = 75%. ¹H NMR (400 MHz, DMSO-*d*₆): δ = 3.79-3.87 (m, 6H), 5.02 (s, 2H), 6.65 (s, 1H), 7.02 (d, *J* = 8.4 Hz, 1H), 7.27-7.43 (m, 7H), 12.50 (s, 1H).

3,4-dimethoxybenzylidene-3-phenyl-2-thioxoimidazolidin-4-one (Compound 6). Using the general method A described above, compound **6** was synthesized from 3-phenyl-2-thioxoimidazolidin-4-one and 3,4-dimethoxybenzaldehyde, yield = 73%. ¹H NMR (400 MHz, DMSO- d_6): δ = 3.79-3.87 (m, 6H), 6.67 (s, 1H), 7.40 (d, *J* = 8.4 Hz, 1H), 7.33-7.54 (m, 7H), 12.60 (s, 1H).

3,4-dimethoxybenzylidene-3-(4-methoxybenzyl)-2-thioxoimidazolidin-4-one (Compound 7). Using the general method A described above, compound 7 was synthesized from 3-(4-methoxybenzyl)-2-thioxoimidazolidin-4-one and 3,4-dimethoxy-benzaldehyde, yield = 70%. ¹H NMR (400 MHz, DMSO- d_6): $\delta = 3.71$ (s, 3H), 3.79 (s, 3H), 3.874(s, 3H), 4.94 (s, 2H), 6.62 (s, 1H), 6.84-6.90 (m, 2H), 7.02 (d, J = 8.8 Hz, 1H), 7.24-7.33 (m, 3H), 7.39-7.42 (m, 1H), 12.45 (s, 1H).

3,4-dihydroxybenzylidene-3-phenyl-2-thioxoimidazolidin-4-one (Compound 8). Using the general method A described above, compound **8** was synthesized from compound **6**, yield = 50%. ¹H NMR (400 MHz, DMSO-*d*₆): δ = 6.55 (s, 1H), 6.81 (d, *J* = 8.4 Hz, 1H), 7.18-7.22 (m, 2H), 7.35-7.38 (m, 2H), 7.45-7.55 (m, 5H), 12.41 (s, 1H).

3,4-dihydroxybenzylidene-3-(4-hydroxybenzyl)-2-thioxoimidazolidin-4-one (Compound 9). Using the general method A described above, compound 9 was synthesized from compound 7, yield = 50%. ¹H NMR (400 MHz, DMSO- d_6): δ = 4.87 (s, 2H), 6.49 (s, 1H), 6.68-6.72 (m, 2H), 7.79 (d, *J* = 8.4 Hz, 1H), 7.13-7.19 (m, 4H), 12.25 (s, 1H).

3-benzyl-5-(pyridin-3-ylmethylene)-2-thioxoimidazolidin-4-one (Compound 10). Using the general method A described above, compound **10** was synthesized from 3-benzyl-2-thioxoimidazolidin-4-one and nicotinaldehyde, yield = 70%. ¹H NMR (400 MHz, DMSO- d_6): $\delta = 4.93$ (s, 2H), 6.19 (s, 1H), 7.20-7.38 (m, 6H), 8.37 (dd, J = 4.8, 1.6 Hz, 1H), 8.59 (d, J = 8.0 Hz, 1H), 8.99 (d, J = 2.0 Hz, 1H).

3-benzyl-5-((6-methoxypyridin-3-yl)methylene)-2-thioxoimidazolidin-4-one (Compound 11). Using the general method A described above, compound **11** was synthesized from 3-benzyl-2-

thioxoimidazolidin-4-one and 6-methoxynicotinaldehyde, yield = 70%. ¹H NMR (400 MHz, DMSO- d_6): $\delta = 3.90$ (s, 3H), 5.01 (s, 2H), 6.67 (s, 1H), 6.91 (d, J = 8.8 Hz, 1H), 7.24-7.33 (m, 5H), 8.21 (dd, J =

8.8, 2.4 Hz, 1H), 8.55 (d, *J* = 2.4 Hz, 1H), 12.52 (s, 1H).

5-((1-benzyl-5-oxo-2-thioxoimidazolidin-4-ylidene)methyl)pyridin-2(1H)-one (Compound 12).

Using the general method A described above, compound **12** was synthesized from compound **11**, yield = 50%. ¹H NMR (400 MHz, DMSO- d_6): $\delta = 4.99$ (s, 2H), 6.40 (d, J = 9.6 Hz, 1H), 6.55 (s, 1H), 7.25-7.33 (m, 5H), 7.97 (dd, J = 9.6, 2.4 Hz, 1H), 8.00 (d, J = 2.4 Hz, 1H), 12.34 (s, 1H).

3-ethyl-5-((6-methoxypyridin-3-yl)methylene)-2-thioxoimidazolidin-4-one (Compound 13). Using the general method A described above, compound 13 was synthesized from 3-ethyl-2-thioxo-imidazolidin-4-one and 6-methoxynicotinaldehyde. yield = 76%. ¹H NMR (400 MHz, DMSO- d_6): δ = 1.16 (t, *J* = 4.4 Hz, 3H), 3. 81-3.84 (m, 2H), 3.90 (s, 3H), 6.63 (s, 1H), 6.90 (d, *J* = 8.8 Hz, 1H), 8.20 (dd, *J* = 8.8, 2.8 Hz, 1H), 8.54 (d, *J* = 2.4 Hz, 1H), 12. 38 (s, 1H).

5-((1-ethyl-5-oxo-2-thioxoimidazolidin-4-ylidene)methyl)pyridin-2(1H)-one (Compound 14). Using the general method A described above, compound 14 was synthesized from compound 13. yield = 72%. ¹H NMR (400 MHz, DMSO- d_6): δ = 1.10-1.17 (m, 3H), 3.78-3.83 (m, 2H), 6.38 (d, *J* = 9.2 Hz, 1H), 6.51 (s, 1H), 7.92-8.01 (m, 2H), 12.20 (brs, 2H).

5-((6-methoxypyridin-3-yl)methylene)-3-methyl-2-thioxoimidazolidin-4-one (Compound 15). Using the general method A described above, compound 15 was synthesized from 3-methyl-2-thioxo-imidazolidin-4-one and 6-methoxynicotinaldehyde. yield = 77%. ¹H NMR (400 MHz, DMSO- d_6): δ =

3.20 (s, 3H), 3.90 (s, 3H), 6.63 (s, 1H), 6.90 (d, *J* = 8.8 Hz, 1H), 8.20 (dd, *J* = 8.8, 2.0 Hz, 1H), 8.54 (d, *J* = 2.8 Hz, 1H).

5-((1-ethyl-5-oxo-2-thioxoimidazolidin-4-ylidene)methyl)pyridin-2(1H)-one (Compound 16). Using the general method described above, compound 16 was synthesized from 3-methyl-2-thiohydantoin (1.2g, 10 mmol) and 6-methoxynicotinaldehyde (1.5 g, 11 mmol), followed by deprotection (refluxing in 6N HCl), as a brown powder (1.3g, 65% yield). ¹H NMR (400 MHz, DMSO-*d*₆): δ = 3.18 (s, 3H), 6.38 (d, J = 9.6 Hz, 1H), 6.51 (s, 1H), 7.95 (dd, J = 9.6, 2.8 Hz, 1H), 8.00 (d, J = 2.8 Hz, 1H), 12.20 (brs, 2H); HRMS (ESI) [M+H]⁺ Calcd for C₁₀H₁₀N₃O₂S⁺: 236.0488, Found: 236.0493.

5-((6-methoxypyridin-3-yl)methylene)-2-thioxoimidazolidin-4-one (Compound 17). Using the general method A described above, compound 17 was synthesized from 2-thioxoimidazolidin-4-one and 6-methoxynicotinaldehyde, yield = 75%. ¹H NMR (400 MHz, DMSO- d_6): δ = 3.90 (s, 3H), 6.49 (s, 1H), 6.89 (d, *J* = 8.8 Hz, 1H), 8.18 (dd, *J* = 8.8, 2.4 Hz, 1H), 8.51 (d, *J* = 2.4 Hz, 1H), 12.17 (s, 1H), 12.36 (s, 1H).

5-((5-oxo-2-thioxoimidazolidin-4-ylidene)methyl)pyridin-2(1H)-one (Compound 18). Using the general method described above, compound 18 was synthesized from 2-thiohydantoin (1.2g, 10 mmol) and 6-methoxynicotinaldehyde (1.5 g, 11 mmol), followed by deprotection (refluxing in 6N HCl), as a brown powder (1.5g, 71% yield). ¹H NMR (400 MHz, DMSO-*d*₆): δ = 6.26 (s, 1H), 6.37 (d, J = 10.8 Hz, 1H), 7.75-7.80 (m, 2H), 10.36 (s, 1H), 11.13 (s, 1H), 11.75 (s, 1H), 12.64 (s, 1H); HRMS (ESI) [M+H]⁺ Calcd for C₉H₈N₃O₂S⁺: 222.0332, Found: 222.0340.

2-(4-((6-methoxypyridin-3-yl)methylene)-5-oxo-2-thioxoimidazolidin-1-yl)acetic acid (Compound

19). Using the general method A described above, compound **19** was synthesized from ethyl 2-(5-oxo-2-thioxoimidazolidin-1-yl)acetate and 6-methoxynicotinaldehyde, yield = 78% based on aldehyde. ¹H NMR (400 MHz, DMSO- d_6): δ = 3.91 (s, 3H), 4.50 (s, 2H), 6.71 (s, 1H), 6.92 (d, *J* = 8.8 Hz, 1H), 8.23 (d, *J* = 8.8 Hz, 1H), 8.57 (s, 1H), 12.57 (s, 1H), 13.24 (s, 1H).

2-(5-oxo-4-((6-oxo-1,6-dihydropyridin-3-yl)methylene)-2-thioxoimidazolidin-1-yl)acetic acid

(**Compound 20**). Using the general method A described above, compound **20** was synthesized from compound **19**, yield = 70%. ¹H NMR (400 MHz, DMSO-*d*₆): δ = 4.48 (s, 2H), 6.39 (s, 1H), 6.59 (s, 1H), 7.81-8.05 (m, 3H), 12.21 (s, 1H), 12.41 (s, 1H).

1-methyl-5-((1-methyl-5-oxo-2-thioxoimidazolidin-4-ylidene)methyl)pyridin-2(1H)-one

(**Compound 21**). Using the general method A described above, compound **21** was synthesized from 3methyl-2-thioxo- imidazolidin-4-one and 1-methyl-6-oxo-1,6-dihydropyridine-3-carbaldehyde, yield = 71%. ¹H NMR (400 MHz, DMSO- d_6): $\delta = 3.19$ (s, 3H), 3.51 (s, 3H), 6.42-6.46 (m, 2H), 7.87 (dd, J =9.6, 2.8 Hz, 1H), 8.29 (d, J = 2.4 Hz, 1H).

1-benzyl-5-((1-methyl-5-oxo-2-thioxoimidazolidin-4-ylidene)methyl)pyridin-2(1H)-one

(**Compound 22**). Using the general method described above, compound **22** was synthesized from 3methyl-2-thiohydantoin (0.6g, 5 mmol) and 1-benzyl-6-oxo-1,6-dihydropyridine-3-carbaldehyde (1.2 g, 6 mmol) as a yellow powder (1.3g, 77% yield). ¹H NMR (400 MHz, DMSO-*d*₆): δ = 3.19 (s, 3H), 5.14 (s, 2H), 6.45-6.51 (m, 2H), 7.27-7.36 (m, 5H), 7.90-7.95 (m, 1H) 8.45 (d, J = 2.8 Hz, 1H), 12.20 (s, 1H); HRMS (ESI) [M+H]⁺ Calcd for C₁₇H₁₆N₃O₂S⁺: 326.0958, Found: 326.0966.

2-methoxy-5-((1-methyl-5-oxo-2-thioxoimidazolidin-4-ylidene)methyl)pyridine 1-oxide

(**Compound 23**). Using the general method A described above, compound **23** was synthesized from 3methyl-2-thioxo- imidazolidin-4-one and 5-formyl-2-methoxypyridine 1-oxide, yield = 57%. ¹H NMR (400 MHz, DMSO- d_6): δ = 3.18 (s, 3H), 4.01 (s, 3H), 6.45-6.61 (m, 2H), 7.88 (d, *J* = 9.2 Hz, 1H), 8.61 (s, 1H), 12.25 (s, 1H).

1-hydroxy-5-((1-methyl-5-oxo-2-thioxoimidazolidin-4-ylidene)methyl)pyridin-2(1H)-one

(**Compound 24**). Using the general method A described above, compound **24** was synthesized from 3methyl-2-thioxo-imidazolidin-4-one and 1-hydroxy-6-oxo-1,6-dihydropyridine-3-carbaldehyde, yield = 30%. ¹H NMR (400 MHz, DMSO-*d*₆): $\delta = 3.17$ (s, 3H), 6.38 (s, 1H), 6.55 (d, *J* = 9.6 Hz, 1H), 7.78-7.80 (m, 1H), 8.37 (d, *J* = 2.0 Hz, 1H), 10.65 (s, 1H), 12.17 (s, 1H).

5-((2-methoxypyridin-3-yl)methylene)-3-methyl-2-thioxoimidazolidin-4-one (Compound 25). Using the general method A described above, compound 25 was synthesized from 3-methyl-2-thioxo-imidazolidin-4-one and 2-methoxynicotinaldehyde, yield = 78%. ¹H NMR (400 MHz, DMSO- d_6): δ = 3.20 (s, 3H), 3.95 (s, 3H), 6.66 (s, 1H), 7.05-7.09 (m, 1H), 8.11-8.20 (m, 2H), 12.32 (s, 1H).

3-((1-methyl-5-oxo-2-thioxoimidazolidin-4-ylidene)methyl)pyridin-2(1H)-one (Compound 26).

Using the general method A described above, compound **26** was synthesized from compound **25**, yield = 72%. ¹H NMR (400 MHz, DMSO- d_6): $\delta = 3.18$ (s, 3H), 6.45-6.49 (m, 2H), 7.61-7.65 (m, 1H), 7.99-8.02 (m, 1H), 12.45 (brs, 1H), 12.59 (brs, 1H).

5-((6-methoxypyridin-2-yl)methylene)-3-methyl-2-thioxoimidazolidin-4-one (Compound 27). Using the general method A described above, compound 27 was synthesized from 3-methyl-2-thioxo-imidazolidin-4-one and 6-methoxypicolinaldehyde, yield = 70%. ¹H NMR (400 MHz, DMSO- d_6): δ = 3.22 (s, 3H), 3.99 (s, 3H), 6.70 (s, 1H), 6.89 (s, *J* = 8.0 Hz, 1H), 7.38 (d, *J* = 8.0 Hz, 1H), 7.82 (dd, *J* = 8.0, 6.8 Hz, 1H).

6-((1-methyl-5-oxo-2-thioxoimidazolidin-4-ylidene)methyl)pyridin-2(1H)-one (Compound 28).

Using the general method A described above, compound **28** was synthesized from compound **27**, yield = 75%. ¹H NMR (400 MHz, DMSO-*d*₆): δ = 3.18 (s, 3H), 6.31 (s, 1H), 6.44 (d, *J* = 9.2 Hz, 1H), 6.63 (d, *J* = 7.2 Hz, 1H), 7.49 (dd, *J* = 9.2, 7.2 Hz, 1H).

3-methyl-5-(pyridin-4-ylmethylene)-2-thioxoimidazolidin-4-one (Compound 29). Using the general method A described above, compound **29** was synthesized from 3-methyl-2-thioxo-imidazolidin-4-one and isonicotinaldehyde, yield = 75%. ¹H NMR (400 MHz, DMSO- d_6): δ = 3.20 (s, 3H), 6.55 (s, 1H), 7.70 (d, *J* = 6.4 Hz, 2H), 8.61 (d, *J* = 6.0 Hz, 2H).

5-((2-methoxypyridin-4-yl)methylene)-3-methyl-2-thioxoimidazolidin-4-one (Compound 30). Using the general method A described above, compound 30 was synthesized from 3-methyl-2-thioxo-imidazolidin-4-one and 2-methoxyisonicotinaldehyde, yield = 77%. ¹H NMR (400 MHz, DMSO-*d*₆): δ

= 3.18 (s, 3H), 3.87 (s, 3H), 6.50 (s, 1H), 7.15 (s, 1H), 7.29 (dd, *J* = 5.2, 1.6 Hz, 1H), 8.19 (d, *J* = 5.2 Hz, 1H).

4-((1-methyl-5-oxo-2-thioxoimidazolidin-4-ylidene)methyl)pyridin-2(1H)-one (Compound 31).

Using the general method A described above, compound **31** was synthesized from compound **30**, yield = 71%. ¹H NMR (400 MHz, DMSO- d_6): $\delta = 3.16$ (s, 3H), 6.36 (s, 1H), 6.84 (s, 1H), 6.88 (dd, J = 6.8, 1.6 Hz, 1H), 7.36 (d, J = 6.8 Hz, 1H), 12.14 (s, 1H), 12.41 (s, 1H).

5-((2-bromopyridin-4-yl)methylene)-2-thioxoimidazolidin-4-one (Compound 32). Using the general method A described above, compound 32 was synthesized from 2-thioxoimidazolidin-4-one and 2-bromoisonicotinaldehyde, yield = 71%. ¹H NMR (400 MHz, DMSO- d_6): $\delta = 6.39$ (s, 1H), 7.63 (d, J = 5.2 Hz, 1H), 7.81 (s, 1H), 8.40 (d, J = 5.2 Hz, 1H), 12.41 (brs, 1H), 12.59 (brs, 1H).

5-((2-phenylpyridin-4-yl)methylene)-2-thioxoimidazolidin-4-one (Compound 33). Using the general method B described above, compound 33 was synthesized from 2-thioxoimidazolidin-4-one, phenylbonic acid and 2-bromoisonicotinaldehyde, yield = 75%. ¹H NMR (400 MHz, DMSO- d_6): δ = 6.49 (s, 1H), 7.43-7.64 (m, 4H), 8.08-8.13 (m, 3H), 8.66 (d, *J* = 4.8 Hz, 1H), 12.47 (brs, 1H), 12.56 (brs, 1H).

5-((5-(3,4-difluorophenyl)furan-2-yl)methylene)-3-methyl-2-thioxoimidazolidin-4-one (Compound 34). Using the general method B described above, yield = 75%. ¹H NMR (400 MHz, DMSO- d_6): δ =

3.21 (s, 3H), 6.57 (s, 1H), 7.27-7.32 (m, 2H), 7.53-7.60 (m, 1H) 7.81-7.84 (m, 1H), 8.12-8.18 (m, 1H).

5-((6-methoxypyridin-3-yl)methylene)-2-thioxothiazolidin-4-one (Compound 35). Using the general method A described above, compound 35 was synthesized from 2-thioxothiazolidin-4-one and 6-methoxynicotinaldehyde, yield = 75%. ¹H NMR (400 MHz, DMSO- d_6): δ = 3.93 (s, 3H), 6.99 (d, *J* = 8.8 Hz, 1H), 7.66 (s, 1H), 7.88 (dd, *J* = 8.8, 2.8 Hz, 1H), 8.52 (d, *J* = 2.4 Hz, 1H).

5-((6-oxo-1,6-dihydropyridin-3-yl)methylene)-2-thioxothiazolidin-4-one (Compound 36). Using the general method A described above, compound 36 was synthesized from compound 35, yield = 70%. ¹H

NMR (400 MHz, DMSO- d_6): $\delta = 6.50$ (d, J = 10.0 Hz, 1H), 7.53 (s, 1H), 7.60 (dd, J = 9.6, 2.8 Hz, 1H), 8.05 (d, J = 2.4 Hz, 1H).

5-((6-methoxypyridin-3-yl)methylene)imidazolidine-2,4-dione (Compound 37). Using the general method A described above, compound 37 was synthesized from imidazolidine-2,4-dione and 6-methoxynicotinaldehyde, yield = 71%. ¹H NMR (400 MHz, DMSO- d_6): δ = 3.88 (s, 3H), 6.40 (s, 1H), 6.85 (d, *J* = 8.8 Hz, 1H), 8.01 (dd, *J* = 8.8, 2.4 Hz, 1H), 8.41 (d, *J* = 2.8 Hz, 1H), 10.51 (s, 1H), 11.22 (s, 1H).

5-((6-oxo-1,6-dihydropyridin-3-yl)methylene)imidazolidine-2,4-dione (Compound 38). Using the general method A described above, compound 38 was synthesized from compound 37, yield = 72%. ¹H NMR (400 MHz, DMSO- d_6): δ = 6.26 (s, 1H), 6.36 (d, *J* = 9.6 Hz, 1H), 7.75-7.79 (m, 2H), 10.37 (s, 1H), 11.14 (s, 1H).

5-((2-amino-4-oxo-1H-imidazol-5(4H)-ylidene)methyl)pyridin-2(1H)-one (Compound 39). Using the general method A described above, compound 39 was synthesized from 2-amino-1H-imidazol-4(5H)-one and 6-hydroxynicotinaldehyde, yield = 71%. ¹H NMR (400 MHz, DMSO- d_6): δ = 6.11 (s, 1H), 6.35 (d, *J* = 9.6 Hz, 1H), 7.06 (brs, 2H), 8.03 (s, 1H), 8.15 (brs, 1H).

5-((2-(methylthio)-4-oxo-1H-imidazol-5(4H)-ylidene)methyl)pyridin-2(1H)-one (Compound 40). Using the general method A described above, compound 40 was synthesized from 2-(methylthio)-1Himidazol-4(5H)-one and 6-hydroxynicotinaldehyde, yield = 72% based on aldehyde. ¹H NMR (400 MHz, DMSO-*d*₆): δ = 2.61 (s, 3H), 6.40 (d, *J* = 9.6 Hz, 1H), 6.63 (s, 1H), 8.17 (d, *J* = 2.8 Hz, 1H), 8.49 (dd, *J* = 9.6, 2.8 Hz, 1H).

5-((1,3-dimethyl-5-oxo-2-thioxoimidazolidin-4-ylidene)methyl)pyridin-2(1H)-one (Compound 41).

Using the general method A described above, compound **41** was synthesized from 1,3-dimethyl-2thioxoimidazolidin-4-one and 6-hydroxynicotinaldehyde, yield = 74%. ¹H NMR (400 MHz, DMSO-*d*₆): δ = 3.22 (s, 3H), 3.52 (s, 3H), 6.40 (d, *J* = 10.0 Hz, 1H), 6.75 (s, 1H), 8.35 (dd, *J* = 9.6, 2.4 Hz, 1H), 8.47 (d, *J* = 2.4 Hz, 1H).