1	Supporting Information
2	
3	Projecting Fine Particulate Matter-related Mortality in East China
4	Lina Madaniyazi, Tatsuya Nagashima, Yuming Guo, Weiwei Yu, Shilu Tong*
5	
6	Lina Madaniyazi, School of Public Health and Social Work, Queensland University of
7	Technology, Kelvin Grove, QLD 4059, Australia.
8	Email:lina.madaniyazi@student.qut.edu.au
9	Tatsuya Nagashima, Center for Regional Environmental Research (Regional
10	Atmospheric Modeling Section), National Institute for Environmental Studies, 16-2
11	Onogawa, Tsukuba, Ibaraki, 305-8506, Japan
12	Email: <u>nagashima.tatsuya@nies.go.jp</u>
13	Yuming Guo, Weiwei Yu, School of Population Health, University of Queensland,
14	Herston QLD 4006, Australia.
15	Email: <u>y.guo1@uq.edu.au</u> , <u>w.yu@uq.edu.au</u>
16	*Corresponding author:
17	Prof. Shilu Tong, School of Public Health and Social Work, Institute of Health
18	Biomedical Innovation, Queensland University of Technology, Kelvin Grove, QLD 4059,
19	Australia.
20	Telephone: +61 7 3138 9745, Fax: +61 7 3138 3369. Email: <u>s.tong@qut.edu.au</u>
21	S1

Contents

2	2
,	-≺
~	-

24	1. The PM _{2.5} -mortality associations (CRF):S3
25	2. The risk assessment models and their choices on mortality rate, population and CRF
26	Table S2. The risk assessment models and their choices on mortality rate, population and CRFS8
27	3. The ranges for estimated $PM_{2.5}$ -related total, cardiovascular and respiratory mortality (cases)
28	between 2005 and 2030
29	4. The characteristics of similar projection studies conducted in China
30	5. The changes of annual concentration of $PM_{2.5}$ components between 2005 and 2030 under CLE and
31	MFR scenarios in East China
32	
33	
34	
35	
36	
37	
38	
39	
40	

42 **1.** The PM_{2.5}-mortality associations (CRF):

43 Several studies have been conducted in China to investigate the relationships between $PM_{2.5}$ 44 and total, cardiovascular and respiratory mortality. Most of them were conducted in East 45 China. Thus, we used a meta-analysis to pool averaged associations of $PM_{2.5}$ with total, 46 cardiovascular and respiratory mortality from those studies conducted in East China.

First, a literature search was conducted using the electronic databases PubMed, MEDLINE 47 (Web of Knowledge), Embase, CNKI (Chinese National Knowledge Infrastructure), and 48 Wanfang Database. CNKI and Wanfang Database are the two largest databases in China. The 49 search was limited to journal articles published in English and Chinese from January 1990 50 through October 2013. The following key words were used: a). fine particles, PM_{2.5}; b). 51 mortality, death; c). China, Chinese, and the names of municipalities, provinces and 52 corresponding capitals in East China. References and citations of the articles identified were 53 manually inspected to ensure that all relevant articles were included. The following eligibility 54 55 criteria were used: a). all epidemiological studies, involving the impact of PM_{2.5} on mortality in Chinese population; b). the full texts were available; c). the study period was from 1990 to 56 2013; d). the study locations were in East China (including 3 municipalities (Beijing, Tianjin 57 and Shanghai) and 8 provinces (Liaoning, Hebei, Shandong, Jiangsu, Zhejiang, Fujian, 58 Guangdong and Hainan)); e). study population was not specific high-risks groups (e.g., 59 elderly or children); f). the outcome must include at least one type of mortality (total, 60 cardiovascular or respiratory); g). the results must include at least one of these measures: 61 relative risk, regression coefficient or percent change of mortality; 62

Because some studies reported multiple estimates by exploring different lag days, age groups,
seasons, and co-pollutants, only one estimate from each study -estimates for all ages, whole
season and without adjustment for other pollutants- was included. ¹ If one lag estimate was

66	reported, this estimate was used for our meta-analysis. For multiple lag days, we selected the
67	lags following the rules: ^{2, 3} the lag with the most statistical significance or the largest effect
68	estimate; the lag that the author focused on. The Cochran's Q-test indicates homogeneity
69	among estimates (p>0.05), thus fixed-effect model was chosen to combine estimates.
70	
71	
72	
73	
74	
75	
76	
77	
78	
79	
80	

	Author	Study Field	Study Time	Study design and method	Lag	$PM_{2.5}$ concentrations during the study period ($\mu g/m^3$)	Results		
						Mean ± SD	Total Mortality	Cardiovascular Mortality	Respiratory Mortality
1	Chen, et al. 4	Shanghai	2001-2008	Time series analysis (GAM)	Lag0	56±33	0.17(0.02, 0.35)	N.A.	N.A.
2	Geng, et al. ⁵	Shanghai	2007-2008	Time series analysis (DLM)	Lag0-Lag2 (cumulative effects)	53.9±31.4	0.57 (0.12, 0.26)	0.79 (0.10, 1.48)	0.07 (-1.26, 1.40)
3	Yang, et al. ⁶	Guangzhou	2007-2008	Time-stratified case-crossover	lag0–1	70.1 ± 34.6	0.90 (0.55, 1.26)	1.22 (0.63, 1.81)	0.97 (0.17, 1.77)
4	Chen, et al. ⁷	Beijing	2007-2008	Time series analysis (GLM)	Lag0-lag2	82 ±52	0.53(0.37,0.69)	0.58 (0.34, 0.82)	0.66 (0.21, 1.11)
		Shanghai	2004-2008			55±30	0.47(0.22,0.72)	0.41 (0.00, 0.82)	0.61 (-0.15, 1.37)
		Shenyang	2006-2008			94 ±52	0.35(0.17,0.53)	0.46 (0.19, 0.73)	0.29 (-0.30, 0.88)
5	Ma, et al. ⁸	Shenyang	2006-2008	Time-stratified case-crossover	lag0-1	75±43	0.49(0.19, 0.79)	0.53 (0.10, 0.96)	0.97 (0.01, 1.93)
6	Huang, et al. ⁹	Shanghai	2004-2005	Time series analysis (GAM)	Lag0	56.4±1.34	0.30(0.06, 0.54)	0.39 (0.12, 0.66)	0.71 (0.04, 1.38)
7	Kan, et al. 10^{10}	Shanghai	2004-2005	Time series analysis (GAM)	lag0-1	56.4±1.34	0.36(0.11, 0.61)	0.41 (0.02, 0.80)	0.95 (0.17, 1.73)
8	Dai, et al.	Shanghai	2004	Time series analysis (GAM)		68.8±47.9	0.85(0.32,1.39)		

Table S1. The percent increase of total mortality (95CI %) associated with a 10-µg/m³ increase of PM_{2.5} concentrations and detailed information for each study included in the meta-analysis.

81 Abbreviations: DLM, Dynamic Linear Models; GAM, Generalized Additive Models; GLM, Generalized Linear Models.

References:

1. Yan, M.; Liu, Z.; Liu, X.; Duan, H.; Li, T., Meta-Analysis of the Chinese Studies of the Association between Ambient Ozone and Mortality. *Chemosphere* 2013, *93*, (6), 899-905.

2. Atkinson, R. W.; Cohen, A.; Mehta, S.; Anderson, H. R., Systematic Review and Meta-Analysis of Epidemiological Time-Series Studies on Outdoor Air Pollution and Health in Asia. *Air Qual Atmos Health* 2012, *5*, (4), 383-391.

3. Shang, Y.; Sun, Z.; Cao, J.; Wang, X.; Zhong, L.; Bi, X.; Li, H.; Liu, W.; Zhu, T.; Huang, W., Systematic Review of Chinese Studies of Short-Term Exposure to Air Pollution and Daily Mortality. *Environ. Int.* 2013, *54*, 100-111.

4. Chen, R.; Wang, X.; Meng, X.; Hua, J.; Zhou, Z.; Chen, B.; Kan, H., Communicating Air Pollution-Related Health Risks to the Public: An Application of the Air Quality Health Index in Shanghai, China. *Environ. Int.* 2013, *51*, 168-173.

5. Geng, F.; Hua, J.; Mu, Z.; Peng, L.; Xu, X.; Chen, R.; Kan, H., Differentiating the Associations of Black Carbon and Fine Particle with Daily Mortality in a Chinese City. *Environ. Res.* 2013, *120*, 27-32.

6. Yang, C.; Peng, X.; Huang, W.; Chen, R.; Xu, Z.; Chen, B.; Kan, H., A Time-Stratified Case-Crossover Study of Fine Particulate Matter Air Pollution and Mortality in Guangzhou, China. *Int. Arch. Occup. Environ. Health* 2012, *85*, (5), 579-85.

7. Chen, R.; Li, Y.; Ma, Y.; Pan, G.; Zeng, G.; Xu, X.; Chen, B.; Kan, H., Coarse Particles and Mortality in Three Chinese Cities: The China Air Pollution and Health Effects Study (Capes). *Sci. Total Environ.* 2011, *409*, (23), 4934-4938.

8. Ma, Y.; Chen, R.; Pan, G.; Xu, X.; Song, W.; Chen, B.; Kan, H., Fine Particulate Air Pollution and Daily Mortality in Shenyang, China. *Sci. Total Environ.* 2011, *409*, (13), 2473-2477.

S6

9. Huang, W.; Cao, J.; Tao, Y.; Dai, L.; Lu, S.-E.; Hou, B.; Wang, Z.; Zhu, T., Seasonal Variation of Chemical Species Associated with Short-Term Mortality Effects of Pm2.5 in Xi'an, a Central City in China. *Am. J. Epidemiol.* 2012, *175*, (6), 556-566.

10. Kan, H.; London, S. J.; Chen, G.; Zhang, Y.; Song, G.; Zhao, N.; Jiang, L.; Chen, B., Differentiating the Effects of Fine and Coarse Particles on Daily Mortality in Shanghai, China. *Environ. Int.* 2007, *33*, (3), 376-384.

Dai, H.; Song, W.; Gao, X.; Chen, L., Study on Relationship between Ambient Pm10,
Pm2.5 Pollution and Daily Mortality in a District in Shanghai. *Wei sheng yan jiu = Journal* of hygiene research 2004, *33*, (3), 293-297.

2. The risk assessment models and their choices on mortality rate, population and CRF

		Mortality $^{\Lambda}$			Popula	tion			CRF			
Model No.	D. Mortality 2005	Mortality	Mortality	Total Mortality projection	Population	Popu	lation P	rojectior	n Scenar	io 2030	CRF from Meta-analysis	local
		2030	2005	С	L1	L2	H1	H2	CKF Ironi Meta-analysis	CRF*		
M1	٧		٧						V			
M2	٧			٧					V			
M3	٧				۷				V			
M4	٧					٧			V			
M5	٧						٧		V			
M6	٧							٧	V			
M7		V	٧						V			
M8	٧		٧							٧		
M9		V		٧					V			
M10		V			٧				V			
M11		V				٧			V			
M12		V					۷		V			
M13		V						٧	V			
M14				٧						٧		
M15					٧					٧		
M16						٧				٧		
M17							٧			٧		
M18								٧		٧		
M19		V								٧		
M20		V		٧						٧		
M21		V			٧					٧		
M22		V				٧				٧		
M23		V					٧			٧		
M24		V						٧		٧		

Table S2. The risk assessment models and their choices on mortality rate, population and CRF

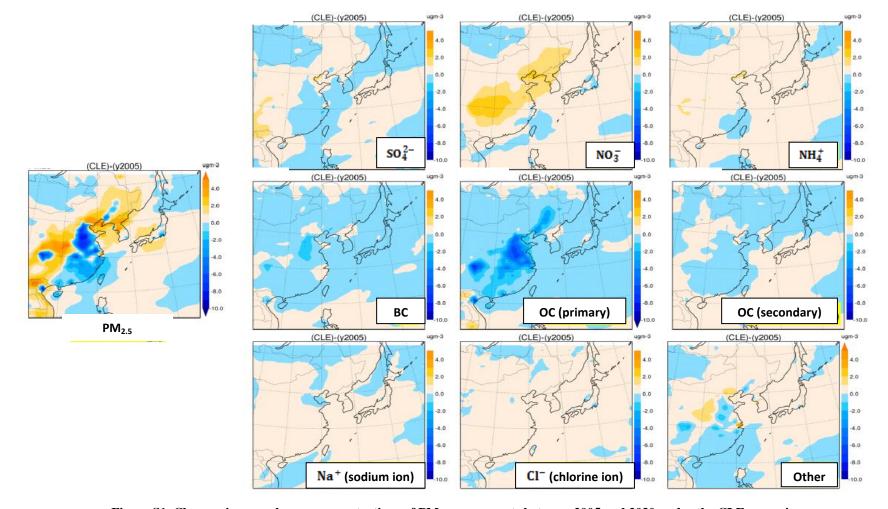
*There is one option on local CRF for Beijing, Shanghai and Guangdong. Thus, there are 24 risk assessment models in total for these three regions. There are two options on local CRF for Liaoning. Thus, except from the listed 24 risk assessment models, there are 12 more risk assessment models for Liaoning, which includes the second option on local CRF.

For other regions, there is no option on local CRF. Thus, there are 12 risk assessment models for such regions.

^A There is only one projection on total mortality in 2030, without any projection on cardiovascular and respiratory mortality in 2030. Thus, for cardiovascular and respiratory mortality, there are 12 risk assessment models for Beijing, Shanghai and Guangzhou, 18 risk assessment models for Liaoning, and 6 risk assessment models for other regions.

3. The ranges for estimated PM_{2.5}-related total, cardiovascular and respiratory mortality (cases) between 2005 and 2030

Region	Total	Total Mortality		cular Mortality	Respiratory Mortality		
Region	CLE	MFR	CLE	MFR	CLE	MFR	
Beijing	1074, 6501	-4396, -2406	557, 3538	-2252, -1364	136, 929	-540, -337	
Tianjin	2275, 7593	-6816, -5514	1692, 3526	-4131, -3682	495, 971	-1016, -899	
Liaoning	1494, 9522	-17096, -11603	859, 2898	-8264, -6981	102, 711	-2461, -871	
Hebei	1156, 14013	-39900, -36841	2478, 4588	-10991, -10489	792, 1371	-2902, -2764	
Shanghai	126, 29256	-11497, -4380	65, 7096	-5800, -3930	33, 3210	-2401, -1798	
Shandong	3578, 16114	-64727, -61809	5733, 9798	-31055, -30109	2828, 4430	-11675, -11302	
Jiangsu	4179, 9368	-61986, -60606	2589, 4165	-19211, -18792	1481, 2130	-7489, -7317	
Zhejiang	1227, 7529	-23001, -21043	889, 2870	-7449, -6833	860, 2297	-5187, -4740	
Fujian	-1337, 3395	-9879, -8285	-453, 1053	-4010, -3503	-111, 363	-1233, -1073	
Guangdong	-2865, 66558	-51443, -9959	-334, 17088	-11359, -3000	-938, 71671	-16827, -4945	
Hainan	-174, 611	-1485, -1243	-26, 415	-936, -800	-2, 83	-179, -153	
East China	-20679, 71719	-368319, -229928	-7653, 29993	-162511, -152250	-3942, 16907	-72692, -66948	


Table S3. The ranges for estimated PM_{2.5}-related total, cardiovascular and respiratory mortality (cases) between 2005 and 2030

+excess deaths; - avoided deaths.

4. The characteristics of similar projection studies conducted in China

	Study Area	Time line	Air pollutants	Scenarios
Kan et al. 2004	Shanghai	2000, 2010, 2020	PM ₁₀	Base case scenario (BC), energy option scenarios, environmental target scenarios; carbon emission control scenario.
Li et al. 2004	Shanghai	1995-2020	PM_{10}	Two pollution control scenarios for power generation and industry coal use, respectively
Wang et al. 2006	Zaozhuang	2000-2020	PM (including PM _{2.5})	Business-as-usual scenario, the best available emission control technology, and advanced coal gasification technologies.
Chen et al. 2007	Shanghai	2000, 2010, 2020	PM_{10} and SO_2	BC, low carbon scenarios
Pan et al. 2007	Beijing	1999, 2010, 2020, 2030	PM_{10} and SO_2	BAU, three energy use scenarios based on different assumptions on clean energy consumption, energy efficiency program and green transportation.
This study	East China, including 11 provinces and municipalities	2005, 2030	PM _{2.5}	CLE and MFR scenarios

Table S4. The characteristics of similar projection studies conducted in China

5. The changes of annual concentration of PM_{2.5} components between 2005 and 2030 under CLE and MFR scenarios in East China

Figure S1. Changes in annual mean concentrations of PM_{2.5} components between 2005 and 2030 under the CLE scenario

Note: SO²⁺: sulfate ion, NO⁻: nitrate ion; NH⁺: ammonium ion; BC: black carbon; OC: organic aerosols; Na⁺: sodium ion; Cl⁻: chlorine ion; Other: other primary aerosols (including road dust and etc.).

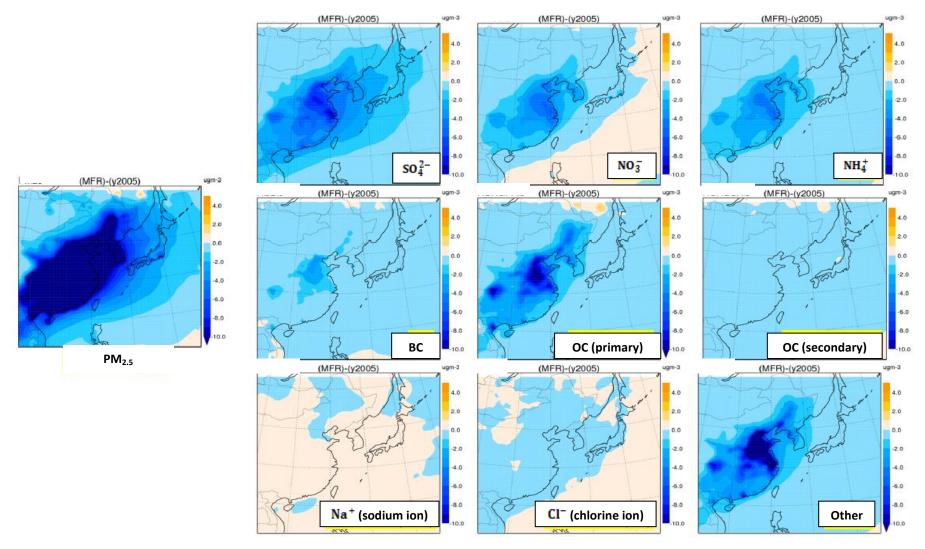


Figure S2. Changes in annual mean concentrations of PM_{2.5} components between 2005 and 2030 under the MFR scenario

Note: SO^{*-}: sulfate ion, NO⁻;: nitrate ion; NH⁺; ammonium ion; BC: black carbon; OC: organic aerosols; Na⁺:sodium ion; Cl⁻:chlorine ion; Other: other primary aerosols (including road dust and etc.).