1	Time-resolved investigation of cobalt oxidation by Mn(III)-rich
2	δ -MnO ₂ using quick X-ray absorption spectroscopy
3	
4	
5	Anna A. Simanova ¹ , Jasquelin Peña ^{1*}
6	
7	
8	¹ Institute of Earth Surface Dynamics, University of Lausanne, Switzerland
9	
10	
11	* Corresponding author. E-mail: jasquelin.pena@unil.ch; Tel: +47216924355; 4879
12	Geopolis, UNIL-Mouline, CH-1015 Lausanne
13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32	SUPPORTING INFORMATION (16 pages, 7 figures, 5 tables)

33 SI Materials and methods.

34 Pair distribution function analysis of high-energy X-ray scattering. Pair 35 distribution function (PDF) analysis was used to determine whether any changes in mineral structure were caused by the adsorption of Co^{2+} and incorporation of Co^{3+} into 36 the Mn^{III} δ-MnO₂ structure. Samples analyzed by PDF analysis were equilibrated for 48 37 hours and thus reflect structural changes incurred over longer reaction times than those 38 39 investigated by QXAS (t < 12 h). The PDFs were extracted from high-energy X-ray scattering data collected using X-rays of 58.65 keV ($\lambda = 0.2114$ Å) on beam line 11-ID-B 40 41 at the Advanced Photon Source, Argonne National Laboratory. Data were collected to Q values of 29 Å⁻¹ at room temperature. The solids from 20 mL of a $Mn^{III} \delta$ -MnO₂ 42 43 suspension equilibrated with Co to achieve maximum surface loadings of 0, 0.05, or 0.20 mol Co mol⁻¹ Mn (**Table S1**) were obtained by filtration, air-dried overnight and packed 44 into Kapton capillaries (inner diameter of 1 mm, Cole-Parmer); the capillaries were 45 46 sealed on both ends using epoxy.

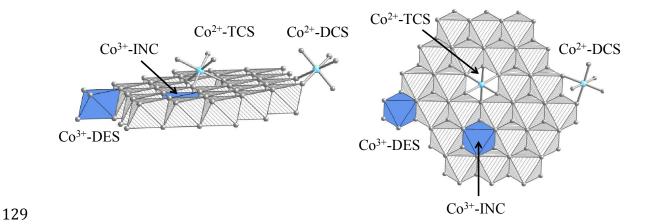
In the program Fit2D,¹ the 2D scattering patterns were first corrected for sample-to-47 48 detector distance and tilt angle of the detector relative to the beam path, then integrated 49 and converted to 1D plots of the scattering intensity versus scattering angle, Q. In the program PDFgetX2,² the 1D plots were converted to the total structure function, S(Q), 50 and the PDF, G(R), using standard correction and normalization procedures.³ The 51 52 chemical for formulas used data reduction were $Na_{0.03}MnO_2 \cdot xH_2O$, 53 $Co_{0.04}Na_{0.03}MnO_2 \cdot xH_2O$, $Co_{0.21}Na_{0.03}MnO_2 \cdot xH_2O$ for Co 0.00, Co 0.05 and Co 0.20, 54 respectively, where Na:Mn and Co:Mn molar ratios were obtained from chemical 55 analysis of the solid by ICP-OES and the number of water molecules (x) was varied between 2 and 3 to minimize variations in the background signal between 0 - 1.5 Å⁻¹. Differential PDFs (d-PDFs) were obtained by subtracting the PDF of Co_0.00 from Co_0.05 and Co_0.20 samples to identify changes in mineral structure induced by Co sorption.⁴⁻⁶

60

61 Effect of HEPES on Co uptake and Mn(II) release in Co-Mn^{III}_δ-MnO₂

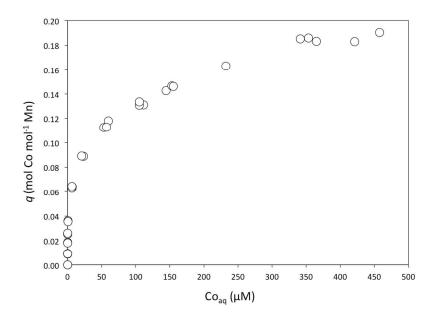
62 Due to the presence of a reducing piperazine-ring group, HEPES may interfere 63 with Co-Mn redox processes by 1) generating additional Mn(III) by reducing Mn(IV), 2) 64 generating Mn(II) by reducing Mn(III) or 3) sorbing and thus blocking reactive surface 65 sites. To test the effect of the HEPES buffer on Co uptake and Mn release to solution, we performed complementary experiments where, prior to Co addition, the Mn^{III} δ -MnO₂ 66 particles were filtered to remove all HEPES, rinsed with 10 mM NaCl and resuspended in 67 68 10 mM NaCl. In these experiments, a pH STAT (Metrohm) was used for pH-control. 69 After 1-hour equilibration at pH 6.5, an aliquot of CoCl₂ solution was added to achieve a total Co concentration of 0.20 mol Co mol⁻¹ Mn. Samples were withdrawn as a function 70 71 of time to analyze for the total and aqueous concentrations of Co and Mn. In addition, we 72 measured AMON values (potentiometric titrations) and Mn(III) content (pyrophosphate extractions) in the HEPES-reacted δ -MnO₂ as a function of time in the absence of Co. 73 74 In the absence of Co, we found that the Mn(III) content of the Mn oxide reached

31 % within 1 h of the reaction of δ -MnO₂ with HEPES and increased only slightly (to 35 %) from 1 h to 48 h. By 48 h of the reaction, around 1 % of the Mn initially in the solid was accumulated in solution as Mn(II). Our previous study showed that equilibration of δ -MnO₂ with HEPES under these experimental conditions does not trigger any phase transformation.⁷ These observations suggest that HEPES has a diminished effect on
Mn(III) generation as the mineral approaches the maximum amount of Mn(III) it can
accommodate.⁸


82 Our experiments in the presence of Co showed no difference in Co uptake and Mn 83 release kinetics at t < 100 min in the presence and absence of HEPES (Figure S3), but slightly greater Mn release in the presence of HEPES at t > 100 min (8 % vs. 5 %). Since 84 the extent of Co sorption by $Mn^{III}_{\delta}-MnO_2$ is the same in the presence and absence of 85 86 HEPES, we do not expect significant amounts of HEPES to accumulate at the surface and 87 compete with Co for the same surface sites. Unmodified kinetics and extent of Co uptake 88 even with an initial 10-fold excess of HEPES also indicates that cobalt must have a 89 significantly greater affinity/reactivity towards the mineral. In addition, the similarity in 90 the kinetics and extent of Mn(II) accumulation in solution with and without HEPES 91 during first 100 min corroborates that aqueous Mn(II) originates from sorption/redox 92 reactions between Co and the mineral. This conclusion is also consistent with the fact that 93 the addition of Co triggers 5-8 % of the total Mn initially in the solid phase accumulated 94 in solution as Mn(II), compared to about 1 % Mn released in the absence of Co after 48 h of reaction with HEPES.⁷ However, from 100 min to 48 h, slightly more Mn(II) was 95 released in Co-Mn^{III} δ -MnO₂ experiments the presence of HEPES (8 % at 48 h) than in 96 97 its absence (5% at 48 h).

Assuming that significant changes in the mechanism of Co sorption and oxidation by $Mn(III)_{\delta}-MnO_2$ would lead to different reaction kinetics, we conclude that HEPES does not influence the Co uptake mechanism at t < 100 min, but may have a small influence at t > 100 min. Slightly higher Mn release at t > 100 min may be consistent

S4


102	with i) HEPES consumption of Mn(III); ii) disproportionation of Mn(III) atoms, where
103	Mn(III) could originate from Co or HEPES oxidation coupled to Mn(IV) reduction; 3)
104	slow desorption of adsorbed Mn(II), where Mn(II) could originate from Co or HEPES
105	oxidation coupled to Mn(III) reduction. Due to the plethora of processes, we cannot
106	ascertain whether the slight increase in Mn release at reaction times greater than 100 min
107	is due to redox processes involving Co, HEPES or both Co and HEPES.
108	
109	
110	
111	
112	
113	
114	
115	
116	
117	
118	
119	
120	
121	
122	
123	
124	
125	
126	

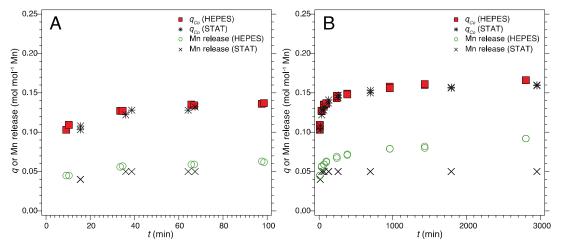
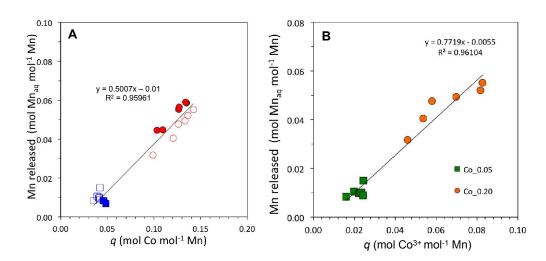


Figure S1. Schematic representations of Co-MnO₂ surface complexes (left - side view, right - top view): Co^{2+} = light blue, Co^{3+} = dark blue, Mn octahedra = hatched, O = grey.

- 133
- 134
- 135


Figure S2. Sorption isotherm of Co on $Mn^{III}_{\delta}-MnO_2$ measured at pH 6.5 after 48 h of equilibration following the experimental procedure described in the main manuscript text.

140 141 **Figure S3**. Batch kinetic data obtained for Co sorption and Mn release in $Mn^{III}_{\delta}-MnO_2$ 142 suspension at total Co concentration of 0.20 mol Co mol⁻¹ Mn at pH 6.5 in the presence 143 and absence of 10 mM HEPES (pH maintained with STAT) during first 100 min (A) and 144 during 3000 min (B).

146

147

148

149Figure S4. (A) Plot of Mn released against Co surface excess (q) measured in batch150kinetic (filled symbols) and QXAS (empty symbols) experiments in Co_0.05 (squares)151and Co_0.20 (circles) experiments at t < 30 min. (B) Plot of Mn released against Co³⁺152surface excess in Co_0.05 and Co_0.20 experiments at t < 30 min.</td>153

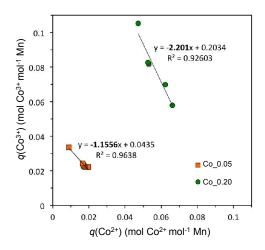


Figure S5. Plots of the Co³⁺ surface excess against the Co²⁺ surface excess in Co_0.05
and Co_0.20 at reaction times between 20 min and 12 h. The linear correlations show that

159 in Co $0.05 \Delta q(\text{Co}^{3+})/\Delta q(\text{Co}^{2+})$ is close to -1, while in Co $0.20 \Delta q(\text{Co}^{3+})/\Delta q(\text{Co}^{2+})$ is close 160 to -2.

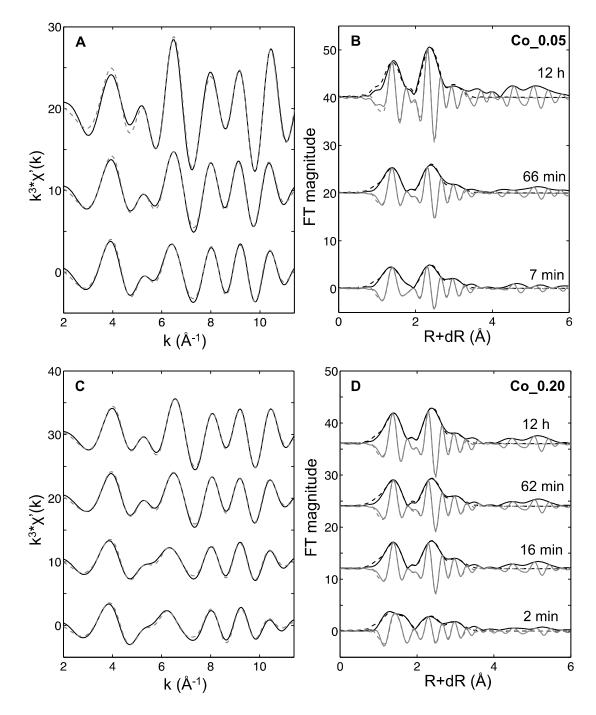


Figure S6. Back Fourier-transforms taken from 1-3.3 Å (left) and magnitude and
imaginary parts of the Fourier-transforms (right) of the Co K-edge EXAFS spectra for
Co_0.05 (A and B) and Co_0.20 (C and D) plotted with best-fit curves (dashed lines)

Figure S7. PDFs Co_0.00, Co_0.05, and C0_0.20. The arrows indicate differences in the spectra observed as a function of the Co loading. Peaks were assigned based on the work by Manceau et al.⁸; "CS" denotes corner-sharing linkages between Me(layer)– Me(interlayer) pairs, "ES" denotes edge-sharing linkages between Me(layer)–Me(layer) pairs. Differential PDFs obtained by subtracting the PDF of Co_0.00 from the PDFs of Co_0.05 and Co_0.20 are shown at the bottom of the figure. The inset shows the PDFs extended to up to 40 Å.

20.

Table S1. Description of samples obtained from batch kinetic, QXAS and PDF

measurements.

	time	рН	c _{MnTOT} , μM	c _{CoTOT} , μΜ	$c_{Mn},\ \mu M^a$	c _{Co} , μM	q_{max}^{b}	$q^{ m c}$	Mn release ^d
Batch kinetic									
Co_0.00	10 min	6.68	4474.97	-	1.2	-	-	-	0.000
	48 h				58.67				0.013
Co_0.05	10 min	6.69	4578.46	235.4	37.8	26.06	0.05	0.05	0.008
	48 h				121.84	1.35	0.05	0.05	0.027
Co_0.20	10 min	6.35	5121.48	1008.53	228.01	473.02	0.20	0.11	0.045
	48 h				471.18	235.91	0.20	0.17	0.092
QXAS samples									
Co_0.05	12 h	6.74	8501.80	365.27	127.36	13.70	0.04	0.04	0.02
Co_0.20	12 h	6.67	6914.93	1257.93	402.74	260.17	0.18	0.15	0.06
PDF samples									
Co_0.00	48 h	6.81	7495.03	-	64.92	-	-	-	0.01
Co_0.05	48 h	6.34	6601.47	268.13	131.20	1.38	0.04	0.04	0.02
Co_0.20	48 h	6.30	6602.00	1519.13	505.43	224.35	0.23	0.21	0.08

192 193 194 195 196 ^a the concentrations of aqueous Mn in Co 0.05 and Co 0.20 are not corrected to the concentrations of aqueous Mn in the blank experiment (Co 0.00)

^b q_{max} is the theoretical maximum surface loading of Co that was calculated as c_{CoTOT}/c_{MnTOT} ^c q is the amount of Co sorbed per mol Mn and was calculated as $(c_{CoTOT} - c_{Co})/(c_{MnTOT} - c_{Mn})$ ^d Mn release was calculated as c_{Mnaq}/c_{MnTOT} ad has units of mol Mn_{aq} mol⁻¹ Mn. Note that values for the Mn release in Co 0.05 and Co 0.20 are not corrected to the values of the Mn release in the blank experiment (Co 0.00)

	t, min	q	f	1-f	Comp Sum	q (Co ²⁺)	q (Co ³⁺)
	2	0.035	0.53 ^b	0.45 ^b	0.98	0.019	0.016
	7	0.039	0.47	0.51	0.98	0.018	0.020
	15	0.043	0.46	0.52	0.98	0.020	0.022
	21	0.041	0.44	0.54	0.98	0.018	0.022
C . 0.058	28	0.041	0.42	0.56	0.98	0.017	0.023
Co_0.05 ^a	36	0.042	0.41	0.57	0.98	0.017	0.024
	49	0.042	0.40	0.58	0.98	0.017	0.024
	66	0.042	0.40	0.58	0.98	0.017	0.024
	720	0.043	0.21	0.80	1.01	0.009	0.034
	2	0.099	0.53	0.46	0.99	0.052	0.046
	8	0.121	0.54	0.45	0.99	0.065	0.054
	16	0.126	0.52	0.46	0.98	0.066	0.058
Co_0.20 ^a	25	0.133	0.47	0.52	0.99	0.063	0.069
	35	0.136	0.39	0.60	0.99	0.053	0.082
	62	0.142	0.37	0.58	0.95	0.053	0.082
	720	0.153	0.31	0.69	1.00	0.047	0.106

Table S2. LCF results, where *f* is the fraction of Co^{2+} and (1-f) is the fraction of Co^{3+} . 207

^a For all samples the reduced chi² values ranged 0.0003 – 0.0024 ^b Uncertainties for *f* for all samples were in a range 0.002 – 0.005 208 209

Sample	Shell ID	$A^{\mathbf{a}}$	<i>R</i> , Å	σ^2 , Å ²	ΔE_0 , eV	Red χ^2	R-factor	$CN(Co^{3+}-Mn^{ES})$	$CN(Co^{2+}-Mn^{CS})$
Co_0.05	Co ³⁺ -O	6·(1- <i>f</i>)	1.91±0.01	0.0050±0.0010	-9.7±1.1	0.00	0.0157		
7 min	Co ²⁺ -O	6 <i>·f</i>	2.08±0.01	0.0052±0.0014					
	Co ³⁺ -Mn ^{ES}	$CN(\text{Co}^{3+}-\text{M}^{\text{ES}})\cdot(1-f)$	2.84±0.01	0.0025±0.0010				3.12±0.49	
	Co ²⁺ -Mn ^{CS}	$CN(\mathrm{Co}^{2+}-\mathrm{Mn}^{\mathrm{CS}})$: f	3.48±0.01	0.004 ^b					2.71±0.43
Co_0.05	Co ³⁺ -O	6·(1 <i>-f</i>)	1.92±0.01	0.0049±0.0009	-8.7±1.0	0.02	0.0132		
66 min	Co ²⁺ -O	6 <i>·f</i>	2.10±0.02	0.0081±0.0025					
	Co ³⁺ -Mn ^{ES}	$CN(\text{Co}^{3+}-\text{M}^{\text{ES}})\cdot(1-f)$	2.85±0.01	0.0035±0.0010				3.84±0.52	
	Co ²⁺ -Mn ^{CS}	$CN(\mathrm{Co}^{2+}-\mathrm{Mn}^{\mathrm{CS}})$: f	3.50±0.01	0.004					2.90±0.55
Co 0.05	Co ³⁺ -O	6·(1 <i>-f</i>)	1.91±0.01	0.0037±0.0008	-11.5±1.4	20.41	0.0203		
12 h	Co ²⁺ -O	6 <i>·f</i>	2.12±0.03	0.0040 ± 0.0041					
	Co ³⁺ -Mn ^{ES}	$CN(\text{Co}^{3+}-\text{M}^{\text{ES}})\cdot(1-f)$	2.84±0.01	0.0022±0.0009				4.13±0.62	
	Co ²⁺ -Mn ^{CS}	$CN(\mathrm{Co}^{2+}-\mathrm{Mn}^{\mathrm{CS}})$: f	3.43±0.02	0.004					5.39±1.76
		Nind/Nvar	19/10						

Table S3. Structural parameters for Co_0.05 on $Mn^{III}_{}\delta$ -MnO₂.

^a A denotes the amplitude of the corresponding shell, which equals the coordination number (*CN*) scaled by the fraction of Co^{2+} (*f*) and Co^{3+} (1-*f*) that was obtained by LCF fitting of the QXANES spectra (**Table S2**). The coordination numbers of Co-O shells were fixed to 6, while the coordination numbers of Co-Mn shells [*CN*(Co^{3+} -Mn^{ES}) and *CN*(Co^{2+} -Mn^{CS})] were floated

^b The Debye-Waller factor was fixed to the value reported previously.⁹

Sample	Shell ID	A^{a}	<i>R</i> , Å	σ^2 , Å ²	ΔE_0 , eV	Red χ^2	R-factor	$CN(Co^{3+}-Mn^{ES})$	$CN(Co^{2+}-Mn^{CS})$
Co_0.20	Co ³⁺ -O	6·(1 <i>-f</i>)	1.91±0.01	0.0075±0.0018	-10.9±1.6	0.11	0.0367		
2 min	Co ²⁺ -O	6 <i>:f</i>	2.08±0.01	0.0041±0.0012					
	Co ³⁺ -Mn ^{ES}	$CN(Co^{3+}-M^{ES}) \cdot (1-f)$	2.83±0.01	0.0033±0.0021				2.37±0.75	
	Co ²⁺ -Mn ^{CS}	$CN(\mathrm{Co}^{2+}-\mathrm{Mn}^{\mathrm{CS}}) \cdot f$	3.48±0.02	0.004 ^b					2.21±0.47
Co_0.20	Co ³⁺ -O	6·(1- <i>f</i>)	1.91±0.01	0.0052±0.0011	-9.9±1.4	0.05	0.0279		
16 min	Co ²⁺ -O	6 <i>:f</i>	2.09±0.01	0.0054±0.0013					
	Co ³⁺ -Mn ^{ES}	$CN(\text{Co}^{3+}-\text{Mn}^{\text{ES}})\cdot(1-f)$	2.84±0.01	0.0020±0.0015				2.34±0.55	
	Co ²⁺ -Mn ^{CS}	$CN(\mathrm{Co}^{2+}-\mathrm{Mn}^{\mathrm{CS}})$: f	3.49±0.01	0.004					2.14±0.42
Co_0.20	Co ³⁺ -O	6·(1 <i>-f</i>)	1.92±0.01	0.0053±0.0008	-9.2±0.9	0.06	0.0117		
62 min	Co ²⁺ -O	6 <i>:f</i>	2.10±0.01	0.0070±0.0019					
	Co ³⁺ -Mn ^{ES}	$CN(\text{Co}^{3+}-\text{Mn}^{\text{ES}})\cdot(1-f)$	2.84±0.01	0.0040±0.0009				3.57±0.47	
	Co ²⁺ -Mn ^{CS}	$CN(\mathrm{Co}^{2+}-\mathrm{Mn}^{\mathrm{CS}})$: f	3.49±0.01	0.004					3.25±0.48
Co_0.20	Co ³⁺ -O	6·(1 <i>-f</i>)	1.91±0.01	0.0048±0.0006	-8.8±0.8	2.44	0.0088		
12 h	Co ²⁺ -O	6 <i>:</i> f	2.11±0.02	0.0072±0.0022					
	Co ³⁺ -Mn ^{ES}	$CN(\text{Co}^{3+}-\text{Mn}^{\text{ES}}) \cdot (1-f)$	2.83±0.01	0.0032±0.0007				3.70±0.41	
	Co ²⁺ -Mn ^{CS}	$CN(\text{Co}^{2+}-\text{Mn}^{\text{CS}})$: f	3.47±0.01	0.004					3.73±0.59
	Nind/Nvar	19/10							

Table S4. Structural parameters for Co_0.20 on $Mn^{III}_{\bullet}\delta$ -MnO_{2.}

^a A denotes the amplitude of the corresponding shell, which equals the coordination number (*CN*) scaled by the fraction of Co^{2+} (*f*) and Co^{3+} (1-*f*) that was obtained by LCF fitting of the QXANES spectra (**Table S2**). The coordination numbers of Co-O shells were fixed to 6, while the coordination numbers of Co-Mn shells [*CN*(Co³⁺-Mn^{ES}) and *CN*(Co²⁺-Mn^{CS})] were floated

^b The Debye-Waller factor was fixed to the value reported previously.⁹

Table S5. Changes in Co^{2+} and Co^{3+} surface speciation at the surface of $\text{Mn}^{\text{III}}_{-}\delta$ -MnO₂ as a function of time in Co_0.05 and Co_0.20.

	t,	<i>q</i> (Co ²⁺ -	$q ({\rm Co}^{2,3+}-$	error ^b in	$q ({\rm Co}^{3+}-$	$q ({\rm Co}^{3+}-$	error in
	min	DCS) ^a	TCS)	$q({\rm Co}^{2,3+}-{\rm CS})$	DES)	INC)	$q(\text{Co}^{3+}\text{-}\text{ES})$
Co_0.05	7	0.015	0.003	± 0.002	0.014	0.006	±0.002
	66	0.013	0.004	± 0.002	0.013	0.011	± 0.003
	720	nd	0.008	±0.004	0.016	0.018	±0.005
Co_0.20	2	0.052	nd	± 0.003	0.042	nd	±0.009
	16	0.066	nd	± 0.005	0.053	nd	± 0.008
	62	0.037	0.017	±0.006	0.050	0.032	±0.010
	720	0.027	0.020	± 0.007	0.061	0.045	±0.011

^a Surface excess of the various Co surface species estimated as the product of the Co surface loading (q), the fractions of Co²⁺ and Co³⁺ obtained from the LCF-QXANES (**Table S2**) and the *CN*s of the corresponding Co-Mn shells obtained from shell-by-shell fitting to the QEXAFS spectra (**Tables S3** and **S4**)

^b Uncertainty in the surface excesses of the CS and ES geometries were estimated based on the uncertainty in the *CN*s of the corresponding Co-Mn shells (**Tables S3** and **S4**)

^c nd = not detected, i.e. the estimated surface excess was lower than the uncertainty

References

(1) Hammersley, A. P.; Svensson, S. O.; Hanfland, M.; Fitch, A. N.; Hausermann, D., Two-dimensional detector software: From real detector to idealised image or two-theta scan. *High Pressure Research* **1996**, *14*, (4-6), 235-248.

(2) Farrow, C. L.; Juhas, P.; Liu, J. W.; Bryndin, D.; Bozin, E. S.; Bloch, J.; Proffen, T.; Billinge, S. J. L., PDFfit2 and PDFgui: computer programs for studying nanostructure in crystals. *Journal of Physics-Condensed Matter* **2007**, *19*, (33), 335219.

(3) Chupas, P. J.; Qiu, X.; Hanson, J. C.; Lee, P. L.; Grey, C. P.; Billinge, S. J. L., Rapid-acquisition pair distribution function (RA-PDF) analysis. *Journal of Applied Crystallography* **2003**, *36*, (6), 1342-1347.

(4) Harrington, R.; Hausner, D. B.; Bhandari, N.; Strongin, D. R.; Chapman, K. W.; Chupas, P. J.; Middlemiss, D. S.; Grey, C. P.; Parise, J. B., Investigation of surface structures by powder diffraction: a differential pair distribution Function study on arsenate sorption on ferrihydrite. *Inorg. Chem.* **2010**, *49*, (1), 325-330.

(5) Li, W.; Harrington, R.; Tang, Y. Z.; Kubicki, J. D.; Aryanpour, M.; Reeder, R. J.; Parise, J. B.; Phillips, B. L., Differential pair distribution function study of the structure of arsenate adsorbed on nanocrystalline gamma-alumina. *Environ. Sci. Technol.* **2011**, *45*, (22), 9687-9692.

(6) Wang, X. M.; Li, W.; Harrington, R.; Liu, F.; Parise, J. B.; Feng, X. H.; Sparks, D. L., Effect of ferrihydrite crystallite size on phosphate adsorption reactivity. *Environ. Sci. Technol.* **2013**, *47*, (18), 10322-10331.

(7) Simanova, A. A.; Kwon, K. D.; Bone, S. E.; Bargar, J. R.; Refson, K.; Sposito, G.; Peña, J., Probing the sorption reactivity of the edge surfaces in birnessite nanoparticles using nickel(II). *Geochim. Cosmochim. Acta* 2015, *164*, (0), 191-204.
(8) Manceau, A.; Marcus, M. A.; Grangeon, S.; Lanson, M.; Lanson, B.; Gaillot, A. C.; Skanthakumar, S.; Soderholm, L., Short-range and long-range order of phyllomanganate nanoparticles determined using high-energy X-ray scattering. *Journal of Applied Crystallography* 2013, *46*, (1), 193-209.

(9) Manceau, A.; Drits, V. A.; Silvester, E.; Bartoli, C.; Lanson, B., Structural mechanism of Co^{2+} oxidation by the phyllomanganate buserite. *Am. Mineral.* **1997**, *82*, (11-12), 1150-1175.