Supporting Information

Nickel(0)-Catalyzed Enantio- and Diastereoselective Synthesis of Benzoxasiloles: Ligand-Controlled Switching from Inter- to Intramolecular Aryl-Transfer Process

Ravindra Kumar, ${ }^{\dagger}$ Yoichi Hoshimoto, ${ }^{\dagger, \dagger}$ Hayato Yabuki, ${ }^{\dagger}$ Masato Ohashi, ${ }^{\dagger}$ and SensukeOgoshi* ${ }^{*} \dagger$;${ }^{\dagger}$ Department of Applied Chemistry, Faculty of Engineering and ${ }^{\dagger}$ Frontier Research Base for Global YoungResearchers, Graduate School of Engineering, Osaka University, Suita, Osaka 565-0871, Japan${ }^{\S}$ Advanced Catalytic Transformation program for Carbon utilization (ACT-C), JST, Suita, Osaka 565-0871,JapanE-mail: ogoshi@chem.eng.osaka-u.ac.jp
TABLE OF CONTENTS
PAGE
[1] General $S 2$
[2] Preparation of starting materials (Figure S1) S2
[3] Optimization for catalytic enantioselective synthesis
Survey of chiral NHCs (Scheme 2) and phosphine ligands (Scheme S1) S10
Further Optimization with $\mathbf{L 5} \cdot \mathbf{H B F} \mathbf{4}$ (Table 1) S12
[4] Substrate scope
Scope of 3-aryl-2,1-benzoxasilole (Table 2) S13
Scope of 3-vinyl- and alkynyl-2,1-benzoxasiloles (Table 3) S27
[5] Synthetic utilities of 3-arylbenzoxasiloles S30
Enantioselective syntheses of (R)-Orphenadrine and (S)-Neobeonodine S32
Enantioselective synthesis of 3-arylphthalide S33
[6] Isolation of ($\eta^{2}: \eta^{2}$-dialdehyde)Ni complex (2u') S34
[7] Crossover experiments (Scheme S3 and S4) S35
Comparative Chiral SFC chart S37
[8] Comparative ${ }^{1} \mathrm{H}$ NMR spectra for diastereoselectivity (L5 vs IPr) S39
[9] Computational Details S40
[10] References for the Supporting Information S54
[11] ${ }^{1} \mathrm{H},{ }^{13} \mathrm{C}$ NMR spectra and SFC/HPLC chart S56

[1] General

All manipulations were conducted under a nitrogen atmosphere by using standard Schlenk or dry box techniques unless otherwise noted. ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ spectra were recorded on Bruker AVANCE III 400 spectrometers at $25^{\circ} \mathrm{C}$. The chemical shifts in ${ }^{1} \mathrm{H}$-NMR and ${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}-\mathrm{NMR}$ spectra are reported in parts per million (ppm) and are referenced to the residual solvent signal as the internal standard: $\mathrm{CDCl}_{3} \delta=7.26\left({ }^{1} \mathrm{H}\right)$ and $\delta=77.0\left({ }^{13} \mathrm{C}\right) \mathrm{ppm} ; \mathrm{C}_{6} \mathrm{D}_{6}: \delta=7.16\left({ }^{1} \mathrm{H}\right)$ and $\delta=128.1\left({ }^{13} \mathrm{C}\right) \mathrm{ppm}$. Splitting patterns are denoted as "s" for singlet; "d" for doublet; " t " for triplet; "q" for quartet; "sext" for sextet; "sept" for septet; "m" for multiplet, "br" for broad; "dt" for doublet of triplets; "td" for triplet of doublets, and "app" for apparent. Mass spectra were obtained by using a Shimadzu GCMS-QP 2010 instrument with an ionization voltage of 70 eV . Medium-pressure column chromatography was carried out on a Biotage Flash Purification System Isolera, equipped with a 250 nm UV detector. Analytical gas chromatography (GC) was carried out on a Shimadzu GC-2014 gas chromatograph, equipped with a flame ionization detector. High resolution mass spectrometry (HRMS) was performed at Instrumental Analysis Center, Faculty of Engineering, Osaka University. Enantioselectivities were recorded by means of either JASCO-Supercritical Fluid chromatography (SFC) equipped with PU-2080 $-\mathrm{CO}_{2}$ plus CO_{2} delivery pump and MD-2018 plus as a photodiode array detector or HPLC of Shimadzu or Lacrome manufacturer using chiral columns of Diacel Chiralpak (I and O series). Optical rotations were measured in JASCO-DIP 1000 polarimeter with a path length of 1 dm using the sodium D line, 589 nm . THF, toluene, and benzene- d_{6} were distilled from sodium benzophenone ketyl, and other solvents were distilled and degassed prior to use. All commercially available reagents were distilled over CaH_{2} under reduced pressure prior to use. $\mathrm{Ni}(\operatorname{cod})_{2}$ was recrystallized from toluene prior to use. $\mathrm{Ni}(\mathrm{acac})_{2}$ was dried under reduced pressure $(0.3 \mathrm{mmHg})$ at $>100{ }^{\circ} \mathrm{C}$ prior to use. All synthesized starting materials were purified either by distillation over CaH_{2} or recrystallized prior to use for catalytic reactions. Chiral N-heterocyclic carbene (NHC) salts were synthesized according to the reported procedures. Optimized ligand $\mathbf{L 5} \cdot \mathbf{H B F}_{4}$ was prepared according to Grubbs protocol. ${ }^{S 1}$
[2] Preparation of Starting Materials: All starting materials (Figure S1) employed for catalytic reactions were prepared according to experimental procedure reported in our previous communication, ${ }^{\text {S2 }}$ except for $\mathbf{1 n}$ and $\mathbf{1 0}$. The experimental procedures for all new compounds $(\mathbf{1 g}, \mathbf{1 i}$,

1a

1f

1b

1g

1c

1h

$1 e$

1k

11

1m

1 n

10

1q

1r

1s

1t

14

Figure S1: Substrates employed for catalytic asymmetric reactions

$\mathbf{1 j}, \mathbf{1 t}$, and $\mathbf{1 u}$) were described herein.

Synthesis of 2-dimethyl(4-methoxyphenyl)silyl-5-methoxybenzaldehyde (1e):

To the solution of 1-bromo-4-methoxybenzaldehyde dimethylacetal ($5.9 \mathrm{~g}, 23.0 \mathrm{mmol}$) in THF (40 mL) was added ${ }^{n} \mathrm{BuLi}\left(16 \mathrm{~mL}, 25.5 \mathrm{mmol}, 1.6 \mathrm{M}\right.$ in hexane) dropwise at $-78{ }^{\circ} \mathrm{C}$ and the mixture was stirred further for 0.5 h . This solution was transferred slowly to a flask containing a
solution of dichlorodimethylsilane ($3.3 \mathrm{~g}, 25.5 \mathrm{mmol}$) in THF (40 mL) at $-78^{\circ} \mathrm{C}$ using cannula. The resulting reaction mixture was stirred further for 2 h at $-78^{\circ} \mathrm{C}$ and then allowed to warm to room temperature with stirring for overnight. The reaction mixture was brought to $-78{ }^{\circ} \mathrm{C}$ again and a solution of 4-methoxyphenyllithium (prepared by the reaction of 1-bromo-4-methoxybenzene $(5.2 \mathrm{~g}$, $27.8 \mathrm{mmol})$ with ${ }^{n} \mathrm{BuLi}(19 \mathrm{~mL}, 30.5 \mathrm{mmol}, 1.6 \mathrm{M}$ in hexane $)$ in $\mathrm{THF}(40 \mathrm{~mL})$ at $\left.-78^{\circ} \mathrm{C}\right)$ was added slowly using cannula over 30 min and allowed to stir at $-78^{\circ} \mathrm{C}$ for additional 2 h followed by warming to room temperature with overnight stirring. 1 M HCl (aq.) was added and the organic layer was extracted with ether, dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$, and concentrated. It was purified by silica gel column chromatography (with 3\% EtOAc:hexane) gave 2-dimethyl(4-methoxyphenyl)silyl-5-methoxybenzaldehyde (1e) as colorless oil in 63% overall yield $(4.4 \mathrm{~g}, 14.6 \mathrm{mmol}) .{ }^{1} \mathbf{H}$ NMR $\left.\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 0.59\left(\mathrm{~s}, 6 \mathrm{H}, \mathrm{Si}\left(\mathrm{CH}_{3}\right)_{2}\right), 3.81(\mathrm{~s}, 3 \mathrm{H}, \mathrm{OCH})_{3}\right), 3.87$ $\left(\mathrm{s}, 3 \mathrm{H}, \mathrm{OCH}_{3}\right), 6.89(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{Ar}-H), 7.11(\mathrm{dd}, J=2.8,8.4 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{Ar}-H), 7.41(\mathrm{~d}, J=8.4$ $\mathrm{Hz}, 2 \mathrm{H}, \mathrm{Ar}-H), 7.47(\mathrm{~d}, J=2.4 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{Ar}-H), 7.55(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{Ar}-H), 10.07(\mathrm{~s}, 1 \mathrm{H}, \mathrm{CHO})$. $\left.{ }^{13} \mathbf{C}{ }^{1} \mathbf{H}\right\} \mathbf{N M R}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta-0.7,55.0,55.3,113.7,114.9,119.3,129.7,132.7,135.4$, 137.9, 142.8, 160.4, 160.9, 192.7. HRMS (EI): m / z Calcd for $\mathrm{C}_{17} \mathrm{H}_{20} \mathrm{O}_{3} \mathrm{Si}:\left(\mathrm{M}^{+}\right) 300.1182$, found 300.1181 .

Synthesis of 2-(dimethyl(phenyl)silyl)-5-fluorobenzaldehyde (1g):

To the solution of 1-bromo-4-fluorobenzaldehyde dimethylacetal ($5.9 \mathrm{~g}, 24.0 \mathrm{mmol}$) in THF (50 mL) was added ${ }^{n} \mathrm{BuLi}\left(18.2 \mathrm{~mL}, 29.2 \mathrm{mmol}, 1.6 \mathrm{M}\right.$ in hexane) dropwise at $-78{ }^{\circ} \mathrm{C}$ and the mixture was stirred further for 0.5 h . To this reaction mixture was added chlorodimethylphenylsilane $(5.4 \mathrm{~g}, 31.6 \mathrm{mmol})$ and stirred for 2 h at $-78^{\circ} \mathrm{C}$ and then allowed to warm to room temperature for overnight. HCl aq. (1M) was added to the mixture and the organic layer was extracted with ether, dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$, concentrated and purified by silica gel column chromatography (with $\mathbf{5 \%}$ EtOAc:hexane) to get $\mathbf{1 g}$ as a colorless liquid ($5.0 \mathrm{~g}, 78 \%$ yield). ${ }^{\mathbf{1} \mathbf{H} \mathbf{N M R}(400 \mathrm{MHz} \text {, }, ~(2)}$ $\left.\mathrm{CDCl}_{3}\right): \delta 0.63\left(\mathrm{~s}, 6 \mathrm{H}, \mathrm{Si}\left(\mathrm{CH}_{3}\right)_{2}\right), 7.24-7.29(\mathrm{~m}, 2 \mathrm{H}, \mathrm{Ar}-\mathrm{H}), 7.32-7.40(\mathrm{~m}, 3 \mathrm{H}, \mathrm{Ar}-\mathrm{H}), 7.46-7.49(\mathrm{~m}$, $2 \mathrm{H}, \mathrm{Ar}-H), 7.60-7.64(\mathrm{~m}, 2 \mathrm{H}, \mathrm{Ar}-H), 10.03(\mathrm{~s}, 1 \mathrm{H}, \mathrm{CHO}) .{ }^{13} \mathbf{C}\left\{{ }^{1} \mathbf{H}\right\} \mathbf{N M R}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta-1.1$, $117.5\left(\mathrm{~d}, J_{\mathrm{CF}}=20.5 \mathrm{~Hz}\right), 120.0\left(\mathrm{~d}, J_{\mathrm{CF}}=20.5 \mathrm{~Hz}\right), 128.0,129.3,133.9,136.6\left(\mathrm{~d}, J_{\mathrm{CF}}=3.8 \mathrm{~Hz}\right), 138.2$,
$138.7\left(\mathrm{~d}, J_{\mathrm{CF}}=7.1 \mathrm{~Hz}\right), 143.4\left(\mathrm{~d}, J_{\mathrm{CF}}=5.0 \mathrm{~Hz}\right), 164.0\left(\mathrm{~d}, J_{\mathrm{CF}}=255.0 \mathrm{~Hz}\right), 191.5 . \underline{\text { HRMS }}(\mathrm{EI}): \mathrm{m} / \mathrm{z}$ Calcd for $\mathrm{C}_{15} \mathrm{H}_{15} \mathrm{FOSi}$: $\left(\mathrm{M}^{+}\right)$258.0876, found 258.0875.

Synthesis of 2-(dimethyl(3-(trifluoromethyl)phenyl)silyl)benzaldehyde (1i):

To the solution of 2-bromobenzaldehyde diethyl acetal ($2.0 \mathrm{~g}, 7.7 \mathrm{mmol}$) in THF (20 mL) was added ${ }^{n} \mathrm{BuLi}\left(5.3 \mathrm{~mL}, 8.5 \mathrm{mmol}, 1.6 \mathrm{M}\right.$ in hexane) dropwise at $-78^{\circ} \mathrm{C}$ and the mixture was stirred further for 0.5 h . This solution was transferred slowly to a flask containing a solution of dichlorodimethylsilane ($1.1 \mathrm{~g}, 8.5 \mathrm{mmol}$) in THF (20 mL) at $-78^{\circ} \mathrm{C}$ using cannula. The resulting reaction mixture was stirred further for 2 h at $-78^{\circ} \mathrm{C}$ and then allowed to warm to room temperature with stirring for overnight. The reaction mixture was brought to $-78{ }^{\circ} \mathrm{C}$ again and a solution of 3-trifluoromethylphenyllithium (prepared by the reaction of 3-Bromobenzotrifluoride ($2.0 \mathrm{~g}, 9.3$ mmol) with $n \mathrm{BuLi}\left(6.4 \mathrm{~mL}, 10.2 \mathrm{mmol}, 1.6 \mathrm{M}\right.$ in hexane) in THF (20 mL) at $-78{ }^{\circ} \mathrm{C}$) was added slowly using cannula over 0.5 h and allowed to stir at $-78^{\circ} \mathrm{C}$ for additional 2 h followed by warming to room temperature with overnight stirring. 1 M HCl (aq.) was added and the organic layer was extracted with ether, dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$, and concentrated. It was purified by silica gel column chromatography (with 5\% EtOAc:hexane) to get $\mathbf{1 i}$ as a colorless liquid ($1.9 \mathrm{~g}, 79 \%$ yield). ${ }^{1} \mathbf{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 0.73\left(\mathrm{~s}, 6 \mathrm{H}, \mathrm{Si}\left(\mathrm{CH}_{3}\right)_{2}\right), 7.51(\mathrm{t}, 1 \mathrm{H}, J=7.5 \mathrm{~Hz}, \mathrm{Ar}-H)$, 7.63-7.70 (m, 3H, Ar-H), 7.70-7.74 (m, 1H, Ar-H), 7.77 (d, 1H, J = 7.2 Hz, Ar-H), 7.84 (s, 1H, $\operatorname{Ar}-H), 7.93-7.80(\mathrm{~m}, 1 \mathrm{H}, \mathrm{Ar}-H), 10.03(\mathrm{~s}, 1 \mathrm{H}, \mathrm{CHO}) .{ }^{1 \mathbf{3}} \mathbf{C}\left\{{ }^{\mathbf{1}} \mathbf{H}\right\} \mathbf{N M R}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta-1.5$, $124.4\left(\mathrm{q}, J_{\mathrm{CF}}=271.0 \mathrm{~Hz}\right), 125.5\left(\mathrm{q}, J_{\mathrm{CF}}=3.7 \mathrm{~Hz}\right), 127.9,129.8\left(\mathrm{q}, J_{\mathrm{CF}}=31.7 \mathrm{~Hz}\right), 130.1,130.2(\mathrm{~d}$,
 $\mathrm{C}_{16} \mathrm{H}_{15} \mathrm{~F}_{3} \mathrm{OSi}:\left(\mathrm{M}+\mathrm{H}^{+}\right) 309.0922$, found 309.0921 .

Synthesis of 2-((4-fluorophenyl)dimethylsilyl)benzaldehyde (1j):

To the solution of 2-bromobenzaldehyde diethyl acetal ($2.0 \mathrm{~g}, 7.7 \mathrm{mmol}$) in THF (20 mL) was added ${ }^{n} \mathrm{BuLi}\left(5.3 \mathrm{~mL}, 8.5 \mathrm{mmol}, 1.6 \mathrm{M}\right.$ in hexane) dropwise at $-78^{\circ} \mathrm{C}$ and the mixture was stirred further for 0.5 h . This solution was transferred slowly to a flask containing a solution of dichlorodimethylsilane ($1.1 \mathrm{~g}, 8.5 \mathrm{mmol}$) in THF (20 mL) at $-78^{\circ} \mathrm{C}$ using cannula. The resulting reaction mixture was stirred further for 2 h at $-78^{\circ} \mathrm{C}$ and then allowed to warm to room temperature with stirring for overnight. The reaction mixture was brought to $-78{ }^{\circ} \mathrm{C}$ again and a solution of (4-fluorophenyl)lithium (prepared by the reaction of 1-bromo-4-fluorobenzene ($1.6 \mathrm{~g}, 9.3 \mathrm{mmol}$) with $n \mathrm{BuLi}\left(6.4 \mathrm{~mL}, 10.2 \mathrm{mmol}, 1.6 \mathrm{M}\right.$ in hexane) in THF (20 mL) at $-78^{\circ} \mathrm{C}$) was added slowly using cannula over 0.5 h and allowed to stir at $-78^{\circ} \mathrm{C}$ for additional 2 h followed by warming to room temperature with overnight stirring. 1 M HCl (aq.) was added and the organic layer was extracted with ether, dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$, and concentrated. It was purified by silica gel column chromatography (with $3 \% \mathrm{EtOAc}:$ hexane) to get $\mathbf{1} \mathbf{j}$ as a colorless liquid ($1.4 \mathrm{~g}, 68 \%$ yield). ${ }^{1}$ H NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 0.62\left(\mathrm{~s}, 6 \mathrm{H}, \mathrm{Si}\left(\mathrm{CH}_{3}\right)_{2}\right), 7.04(\mathrm{t}, J=8.6 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{Ar}-H), 7.48(\mathrm{t}, J=$ 7.6 Hz, 2H, Ar-H), 7.50-7.65 (m, 3H, Ar-H), 7.89-7.93 (m, 1H, Ar-H), 10.01 (s, 1H, CHO). ${ }^{\mathbf{1 3}} \mathbf{C}\left\{{ }^{\mathbf{1}} \mathbf{H}\right\} \mathbf{N M R}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta-1.2,114.9\left(\mathrm{~d}, J_{\mathrm{CF}}=19.6 \mathrm{~Hz}\right), 129.8,132.6,133.1,134.3(\mathrm{~d}$, $\left.J_{\mathrm{CF}}=3.8 \mathrm{~Hz}\right), 135.8\left(\mathrm{~d}, J_{\mathrm{CF}}=7.3 \mathrm{~Hz}\right), 136.7,140.2,141.1,163.5\left(\mathrm{~d}, J_{\mathrm{CF}}=245.8 \mathrm{~Hz}\right), 191.0 . \underline{\text { HRMS }}$ (CI): m / z Calcd for $\mathrm{C}_{15} \mathrm{H}_{16} \mathrm{FOSi}:\left(\mathrm{M}+\mathrm{H}^{+}\right)$259.0943, found 259.0946 .

Synthesis of 2-(tert-butyldiphenylsilyl)benzaldehyde (1n):

To a stirring solution of (2-bromophenyl)methanol, $\mathbf{1 n}$-(i) ($2.8 \mathrm{~g}, 14.7 \mathrm{mmol}$) and imidazole ($3.0 \mathrm{~g}, 44.1 \mathrm{mmol}$) in DMF (20 mL) was added TBDPSCl $(6.39 \mathrm{~mL}, 25.0 \mathrm{mmol})$ at room temperature followed by stirring further for 24 h . Aqueous NaHCO_{3} was added and extracted well with hexane twice. The organic extracts was dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, concentrated and purified through silica gel column chromatography (with 5% EtOAc:hexane) to get pure protected benzylalcohol 1n-(ii) $\left(5.5 \mathrm{~g}, 89 \%\right.$ yield). ${ }^{1} \mathbf{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 1.11\left(\mathrm{~s}, 9 \mathrm{H}, \mathrm{SiC}\left(\mathrm{CH}_{3}\right)_{3}\right), 4.78(\mathrm{~s}, 2 \mathrm{H}$, OCH_{2}), $7.14(\mathrm{td}, J=1.4,7.4 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{Ar}-H), 7.35-7.46(\mathrm{~m}, 7 \mathrm{H}, \mathrm{Ar}-H), 7.49(\mathrm{dd}, J=1.1,8.0 \mathrm{~Hz}, 1 \mathrm{H}$, Ar- H), 7.71 (dd, $J=1.4,8.0 \mathrm{~Hz}, 4 \mathrm{H}, \mathrm{Ar}-H), 7.75(\mathrm{~d}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{Ar}-H)$. The spectral data was identified to that previously reported. ${ }^{\mathrm{S} 3}$ TBDPS-protected benzylalcohol, $\mathbf{1 n}$-(ii) $(9 \mathrm{~g}, 21.2 \mathrm{mmol})$ was dissolved in dry THF (60 mL) was cooled to $-78^{\circ} \mathrm{C}$ and ${ }^{n} \mathrm{BuLi}$ was added drop wise for 15 min . After 30 min it was allowed to warm up slowly to room temperature. Reaction mixture was quenched with $\mathrm{NH}_{4} \mathrm{Cl}$ (aqueous) and extracted with ether ($3 \times 100 \mathrm{~mL}$). Combined organic extracts were dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated to get isomerized product ($\mathrm{O}-\mathrm{Si}$ to $\mathrm{C}-\mathrm{Si}$) $\mathbf{1 n}$-(iii) quantitatively as a very thick liquid as confirmed by ${ }^{1} \mathrm{H}$ NMR analysis of residue. It was forwarded for next step without purification. ${ }^{1} \mathbf{H} \mathbf{~ N M R}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 1.17\left(\mathrm{~s}, 9 \mathrm{H}, \mathrm{SiC}\left(\mathrm{CH}_{3}\right)_{3}\right), 4.11(\mathrm{~d}, \mathrm{~J}$ $\left.=6.6 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{OCH}_{2}\right), 7.33-7.43(\mathrm{~m}, 7 \mathrm{H}, \mathrm{Ar}-H), 7.47-7.57(\mathrm{~m}, 2 \mathrm{H}, \mathrm{Ar}-\mathrm{H}), 7.61-7.67(\mathrm{~m}, 4 \mathrm{H}, \mathrm{Ar}-\mathrm{H})$, 7.97 (dd, $J=1.0,7.5 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{Ar}-H)$. The ortho-TBDPS-benzylalcohol 1n-(iii) ($7.0 \mathrm{~g}, 20.2 \mathrm{mmol}$) was dissolved in DCM $(60 \mathrm{~mL})$ and PCC $(8.7 \mathrm{~g}, 40.4 \mathrm{mmol})$ was added in a small portion-wise under N_{2} flow and allowed to stirred for 1-2 h at room temperature. After completion of reaction, DCM was evaporated completely then re-diluted with ether. The black sticky material was filtered off over celite and washed three times with ether. The ether solution was evaporated to get white solid (quantitative conversion), which was recrystalized with toluene to get pure compound $\mathbf{1 n}(6.5 \mathrm{~g}$, 93% yield). ${ }^{\mathbf{1} H} \mathbf{N M R}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 1.20\left(\mathrm{~s}, 9 \mathrm{H}, \mathrm{SiC}\left(\mathrm{CH}_{3}\right)_{2}\right), 7.32-7.42(\mathrm{~m}, 6 \mathrm{H}, \mathrm{Ar}-\mathrm{H})$, $7.55-7.64(\mathrm{~m}, 6 \mathrm{H}, \mathrm{Ar}-H), 7.99$ (dd, $J=1.8,6.5 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{Ar}-H), 8.07(\mathrm{dd}, J=1.8,6.5 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{Ar}-H)$, $9.86(\mathrm{~s}, 1 \mathrm{H}, \mathrm{CHO}) .{ }^{\mathbf{1 3}} \mathbf{C}\left\{{ }^{\mathbf{1}} \mathbf{H}\right\}$ NMR $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 18.9,28.7,128.0,128.4,129.5,129.9$, 132.5, 135.1, 135.9, 137.7, 138.8, 141.9, 193.0. HRMS (EI): m / z Calcd for $\mathrm{C}_{23} \mathrm{H}_{24} \mathrm{OSi}:\left(\mathrm{M}^{+}\right)$ 344.1596, found 344.1591.

Synthesis of 2-(tert-butyldiphenylsilyl)-4-fluorobenzaldehyde (10):

Compound 10 was synthesized following the similar experimental procedure as employed for $\mathbf{1 n}$ using (2-bromo-4-fluorophenyl)methanol ($\mathbf{1 0}$-(i), $6.9 \mathrm{~g}, 25.0 \mathrm{mmol}$) as a starting material. 10-(ii): ${ }^{\mathbf{1} H} \mathbf{N M R}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 1.12\left(\mathrm{~s}, 9 \mathrm{H}, \mathrm{SiC}\left(\mathrm{CH}_{3}\right)_{3}\right), 4.74\left(\mathrm{~s}, 2 \mathrm{H}, \mathrm{OCH}_{2}\right), 7.08$ (td, $J=2.4,8.3 \mathrm{~Hz}, 1 \mathrm{H}, \operatorname{Ar}-H), 7.22-7.27(\mathrm{~m}, 1 \mathrm{H}, \operatorname{Ar}-H), 7.35-7.48(\mathrm{~m}, 6 \mathrm{H}, \operatorname{Ar}-H), 7.64-7.74(\mathrm{~m}$, $\left.5 \mathrm{H}, \mathrm{Ar}-H) .{ }^{13} \mathbf{C}{ }^{1} \mathbf{H} \mathbf{H}\right\} \mathbf{N M R}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 19.4,26.9,64.8,114.4\left(\mathrm{~d}, J_{\mathrm{CF}}=20.6 \mathrm{~Hz}\right), 119.4(\mathrm{~d}$, $\left.J_{\mathrm{CF}}=24.6 \mathrm{~Hz}\right), 121.0\left(\mathrm{~d}, J_{\mathrm{CF}}=9.3 \mathrm{~Hz}\right), 127.9,128.7\left(\mathrm{~d}, J_{\mathrm{CF}}=8.0 \mathrm{~Hz}\right), 129.9,133.1,135.5,135.8(\mathrm{~d}$, $\left.J_{\mathrm{CF}}=3.1 \mathrm{~Hz}\right), 161.4\left(\mathrm{~d}, J_{\mathrm{CF}}=247.8 \mathrm{~Hz}\right) . \underline{\text { HRMS }(\mathrm{EI}): ~ m / z \text { Calcd for } \mathrm{C}_{23} \mathrm{H}_{24} \mathrm{BrFOSiNa}:\left(\mathrm{M}^{+}+\mathrm{Na}\right) ~}$ 465.0661 , found 465.0666 .10 -(iii): ${ }^{1} \mathbf{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 1.17\left(\mathrm{~s}, 9 \mathrm{H}, \mathrm{SiC}\left(\mathrm{CH}_{3}\right)_{3}\right), 4.08(\mathrm{~d}$, $\left.J=6.1 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{OCH}_{2}\right), 7.18(\mathrm{td}, J=2.9,8.3 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{Ar}-H), 7.35-7.45(\mathrm{~m}, 6 \mathrm{H}, \mathrm{Ar}-H), 7.53(\mathrm{dd}, J=$ $5.5,8.3 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{Ar}-H), 7.61-7.67(\mathrm{~m}, 5 \mathrm{H}, \operatorname{Ar}-H)$. It was used for next oxidation-step without purification. $1 \mathrm{o}\left(4.4 \mathrm{~g}, 95 \%\right.$ yield): ${ }^{1} \mathbf{H} \mathbf{~ N M R}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 1.18\left(\mathrm{~s}, 9 \mathrm{H}, \mathrm{SiC}\left(\mathrm{CH}_{3}\right)_{3}\right), 7.19(\mathrm{td}$, $J=2.5,8.3 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{Ar}-H), 7.30-7.41(\mathrm{~m}, 6 \mathrm{H}, \mathrm{Ar}-H), 7.53-7.58(\mathrm{~m}, 4 \mathrm{H}, \mathrm{Ar}-H), 7.61(\mathrm{dd}, J=2.5,9.4$ $\mathrm{Hz}, 1 \mathrm{H}, \mathrm{Ar}-H), 8.09(\mathrm{dd}, J=5.6,8.7 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{Ar}-H), 9.79(\mathrm{~s}, 1 \mathrm{H}, \mathrm{CHO}) .{ }^{{ }^{\mathbf{1 3}} \mathbf{C}\left\{{ }^{1} \mathbf{H}\right\} \mathbf{N M R}(100 \mathrm{MHz}, ~}$ $\left.\mathrm{CDCl}_{3}\right): \delta 19.0,28.7,117.1\left(\mathrm{~d}, J_{\mathrm{CF}}=21.1 \mathrm{~Hz}\right), 124.5\left(\mathrm{~d}, J_{\mathrm{CF}}=21.1 \mathrm{~Hz}\right), 128.2,129.7,131.3\left(\mathrm{~d}, J_{\mathrm{CF}}=\right.$ $8.6 \mathrm{~Hz}), 134.3,135.9,138.1\left(\mathrm{~d}, J_{\mathrm{CF}}=3.3 \mathrm{~Hz}\right), 142.9\left(\mathrm{~d}, J_{\mathrm{CF}}=5.7 \mathrm{~Hz}\right), 165.0\left(\mathrm{~d}, J_{\mathrm{CF}}=257.9 \mathrm{~Hz}\right)$, 191.2. HRMS (CI): m / z Calcd for $\mathrm{C}_{23} \mathrm{H}_{24} \mathrm{FOSi}:\left(\mathrm{M}^{+}+\mathrm{H}\right) 363.1574$, found 363.1578 .

Synthesis of 2-(diethyl(phenylethynyl)silyl)benzaldehyde (1t):

1t, 73\%

To a solution of 2-bromobenzaldehyde diethyl acetal ($7.5 \mathrm{~g}, 29 \mathrm{mmol}$) in THF (50 mL) was added dropwise ${ }^{n} \mathrm{BuLi}(20 \mathrm{~mL}, 32 \mathrm{mmol})$ at $-78^{\circ} \mathrm{C}$, and the mixture was stirred for 0.5 h . This solution was slowly added to a solution of dichlorodimethylsilane ($5 \mathrm{~g}, 32 \mathrm{mmol}$) in THF (100 mL), and stirred for 2 h at $-78{ }^{\circ} \mathrm{C}$. The resulting reaction mixture was allowed to warm to room temperature for overnight. To reaction mixture at $-78{ }^{\circ} \mathrm{C}$ was added a solution of lithium phenylacetylide (prepared by the reaction of phenylacetylene ($3.6 \mathrm{~g}, 35 \mathrm{mmol}$) with $n \mathrm{BuLi}(24 \mathrm{~mL}$, $39 \mathrm{mmol})$ in THF $(20 \mathrm{~mL})$ at $-78^{\circ} \mathrm{C}$) slowly for a period of 30 min . and further stirred for 2 h . After warming to room temperature for overnight, HCl aq. (1M) was added and stirred for 3 h . The organic layer was extracted with ether, dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$, concentrated and purified by silica gel column chromatography (eluted with $3 \% \mathrm{EtOAc}$ in hexane) to get $\mathbf{1 t}$ as a colorless liquid $\left(6.0 \mathrm{~g}, 73 \%\right.$ yield). ${ }^{\mathbf{1}} \mathbf{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 1.02-1.10\left(\mathrm{~m}, 10 \mathrm{H}, \mathrm{Si}\left(\mathrm{CH}_{3} \mathrm{CH}_{2}\right)_{2}\right), 7.33-7.36(\mathrm{~m}$, $3 \mathrm{H}, \mathrm{Ar} H), 7.55-7.62(\mathrm{~m}, 3 \mathrm{H}, \mathrm{Ar} H), 7.65(\mathrm{td}, J=1.5,7.3 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{Ar}-H), 7.89(\mathrm{dd}, J=1.5,7.3 \mathrm{~Hz}$, $1 \mathrm{H}, \mathrm{Ar}-H), 8.29(\mathrm{~d}, J=7.2 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{Ar}-H), 10.16(\mathrm{~s}, 1 \mathrm{H}, \mathrm{CHO}) .{ }^{\mathbf{1 3} \mathbf{C}\left\{{ }^{\mathbf{1}} \mathbf{H}\right\} \mathbf{N M R}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \text { : }}$ $\delta 6.0,8.1,92.4,108.5,123.4,128.3,128.6,129.9,132.1,133.1,133.4,137.0,138.51,141.3,192.7$. HRMS (CI): m / z Calcd for $\mathrm{C}_{19} \mathrm{H}_{20} \mathrm{OSi}:\left(\mathrm{M}+\mathrm{H}^{+}\right)$292.1283, found 292.1279 .

Synthesis of 2,2'-(dimethylsilanediyl)dibenzaldehyde (1u):

A stirring solution of 2-bromobenzaldehyde diethyl acetal ($5.0 \mathrm{~g}, 19.3 \mathrm{mmol}$) in THF (60 mL) was added ${ }^{n} \mathrm{BuLi}\left(13.2 \mathrm{~mL}, 1.6 \mathrm{M}\right.$ in THF, 21.2 mmol) drop wise at $-78{ }^{\circ} \mathrm{C}$ under N_{2}. After 1 h , dichlorodimethylsilane ($1.2 \mathrm{~g}, 9.65 \mathrm{mmol}$) was introduced drop wise to the reaction mixture at the same temperature and allowed it to stir for 1 h followed by warming to room temperature with overnight stirring. After completion of the reaction, 1 M HCl was added and stirred for 1 h . Biphasic solution was separated and aqueous layer was washed with ethyl acetate three times. The combined organic layers was dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, concentrated, and purified by recrystallization with toluene to get required compound $\mathbf{1 u}$ as a white solid ($2.3 \mathrm{~g}, 89 \%$ yield). ${ }^{\mathbf{1} \mathbf{H} \mathbf{~ N M R ~}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 0.66}$ (s, 6H, Si $\left.\left(\mathrm{CH}_{3}\right)_{3}\right), 7.55(\mathrm{td}, J=1.3,7.4 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{Ar}-H), 7.60(\mathrm{td}, J=1.3,7.4 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{Ar}-H), 7.81$ (dd, $J=1.1,7.4 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{Ar}-H), 7.87(\mathrm{dd}, J=1.1,7.4 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{Ar}-H), 9.92(\mathrm{~s}, 2 \mathrm{H}, \mathrm{CHO}) .{ }^{13} \mathbf{C}\left\{{ }^{1} \mathbf{H}\right\} \mathbf{N M R}$
($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 0.0,129.5,132.1,133.3,136.2,140.5,141.6,193.1$. HRMS (EI): m / z Calcd for $\mathrm{C}_{16} \mathrm{H}_{16} \mathrm{O}_{2} \mathrm{Si}$: $\left(\mathrm{M}^{+}\right)$268.0920, found 268.0919.

[3] Optimization for catalytic enantioselective synthesis

1a. Survey of chiral NHCs (Scheme 2)

Scheme 2. Survey of chiral NHC Ligands

General method: A screw cap vial was charged with NHC-salt $\mathbf{L n} \cdot \mathbf{X}(0.022 \mathrm{mmol})$ and $\mathrm{NaO}^{t} \mathrm{Bu}^{2}$ (0.02 mmol) in toluene or $\mathrm{C}_{6} \mathrm{D}_{6}(1 \mathrm{~mL})$. After 10 min of stirring, $\mathrm{Ni}(\operatorname{cod})_{2}(0.02 \mathrm{mmol})$ was added. To the stirring solution was added 2-dimethylphenylsilylbenzaldehyde (1a) and allowed to stir (or transferred to J. Young NMR tube) at room temperature (except in case of $\mathbf{L 1 0} \cdot \mathbf{H B F}_{\mathbf{4}}$ and $\mathbf{L 1 1} \cdot \mathbf{H B F}_{4}$). The progress of reaction was monitored by either GC or ${ }^{1} \mathrm{H}$ NMR. The resulting reaction mixture was filtered through small pad of silica and concentrated. Formation of 2a was confirmed by spectroscopic data, reported previously for racemic compound. ${ }^{\text {S2 }} \mathbf{1} \mathbf{H} \mathbf{N M R}(400 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}\right): \delta 0.46\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{SiCH}_{3}\right), 0.54\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{SiCH}_{3}\right), 6.18(\mathrm{~s}, 1 \mathrm{H}, \mathrm{CHOSi}), 7.01-7.07(\mathrm{~m}, 1 \mathrm{H}, \mathrm{Ar}-\mathrm{H})$, 7.27-7.37 (m, 7H, Ar-H), 7.60-7.65 (m, 1H, Ar-H).

Note: Product $2 a$ was sensitive toward silica gel column chromatography as well as HPLC conditions. ${ }^{\text {S4 }}$ However, it could be possible to filter quickly through short silica gel column or
recycle GPC, if required. Enantioselectivity for 2a was measured after converting it (after 100\% conversion) into stable product, 3a by Tamao-Fleming oxidation (see Scheme S2, vide infra).

General procedure for Tamao-Fleming oxidation (TFO): To the solution of crude benzoxasilole 2 (for 0.2 mmol) in THF/ MeOH $(1: 1 ; 1 \mathrm{~mL})$ were added $\mathrm{KHCO}_{3}(40 \mathrm{mg}, 0.4 \mathrm{mmol})$ and $\mathrm{H}_{2} \mathrm{O}_{2}(35 \%$ aq, $0.19 \mathrm{~mL}, 2.0 \mathrm{mmol}$) at $0{ }^{\circ} \mathrm{C}$. The reaction mixture was stirred to complete the reaction for overnight. The reaction was quenched carefully with aqueous NaHSO_{3} solution at $0{ }^{\circ} \mathrm{C}$ and extracted well with ethyl acetate ($3 \times 10 \mathrm{~mL}$), dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, concentrated and purified by silica gel column chromatography (isolated with 20% EtOAc:Hexane) to get 3a as a white solid.
 $6.00(\mathrm{~s}, 1 \mathrm{H}, \mathrm{CHOH}), 6.82(\mathrm{td}, J=1.0,7.4 \mathrm{~Hz}, \mathrm{Ar}-H, 1 \mathrm{H}), 6.84-6.92(\mathrm{~m}, \mathrm{Ar}-H, 2 \mathrm{H}), 7.19(\mathrm{td}, J=2.0$, $7.8 \mathrm{~Hz}, \operatorname{Ar}-H, 1 \mathrm{H}$), $\left.7.30-7.40(\mathrm{~m}, 5 \mathrm{H}, \operatorname{Ar}-H), 7.92(\mathrm{br} \mathrm{s}, 1 \mathrm{H}, \operatorname{Ar}-\mathrm{OH}) .{ }^{\mathbf{1 3}} \mathbf{C}{ }^{\mathbf{1}} \mathbf{H}\right\} \mathbf{N M R}(100 \mathrm{MHz}$, CDCl_{3}): $\delta 76.9,117.2,119.9,126.6,126.8,128.19,128.23,128.7,129.3,141.8,155.4 . \underline{\text { HRMS (ESI) }}$ m / z calcd for $\mathrm{C}_{13} \mathrm{H}_{12} \mathrm{O}_{2}$: $\left(\mathrm{M}^{+}\right)$200.0837, found 200.0836. The spectral data was identified to that previously reported. ${ }^{\text {S5 }}$ Chiral separation: The enantioselectivity was measured by using either chiral HPLC (Chiralpak OD-H column. (10% isopropanol in hexane, Flow rate $=0.5 \mathrm{ml} / \mathrm{min}, t_{\mathrm{R}}=$ $22.9 \mathrm{~min}(S$-enantiomer $)$ and $34.7 \mathrm{~min}(R$-enantiomer $)$) or SFC using Chiralpak ID (Back pressure $=$ 15 MPa , Flow $\left(\mathrm{CO}_{2}\right)=2.0 \mathrm{~mL} / \mathrm{min}$, Flow (isopropanol) $=0.3 \mathrm{~mL} / \mathrm{min}, 25{ }^{\circ} \mathrm{C}, \lambda=250 \mathrm{~nm}$). Retention time: $t_{\mathrm{R}}=3.7 \mathrm{~min}(S$-enantiomer) and $4.0 \mathrm{~min}(R$-enantiomer). The absolute stereochemistry of $\mathbf{2 a}$ was assigned by analogy to $\mathbf{2 h}$ (determined to be (R) by X-ray with Flack parameter $=0.02(3)$; when (R, R)-L5 was employed, vide infra $)$.

1b. Survey of chiral phosphine ligands (Scheme S1): Phosphine (mono- as well as bidentate) ligands were failed to give any conversion to required products. The reaction procedure was followed as such; To the stirring solution of phosphine ligand and $\mathrm{Ni}(\operatorname{cod})_{2}$ in $\mathrm{C}_{6} \mathrm{D}_{6}(1 \mathrm{~mL})$ was added 1a and transferred to J. Young NMR tube. The reaction was monitored by ${ }^{1} \mathrm{H}$ NMR at room temperature for 24 h followed by heating at $80^{\circ} \mathrm{C}$ for 18 h .

Scheme S1. Screening of phosphine ligands

1c. Further optimization with $\mathrm{L} 5 \cdot \mathrm{HBF}_{4}$ (Table 1)

Table 1. Further Optimization with $\mathbf{L 5} \cdot \mathbf{H B F}_{4}$

		 H M)	X mol\% (R, R)-L5• HBF_{4} Y mol\% $\mathrm{NaO}^{\boldsymbol{t}} \mathrm{Bu}$ Z mol\% Ni(cod) ${ }_{2}$ toluene (R)-2a				
entry	X	Y	Z	temp (${ }^{\circ} \mathrm{C}$)	time (h)	yield (\%) ${ }^{\text {a }}$	$\begin{gathered} \mathbf{e e} \\ (\%)^{b} \end{gathered}$
1	11.0	10.0	10.0	rt	0.5	100	>99
2	11.0	10.0	10.0	rt	24	-	-
3	11.0	10.0	-	80	48	-	-
4	2.2	2.0	2.0	rt	1.0	99	99
5	1.1	1.0	1.0	rt	48	95	97
6	2.2	2.0	2.0	rt	1.0	99	99

General Procedure: A screw cap vial was charged with $(R, R)-\mathbf{L 5} \cdot \mathbf{H B F}_{\mathbf{4}}(1-11 \mathrm{~mol} \%)$ and $\mathrm{NaO}^{t} \mathrm{Bu}$ $(1-10 \mathrm{~mol} \%)$ in toluene $(1 \mathrm{~mL})$. After 10 min of stirring, $\mathrm{Ni}(\operatorname{cod})_{2}(1-11 \mathrm{~mol} \%)$ was added. 2-Dimethylphenylsilylbenzaldehyde (1a; $48.0 \mathrm{mg}, 0.2 \mathrm{mmol}$) was added to the stirring solution and allowed to stir at room temperature. The progress of reaction was monitored and yields of $\mathbf{2 a}$ were
calculated by GC using n-pentadecane as an internal standard. The enantioselectivity was measured for corresponding TFO product, 3a (see Scheme S2, vide infra).

Entry 1: Reaction was performed with $(R, R)-\mathbf{L 5} \cdot \mathbf{H B F}_{4}(12.0 \mathrm{mg}, 0.022 \mathrm{mmol}, 11 \mathrm{~mol} \%), \mathrm{NaO}^{t} \mathrm{Bu}$ ($1.9 \mathrm{mg}, 0.02 \mathrm{mmol}, 10 \mathrm{~mol} \%)$, and $\mathrm{Ni}(\operatorname{cod})_{2}(5.5 \mathrm{mg}, 0.02 \mathrm{mmol}, 10 \mathrm{~mol} \%)$ in 1 mL toluene. reaction was completed in 30 min at room temperature (100% GC yield, $99 \% \mathrm{ee}$).

Entry 2: Reaction was performed under identical reaction conditions except $\mathrm{Ni}(\mathrm{acac})_{2}$ was used as a $\mathrm{Ni}($ II $)$ source in place of $\mathrm{Ni}(\operatorname{cod})_{2}$ and stirred for 24 h . No reaction took place.

Entry 3: Reaction was performed in the absence of $\mathrm{Ni}(\operatorname{cod})_{2}$ in $\mathrm{C}_{6} \mathrm{D}_{6}$. No reaction took place even at $80^{\circ} \mathrm{C}$ for 24 h .

Entry 4: Reaction was conducted with $2 \mathbf{m o l} \%$ catalyst loading $\left\{(R, R)-\mathbf{L 5} \cdot \mathbf{H B F}_{4}(2.4 \mathrm{mg}, 0.0044\right.$ mmol), $\mathrm{NaO}^{t} \mathrm{Bu}(0.38 \mathrm{mg}, 0.004 \mathrm{mmol})$, and $\left.\mathrm{Ni}(\operatorname{cod})_{2}(1.1 \mathrm{mg}, 0.004 \mathrm{mmol})\right\}$. Reaction was completed in 1 h with 99% GC yield and 99% ee.

Entry 5: Reaction was conducted with $1 \mathrm{~mol} \%$ catalyst loading $\left\{(R, R)-\mathbf{L 5} \cdot \mathbf{H B F}_{\mathbf{4}}(1.2 \mathrm{mg}, 0.0022\right.$ $\mathrm{mmol}), \mathrm{NaO}^{t} \mathrm{Bu}(0.2 \mathrm{mg}, 0.002 \mathrm{mmol})$, and $\left.\mathrm{Ni}(\operatorname{cod})_{2}(0.6 \mathrm{mg}, 0.004 \mathrm{mmol})\right\}$. Reaction was relatively slow and required longer time and result is denoted as conversion of starting material $(95 \%$ conversion in 2 days). Ee was measured from aliquot taken from reaction mixture of 95% conversion.

Entry 6: Reaction was conducted under identical reaction condition as entry 4 using with $(S, S)-\mathbf{L 5} \cdot \mathbf{H B F}_{\mathbf{4}}$, resulted (S)-2a with consistent efficiency.

Optimized conditions employed for study of substrate scope: entry 4

[4] Substrate scope

Scope of 3-aryl-2,1-benzoxasilole (Table 2)

General procedures: A reaction tube was charged with $(R, R)-\mathbf{L 5} \cdot \mathbf{H B F}_{\mathbf{4}}(2.2 \mathrm{~mol} \%)$ and $\mathrm{NaO}^{t} \mathrm{Bu}$ ($2.0 \mathrm{~mol} \%$) in toluene $(1-10 \mathrm{~mL} ; 0.2 \mathrm{M})$. After 5 to 10 min of stirring, $\mathrm{Ni}(\operatorname{cod})_{2}(2.0 \mathrm{~mol} \%)$ was added. ortho-Silylbenzaldehyde $\mathbf{1}(0.20-2.0 \mathrm{mmol})$ was added after 10 min and allowed to stir at room temperature and progress of the reaction was monitored either by GC or ${ }^{1} \mathrm{H}$ NMR. The products were isolated by short silica gel column chromatography (Wakogel ${ }^{\circledR} \mathrm{C}-300,5.0 \mathrm{~g}$, eluted with ether). Further purification was carried out either by recrystallization or recycle GPC, if necessary.

Table 2. Catalytic Enantio- and Diastereoselective Synthesis of 3-Arylbenzoxasiloles

1a-p
(R)-2a-p

${ }^{\text {a }}$ Reaction was conducted at 5 mmol scale

Note: Since, 3-arylbenzoxasiloles 2 are sensitive to HPLC; it was converted it into either 3 (Tamao-Fleming oxidation) or $\mathbf{4}$ (desilylation) product to ascertain the enantioselectivity of corresponding benzoxasiloles, as shown below in Scheme S2. However, enantioselectivities measured after both transformations were consistent, as examined for $\mathbf{2 h}$ (vide infra).

Scheme S2. Nickel-catalyzed synthesis of benzoxasilole 2 and further transformations to 3 and

 4

Reaction of 1a giving (\boldsymbol{R})-2a (Table 1, entry 3; 99% yield, 99% ee): The general procedure was followed with 2-(dimethyl(phenyl)silyl)benzaldehyde (1a) (48.0 mg, 0.20 mmol) for 1.0 h at room temperature. Reaction mixture was purified by short silica gel column chromatography giving (R) -1,1-dimethyl-3-phenyl-1,3-dihydrobenzo[c][1,2]oxasilole (2a) in 99% yield ($47.5 \mathrm{mg}, 0.198 \mathrm{mmol}$). $[\alpha]_{\mathrm{D}}{ }^{23}=(-) 143.3^{\circ} \quad\left(c=0.2\right.$, in $\left.\mathrm{CHCl}_{3}\right)$. The absolute stereochemistry of 2a was assigned by analogy to $\mathbf{2 h}$ and enantioselectivity was evaluated after converting it into corresponding oxidation product 3a. It was synthesized from 2a as mentioned in general procedure for TFO in 81% yield. Chiral separation: The enantioselectivity was determined by SFC using Chiralpak ID (Back pressure $=15$ MPa , Flow $\left(\mathrm{CO}_{2}\right)=2.0 \mathrm{~mL} / \mathrm{min}$, Flow (isopropanol) $\left.=0.3 \mathrm{~mL} / \mathrm{min}, 25^{\circ} \mathrm{C}, \lambda=250 \mathrm{~nm}\right)$. Retention time: $t_{\mathrm{R}}=3.7 \mathrm{~min}($ minor S-enantiomer) and 4.0 min (major R-enantiomer).

Gram scale synthesis of 2a: Reaction procedure was followed as the optimized conditions (Table 1, entry 4) using 2-dimethylphenylsilylbenzaldehyde ($\mathbf{1 a} ; 1.2 \mathrm{~g}, 5.0 \mathrm{mmol}$), $(R, R)-\mathbf{L 5} \cdot \mathbf{H B F}_{4}(54.0 \mathrm{mg}$, $0.10 \mathrm{mmol}), \mathrm{NaO}^{t} \mathrm{Bu}(9.6 \mathrm{mg}, 0.10 \mathrm{mmol})$ and $\mathrm{Ni}(\operatorname{cod})_{2}(27.2 \mathrm{mg}, 0.10 \mathrm{mmol})$ in toluene $(25 \mathrm{~mL})$. The reaction was completed in 1 h with consistent result. Enantioselectivity was measured after converting it into 3a.

Reaction of 1b giving (R)-2b (99\% yield, 98% ee): The general procedure was followed with 2-(diethyl(phenyl)silyl)benzaldehyde (1b) $(54.0 \mathrm{mg}, 0.2 \mathrm{mmol})$ and reaction was completed within 1.0 h at room temperature. Purification by short silica gel column chromatography gave (R) -1,1-diethyl-3-phenyl-1,3-dihydrobenzo[c][1,2]oxasilole (2b) as a pale yellow liquid in 99% yield ($53.0 \mathrm{mg}, 0.198 \mathrm{mmol}$). Spectroscopic data of $\mathbf{2 b}$ was identified to that previously reported for racemic compound. ${ }^{\mathrm{S} 2} \mathbf{2 b}:\left(99 \%\right.$ yield, pale yellow liquid). ${ }^{\mathbf{1}} \mathbf{H} \mathbf{N M R}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta$ $0.85-1.13\left(\mathrm{~m}, 10 \mathrm{H}, 2 \times \mathrm{SiCH}_{2} \mathrm{CH}_{3}\right), 6.16(\mathrm{~s}, 1 \mathrm{H}, \mathrm{CHOSi}), 7.02(\mathrm{~d}, J=6.6 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{Ar}-H), 7.26-7.36$ $(\mathrm{m}, 7 \mathrm{H}, \mathrm{Ar}-H), 7.61(\mathrm{~d}, J=6.6 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{Ar}-H) .[\alpha]_{\mathrm{D}}^{23}=(-) 109.1^{\circ}\left(c=0.1\right.$, in $\left.\mathrm{CHCl}_{3}\right)$. The absolute stereochemistry of $\mathbf{2 b}$ was assigned by analogy to $\mathbf{2 h}$ and enantioselectivity was evaluated after converting it into 3a (80% yield, 98% ee). Chiral separation The enantioselectivity of 3a was determined by SFC using chiralpak ID (Back pressure $=15 \mathrm{MPa}$, Flow $\left(\mathrm{CO}_{2}\right)=2.0 \mathrm{~mL} / \mathrm{min}$, Flow (isopropanol) $=0.3 \mathrm{~mL} / \mathrm{min}, 25^{\circ} \mathrm{C}, \lambda=250 \mathrm{~nm}$). Retention time: $t_{\mathrm{R}}=4.1 \mathrm{~min}$ (minor S-enantiomer) and 4.4 min (major R-enantiomer).

Reaction of 1c giving (R)-2c (97\% yield, 99% ee): The general procedure was followed with 2-(dimethyl(phenyl)silyl)-5-methoxybenzaldehyde (1c) ($54.0 \mathrm{mg}, 0.2 \mathrm{mmol}$) and reaction was conducted at room temperature for 4 h . Purification by short silica gel column chromatography gave (R)-5-methoxy-1,1-dimethyl-3-phenyl-1,3-dihydrobenzo[c][1,2]oxasilole (2c) as a white solid in 97% yield ($52.0 \mathrm{mg}, 0.192 \mathrm{mmol}$). Spectroscopic data of 2c was identified to that previously reported for racemic compound. ${ }^{\mathrm{S} 2} \mathbf{1} \mathbf{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 0.40\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{SiCH}_{3}\right), 0.48(\mathrm{~s}, 3 \mathrm{H}$, SiCH_{3}), $3.68\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{OCH}_{3}\right), 6.09(\mathrm{~s}, 1 \mathrm{H}, \mathrm{CHOSi}), 6.49(\mathrm{~d}, J=2.0 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{Ar}-H), 6.86(\mathrm{dd}, J=2.4$, $8.0 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{Ar}-H), 7.21-7.33(\mathrm{~m}, 5 \mathrm{H}, \mathrm{Ar}-H), 7.52(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{Ar}-H) \cdot[\alpha]_{\mathrm{D}}^{23}=(-) 61.3^{\circ}(c=$ 0.1 , in CHCl_{3}). The absolute stereochemistry of $\mathbf{2 c}$ was assigned by analogy to $\mathbf{2 h}$ and
enantioselectivity was evaluated after converting it into desilylation product $\mathbf{4 c}$ (75% yield, 99% ee).

Experimental procedure for desilylation: For example, (R)-(3-methoxyphenyl)(phenyl)methanol (4c): To a reaction tube charged with $2 \mathbf{c}(53.0 \mathrm{mg}, 0.19 \mathrm{mmol})$ in 0.5 mL THF was added TBAF (1 $\mathrm{M}, 0.2 \mathrm{~mL}$) at room temperature and stirred for 5 h to complete the reaction. The reaction mixture was quenched by aqueous $\mathrm{NH}_{4} \mathrm{Cl}$ and stirred for 30 min . The biphasic mixture was separated and extracted with ethyl acetate ($3 \times 10 \mathrm{~mL}$), dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, concentrated and purified by silica gel column chromatography (with 20% EtOAc:Hexane). Spectroscopic data of $\mathbf{4 c}$ was identified to that previously reported. ${ }^{\mathrm{S} 6}{ }^{1} \mathbf{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 2.14(\mathrm{br} \mathrm{s}, \mathrm{CHOH}, 1 \mathrm{H}), 3.68(\mathrm{~s}, \mathrm{OCH}, 3 \mathrm{H})$, 5.71 (s, CHOH, 1H), 6.67-6.73 (m, Ar-H, 1H), 6.82-6.87 (m, Ar-H, 2H), 7.12-7.18 (m, Ar-H, 2H), 7.20-7.29 (m, Ar-H, 4H). Chiral separation: The enantioselectivity was determined by SFC using Chiralpak IA (Back pressure $=15 \mathrm{MPa}$, Flow $\left(\mathrm{CO}_{2}\right)=2.0 \mathrm{~mL} / \mathrm{min}$, Flow $($ IPA $)=0.3 \mathrm{~mL} / \mathrm{min}, 25{ }^{\circ} \mathrm{C}$, $\lambda=250 \mathrm{~nm}$). Retention time: $t_{\mathrm{R}}=7.0 \mathrm{~min}$ (minor S-enantiomer) and 7.3 min (major R-enantiomer).

Reaction of $\mathbf{1 d}$ giving ($\boldsymbol{R}) \mathbf{- 2 d}$ (97% yield, 98% ee): The general procedure was followed with 2-dimethyl(4-methoxyphenyl)silylbenzaldehyde (1d) $(54.0 \mathrm{mg}, 0.2 \mathrm{mmol})$ and reaction was conducted at room temperature for 4 h . Purification by short silica gel column chromatography gave (R)-3-(4-methoxyphenyl)-1,1-dimethyl-1,3-dihydrobenzo[c][1,2]oxasilole (2d) as a pale yellow solid in 97% yield ($52.5 \mathrm{mg}, 0.19 \mathrm{mmol}$). Spectroscopic data of 2d was identified to that previously reported for racemic compound. ${ }^{\mathrm{S} 2} \mathbf{H} \mathbf{~ N M R}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 0.47\left(\mathrm{~d}, J=2.4 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{SiCH}_{3}\right)$, $0.54\left(\mathrm{~d}, J=2.4 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{SiCH}_{3}\right), 3.81\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{OCH}_{3}\right), 6.16(\mathrm{~s}, 1 \mathrm{H}, \mathrm{CHOSi}), 6.89(\mathrm{dt}, J=2.4,8.7 \mathrm{~Hz}$, $2 \mathrm{H}, \mathrm{Ar}-H), 7.01-7.05(\mathrm{~m}, 1 \mathrm{H}, \mathrm{Ar}-H), 7.21(\mathrm{dt}, J=2.4,8.7 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{Ar}-H), 7.30-7.38(\mathrm{~m}, 2 \mathrm{H}, \mathrm{Ar}-\mathrm{H})$, 7.61-7.67 $(\mathrm{m}, 1 \mathrm{H}, \mathrm{Ar}-H) .[\alpha]_{\mathrm{D}}^{23}=(-) 115.0\left(c=0.1\right.$, in $\left.\mathrm{CHCl}_{3}\right)$. The absolute stereochemistry of $\mathbf{2 d}$ was assigned by analogy to $\mathbf{2 h}$ and enantioselectivity was evaluated after converting it into desilylation product $\mathbf{4 d}$ (75% yield, 98% ee). Spectroscopic data of $\mathbf{4 d}$ was identified to that previously reported. ${ }^{\mathrm{S7} 1} \mathbf{H} \mathbf{~ N M R}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 2.15(\mathrm{br} \mathrm{s}, 1 \mathrm{H}, \mathrm{CHOH}), 3.79\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{OCH}_{3}\right)$, $5.81(\mathrm{~s}, 1 \mathrm{H}, \mathrm{CHOH}), 6.86(\mathrm{~d}, J=8.6 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{Ar}-H), 7.23-7.40(\mathrm{~m}, 7 \mathrm{H}, \mathrm{Ar}-H)$. Chiral separation:

The enantioselectivity for $\mathbf{4 d}$ was determined by SFC using Chiralpak ID (Back pressure $=15 \mathrm{MPa}$, Flow $\left(\mathrm{CO}_{2}\right)=2.0 \mathrm{~mL} / \mathrm{min}$, Flow $\left.(\mathrm{IPA})=0.3 \mathrm{~mL} / \mathrm{min}, 25^{\circ} \mathrm{C}, \lambda=250 \mathrm{~nm}\right)$. Retention time: $t_{\mathrm{R}}=5.8$ \min (minor R-enantiomer) and 6.0 min (major S-enantiomer).

Reaction of 1e giving (\boldsymbol{R})-2e (98% yield, 95% ee): The general procedure was followed with 5-methoxy-2-((4-methoxyphenyl)dimethylsilyl)benzaldehyde (1e) ($120.0 \mathrm{mg}, 0.4 \mathrm{mmol}$) using (R, $R)-\mathbf{L 5}(10 \mathrm{mg}, 0.018 \mathrm{mmol}), \mathrm{NaO}^{t} \mathrm{Bu}(1.6 \mathrm{mg}, 0.016 \mathrm{mmol}), \mathrm{Ni}(\operatorname{cod})_{2}(4.3 \mathrm{mg}, 0.016 \mathrm{mmol})$ and reaction was conducted at room temperature for 9 h . Purification by short silica gel column chromatography gave (R)-5-methoxy-3-(4-methoxyphenyl)-1,1-dimethyl-1,3-dihydrobenzo[c][1,2] -oxasilole (2e) as pale yellow thick liquid in 98% yield ($117 \mathrm{mg}, 0.39 \mathrm{mmol}$). The spectroscopic data was identified to that reported data for racemic compound. ${ }^{\mathrm{S2}} \mathbf{~ 1} \mathbf{H} \mathbf{~ N M R}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 0.43$ (s, $3 \mathrm{H}, \mathrm{SiCH}_{3}$), $0.50\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{SiCH}_{3}\right), 3.73\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{OCH}_{3}\right), 3.80\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{OCH}_{3}\right), 6.10(\mathrm{~s}, 1 \mathrm{H}, \mathrm{CHOSi}), 6.52$ ($\mathrm{s}, 1 \mathrm{H}, \mathrm{Ar}-H), 6.89(\mathrm{dd}, J=2.4,8.0 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{Ar}-H), 7.20(\mathrm{~d}, J=8.8 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{Ar}-H), 7.52(\mathrm{~d}, J=8.3$ $\mathrm{Hz}, 1 \mathrm{H}, \mathrm{Ar}-H) \cdot[\alpha]_{\mathrm{D}}{ }^{23}=(-) 27.4^{\circ}\left(c=0.1\right.$, in $\left.\mathrm{CHCl}_{3}\right)$. The absolute stereochemistry of 2 e was assigned by analogy to $\mathbf{2 h}$ and enantioselectivity was evaluated after converting it into desilylation product $4 \mathrm{e}\left(50 \%\right.$ yield, 95% ee). ${ }^{\mathbf{1}} \mathbf{H} \mathbf{~ N M R ~}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 2.16(\mathrm{~d}, \mathrm{~J}=3.2 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CHOH})$, $3.76\left(\mathrm{~s}, 6 \mathrm{H}, 2 \times \mathrm{OCH}_{3}\right), 5.75(\mathrm{~d}, J=3.2 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CHOH}), 6.77(\mathrm{dd}, J=1.9,8.0 \mathrm{~Hz}, 1 \mathrm{H} \mathrm{Ar}-H), 6.83$ $(\mathrm{d}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}, \operatorname{Ar}-H), 6.91(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}, \operatorname{Ar}-H), 6.92(\mathrm{~s}, 1 \mathrm{H}, \mathrm{Ar}-H), 7.19-7.30(\mathrm{~m}, 3 \mathrm{H}$, $\left.\mathrm{Ar}-H) .{ }^{13} \mathbf{C}{ }^{1} \mathbf{H} \mathbf{H}\right\} \mathbf{N M R}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 55.2,55.24,75.7,111.9,112.8,113.8,118.7,127.9$, 129.4, 136.0, 145.7, 159.0, 159.7. HRMS (ESI) m / z calcd for $\mathrm{C}_{15} \mathrm{H}_{16} \mathrm{O}_{3}$ 244.1099: (M^{+}) found 244.1097. Chiral separation: The enantioselectivity for $\mathbf{4 e}$ was determined by SFC using Chiralpak ID $\left(\right.$ Back pressure $=15 \mathrm{MPa}$, Flow $\left(\mathrm{CO}_{2}\right)=2.0 \mathrm{~mL} / \mathrm{min}$, Flow $($ IPA $)=0.3 \mathrm{~mL} / \mathrm{min}, 25^{\circ} \mathrm{C}, \lambda=250$ nm). Retention time: $t_{\mathrm{R}}=7.0 \mathrm{~min}($ minor S-enantiomer) and 7.4 min (major R-enantiomer).

Reaction of 1f giving (R)-2f (96% yield, 98% ee): The general procedure was followed with 2-dimethylphenylsilyl-4-fluorobenzaldehyde (1f) $(51.0 \mathrm{mg}, 0.2 \mathrm{mmol})$ and reaction was conducted at room temperature for 2 h . Purification by short silica gel column chromatography gave (R)-6-fluoro-1,1-dimethyl-3-phenyl-1,3-dihydrobenzo[c][1,2]oxasilole (2f) as pale yellow oil in 96% yield ($49.0 \mathrm{mg}, 0.19 \mathrm{mmol}$). The spectroscopic data was identified to that previously reported for racemic compound. ${ }^{\mathrm{S} 21} \mathbf{H} \mathbf{~ N M R ~}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 0.44\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{SiCH}_{3}\right), 0.52\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{SiCH}_{3}\right), 6.12$ ($\mathrm{s}, 1 \mathrm{H}, \mathrm{CHOSi}$), 6.96-6.99 (m, 2H, Ar- H), 7.23-7.35 (m, 6H, Ar- H). $[\alpha]_{\mathrm{D}}{ }^{23}=(-) 110.9(c=0.1$, in CHCl_{3}). The absolute stereochemistry of $\mathbf{2 f}$ was assigned by analogy to $\mathbf{2 h}$ and enantioselectivity was evaluated after converting it into desilylation product $\mathbf{4 f}$ (70% yield, 98% ee). The spectroscopic
 $\mathrm{CHOH}), 5.71(\mathrm{~d}, J=2.6 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CHOH})$, two set of double at 6.90 and $6.93(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}$ Ar- H), 7.15-7.28 (m, 7H, Ar-H). Chiral separation: The enantioselectivity for $\mathbf{4 f}$ was determined by SFC using Chiralpak ID (Back pressure $=15 \mathrm{MPa}$, Flow $\left(\mathrm{CO}_{2}\right)=4.0 \mathrm{~mL} / \mathrm{min}$, Flow $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right)=$ $0.6 \mathrm{~mL} / \mathrm{min}, 25{ }^{\circ} \mathrm{C}, \lambda=250 \mathrm{~nm}$). Retention time: $t_{\mathrm{R}}=3.4 \mathrm{~min}$ (major R-enantiomer) and 3.9 min (minor S-enantiomer).

Reaction of 1 g giving ($\boldsymbol{R}) \mathbf{- 2 g}$ (93% yield, 99% ee): The general procedure was followed with 2-(dimethyl(phenyl)silyl)-5-fluorobenzaldehyde ($\mathbf{1 g}$) ($129 \mathrm{mg}, 0.5 \mathrm{mmol}$) and reaction was conducted at room temperature for 3 h . Purification by short silica gel column chromatography gave (R)-5-fluoro-1,1-dimethyl-3-phenyl-1,3-dihydrobenzo[c][1,2]oxasilole (2 g) as pale yellow oil in 93% yield $(120 \mathrm{mg}, 0.47 \mathrm{mmol}) .{ }^{1} \mathbf{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 0.44\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{SiCH}_{3}\right), 0.52(\mathrm{~s}, 3 \mathrm{H}$, $\left.\mathrm{SiCH}_{3}\right), 6.11(\mathrm{~s}, 1 \mathrm{H}, \mathrm{CHOH}), 6.69(\mathrm{~d}, J=9.9 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{Ar}-H), 7.00(\mathrm{td}, J=2.3,7.6 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{Ar}-H)$,
7.24-7.36(m, 5H, Ar-H), $7.55(\mathrm{t}, J=6.9 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{Ar}-H) .{ }^{13} \mathbf{C}\left\{{ }^{1} \mathbf{H}\right\} \mathbf{N M R}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 0.6$, $1.3,83.6,110.7\left(\mathrm{~d}, J_{\mathrm{CF}}=21.0 \mathrm{~Hz}\right), 115.0\left(\mathrm{~d}, J_{\mathrm{CF}}=21.0 \mathrm{~Hz}\right), 127.0,128.0,128.6,130.4,132.3\left(\mathrm{~d}, J_{\mathrm{CF}}\right.$ $=9.0 \mathrm{~Hz}), 143.1,155.3\left(\mathrm{~d}, J_{\mathrm{CF}}=7.3 \mathrm{~Hz}\right), 164.4\left(\mathrm{~d}, J_{\mathrm{CF}}=248.0 \mathrm{~Hz}\right) . \underline{\text { HRMS }(\mathrm{EI}): m / z \text { Calcd for }}$ $\mathrm{C}_{15} \mathrm{H}_{15} \mathrm{FOSi}:\left(\mathrm{M}^{+}\right) 258.0876$, found 258.0871. $[\alpha]_{\mathrm{D}}{ }^{23}=(-) 131.7\left(c=0.1\right.$, in $\left.\mathrm{CHCl}_{3}\right)$. The absolute stereochemistry of $\mathbf{2 g}$ was assigned by analogy to $\mathbf{2 h}$ and enantioselectivity of $\mathbf{2 g}$ was evaluated after converting it into desilylation product $\mathbf{4 g}$ (76% yield, 99% ee). ${ }^{\mathbf{1} \mathbf{H} \mathbf{~ N M R}(400 ~ M H z, ~} \mathrm{CDCl}_{3}$): $\delta 2.26$ $(\mathrm{d}, J=3.1 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CHOH}), 5.83(J=3.1 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CHOH}), 6.95(\mathrm{t}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{Ar}-H), 7.14(\mathrm{t}, J$ $=8.0 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{Ar}-H), 7.29-7.37(\mathrm{~m}, 6 \mathrm{H}, \mathrm{Ar}-H)$. Spectroscopic data of $\mathbf{4 g}$ was identified to that previously reported. ${ }^{\text {S8 }}$ Chiral separation: The enantioselectivity was determined by SFC using Chiralpak IC $\left(\right.$ Back pressure $=15 \mathrm{MPa}$, Flow $\left(\mathrm{CO}_{2}\right)=4.0 \mathrm{~mL} / \mathrm{min}$, Flow (isopropanol $)=0.2 \mathrm{~mL} / \mathrm{min}$, $25{ }^{\circ} \mathrm{C}, \lambda=250 \mathrm{~nm}$). Retention time: $t_{\mathrm{R}}=3.6 \mathrm{~min}$ (major R-enantiomer) and 3.9 min (minor S-enantiomer).

Reaction of $\mathbf{1 h}$ giving (R)-2h (99\% yield, 97% ee): The general procedure was followed with 2-dimethylphenylsilyl-5-trifluoromethylbenzaldehyde ($\mathbf{1 h}$) ($61.0 \mathrm{mg}, 0.2 \mathrm{mmol}$) and reaction was conducted at room temperature for 2 h . Purification by silica gel column chromatography gave (R)-1,1-dimethyl-3-phenyl-5-(trifluoromethyl)-1,3-dihydrobenzo[c][1,2]oxasilole (2h) as a pale yellow solid in 99% yield $(60.0 \mathrm{mg}, 0.19 \mathrm{mmol})$. Spectroscopic data of $\mathbf{2 h}$ was identified to that previously reported. ${ }^{\mathrm{S} 2 \mathbf{1} \mathbf{H} \mathbf{~ N M R}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 0.48\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{SiCH}_{3}\right), 0.56(\mathrm{~s}, 3 \mathrm{H}, \mathrm{SiCH} 3), 6.19}$ (s, 1H, CHOSi), 7.27-7.40 (m, 6H, Ar-H), $7.57(\mathrm{~d}, J=7.2 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{Ar}-H), 7.73(\mathrm{~d}, J=7.2 \mathrm{~Hz}, 1 \mathrm{H}$, $\mathrm{Ar}-H) .[\alpha]_{\mathrm{D}}{ }^{23}=(-) 103.8\left(c=0.1\right.$, in $\left.\mathrm{CHCl}_{3}\right)$. The absolute stereochemistry of $\mathbf{2 h}$ was assigned by X-ray analysis (Flack parameter 0.02(3)) and enantioselectivity was evaluated after converting it into corresponding oxidation product $\mathbf{3 h}$ as well as desilylation product 4 h prepared as described above. Enantioselectivities were consistent in both products $3 \boldsymbol{h}$ and $4 \boldsymbol{h}$ (97% ee).
(R)-2-(hydroxy(phenyl)methyl)-4-(trifluoromethyl)phenol (3h, 77% yield, 97% ee): ${ }^{\mathbf{1}} \mathbf{H} \mathbf{~ N M R ~ (4 0 0 ~}$
$\mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 3.12$ (br s, 1H, CHOH)), $6.02(\mathrm{~s}, 1 \mathrm{H}, \mathrm{CHOH}), 6.95(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{Ar}-H), 7.12$ $(\mathrm{d}, J=1.6 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{Ar}-H), 7.33-7.41(\mathrm{~m}, 5 \mathrm{H}, \mathrm{Ar}-H), 7.44(\mathrm{dd}, J=1.6,8.5 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{Ar}-H), 8.52(\mathrm{br} \mathrm{s}$, $1 \mathrm{H}, \mathrm{Ar}-\mathrm{OH}) \cdot{ }^{13} \mathbf{C}\left\{{ }^{1} \mathbf{H}\right\} \mathbf{N M R}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 76.9,117.6,122.2\left(\mathrm{q}, J_{\mathrm{CF}}=33.1 \mathrm{~Hz}\right), 125.4(\mathrm{q}$, $\left.J_{\mathrm{CF}}=3.7 \mathrm{~Hz}\right), 125.6\left(\mathrm{q}, J_{\mathrm{CF}}=271.0 \mathrm{~Hz}\right), 126.5\left(\mathrm{q}, J_{\mathrm{CF}}=3.7 \mathrm{~Hz}\right), 126.6,126.8,128.7,129.0,141.0$, 158.3. HRMS (FAB) m / z calcd for $\mathrm{C}_{14} \mathrm{H}_{10} \mathrm{~F}_{3} \mathrm{O}_{2}:\left(\mathrm{M}^{+}-\mathrm{H}\right)$ 267.0632, found 267.0632. Chiral separation: The enantioselectivity of 3h was determined by HPLC using Chiralpak OD-H (IPA/Hexane 1:9; flow $0.5 \mathrm{~mL} / \mathrm{min}, \lambda=254 \mathrm{~nm}$); retention time: $t_{\mathrm{R}}=16.2 \mathrm{~min}$ (minor S-enantiomer) and 19.9 min (major R-enantiomer).
(R)-phenyl(3-(trifluoromethyl)phenyl)methanol (4h, 58\% yield, 97% ee): Spectroscopic data of $\mathbf{4 h}$ was identified to that previously reported for racemic compound. ${ }^{59} \mathbf{1} \mathbf{H} \mathbf{N M R}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta$ $2.27(\mathrm{~d}, J=3.5 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CHOH}), 5.89(\mathrm{~d}, J=3.5 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CHOH}), 7.25-7.37(\mathrm{~m}, 5 \mathrm{H}, \mathrm{Ar}-H), 7.44$ (dd, $J=7.9,7.9 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{Ar}-H), 7.53(\mathrm{dd}, J=8.2,8.2 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{Ar}-H), 7.70(\mathrm{br} \mathrm{s}, 1 \mathrm{H}, \mathrm{Ar}-H$). Chiral separation: The enantioselectivity of $\mathbf{4 h}$ was determined by HPLC using Chiralpak OB-H (IPA/Hexane 1:9; flow $1.0 \mathrm{~mL} / \mathrm{min}, \lambda=254 \mathrm{~nm}$); retention time: $t_{\mathrm{R}}=9.2 \mathrm{~min}$ (major R-enantiomer) and 21.1 min (minor S-enantiomer).

Reaction of 1i giving (\boldsymbol{R})-2i (95% yield, 99% ee): The general procedure was followed with 2-(dimethyl(3-(trifluoromethyl)phenyl)silyl)benzaldehyde (1i) (154.0 $\mathrm{mg}, 0.5 \mathrm{mmol}$) and reaction was conducted at room temperature for 1 h . Purification by short silica gel column chromatography gave (R)-1,1-dimethyl-3-(3-(trifluoromethyl)phenyl)-1,3-dihydrobenzo[c][1,2]oxasilole (2i) as colorless liquid in 95% yield ($147.0 \mathrm{mg}, 0.48 \mathrm{mmol}$). ${ }^{1} \mathbf{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 0.47(\mathrm{~d}, J=$ $\left.2.3 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{SiCH}_{3}\right), 0.55\left(\mathrm{~d}, J=2.3 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{SiCH}_{3}\right), 6.21(1 \mathrm{H}, \mathrm{CHOSi}), 7.02$ (br s, $\left.1 \mathrm{H}, \mathrm{Ar}-H\right)$, 7.32-7.36 (m, 2H, Ar-H), 7.46 (br s, 2H, Ar-H), 7.52-7.68 (m, 2H, Ar-H), 7.60-7.65 (m, 1H, Ar-H). ${ }^{\mathbf{1 3} \mathbf{C}\left\{{ }^{1} \mathbf{H}\right\} \mathbf{N M R}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 0.4,1.1,83.3,123.5,123.8\left(\mathrm{q}, J_{\mathrm{CF}}=3.7 \mathrm{~Hz}\right), 124.0\left(\mathrm{~d}, J_{\mathrm{CF}}=\right.}$ $272.0 \mathrm{~Hz}), 124.6\left(\mathrm{q}, J_{\mathrm{CF}}=3.7 \mathrm{~Hz}\right), 127.5,129.0,130.0,130.3,130.8\left(\mathrm{~d}, J_{\mathrm{CF}}=32.0 \mathrm{~Hz}\right), 130.9,135.1$, 144.8, $151.5\left(\mathrm{~d}, J_{\mathrm{CF}}=9.0 \mathrm{~Hz}\right) . \underline{\text { HRMS }(\mathrm{EI}): ~ m / z}$ Calcd for $\mathrm{C}_{16} \mathrm{H}_{15} \mathrm{~F}_{3} \mathrm{OSi}:\left(\mathrm{M}^{+}\right) 308.0844$, found 308.0841. $[\alpha]_{\mathrm{D}}{ }^{23}=(-) 116.3^{\circ} \quad\left(c=0.1\right.$, in $\left.\mathrm{CHCl}_{3}\right)$. The absolute stereochemistry of $\mathbf{2 i}$ was assigned by analogy to $\mathbf{2 h}$ and enantioselectivity was evaluated after converting it into desilylation product $\mathbf{4 h}$.
(73% yield, 99% ee). Chiral separation: The enantioselectivity was determined by means of SFC using Chiralpak IB (Back pressure $=15 \mathrm{MPa}$, Flow $\left(\mathrm{CO}_{2}\right)=5.0 \mathrm{~mL} / \mathrm{min}$, Flow (isopropanol) $=0.2$ $\mathrm{mL} / \mathrm{min}, 25^{\circ} \mathrm{C}, \lambda=230 \mathrm{~nm}$). Retention time: $t_{\mathrm{R}}=3.4 \mathrm{~min}$ (major S-enantiomer) and 3.8 min (minor R-enantiomer).

Reaction of $\mathbf{1 j}$ giving ($\boldsymbol{R} \mathbf{)} \mathbf{- 2} \mathbf{j}$ (95% yield, 99.9% ee): The general procedure was followed with 2-((4-fluorophenyl)dimethylsilyl)benzaldehyde ($\mathbf{1} \mathbf{j})(129.0 \mathrm{mg}, 0.5 \mathrm{mmol})$ and reaction was conducted at room temperature for 1 h . Purification by short silica gel column chromatography gave (R)-3-(4-fluorophenyl)-1,1-dimethyl-1,3-dihydrobenzo[c][1,2]oxasilole ($\mathbf{2 j}$) as pale yellow oil in 98% yield $(127.0 \mathrm{mg}, 0.47 \mathrm{mmol}) .{ }^{1} \mathbf{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 0.45\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{SiCH}_{3}\right), 0.52(\mathrm{~s}, 3 \mathrm{H}$, $\left.\mathrm{SiCH}_{3}\right), 6.15$ (s, 1H, CHOSi), 6.96-7.06 (m, 3H, Ar-H), 7.20-7.28 (m, 2H, Ar-H), 7.29-7.36 (m, 2H, $\mathrm{Ar}-H), 7.59-7.65(\mathrm{~m}, 1 \mathrm{H}, \mathrm{Ar}-H) .{ }^{\mathbf{1 3} \mathbf{C}\left\{{ }^{1} \mathbf{H}\right\} \mathbf{N M R}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 0.4,1.2,83.3,115.3\left(\mathrm{~d}, J_{\mathrm{CF}}=\right.}$ $22.8 \mathrm{~Hz}), 123.7,127.2,128.8\left(\mathrm{~d}, J_{\mathrm{CF}}=7.9 \mathrm{~Hz}\right), 129.8,130.7,135.1,139.7\left(\mathrm{~d}, J_{\mathrm{CF}}=3.0 \mathrm{~Hz}\right), 152.2$, $162.3\left(\mathrm{~d}, J_{\mathrm{CF}}=248.0 \mathrm{~Hz}\right.$). HRMS (EI): m / z Calcd for $\mathrm{C}_{15} \mathrm{H}_{15} \mathrm{FOSi}:\left(\mathrm{M}^{+}\right) 258.0876$, found 258.0878. $[\alpha]_{\mathrm{D}}{ }^{23}=(-) 112.2\left(c=0.16\right.$, in $\left.\mathrm{CHCl}_{3}\right)$. The absolute stereochemistry of $\mathbf{2} \mathbf{j}$ was assigned by analogy to $\mathbf{2 h}$ and enantioselectivity was evaluated after converting it into desilylation product $\mathbf{4 f}$ (70% yield, 99.9% ee). Chiral separation: The enantioselectivity for $\mathbf{4 f}$ was determined by SFC using Chiralpak ID $\left(\right.$ Back pressure $=15 \mathrm{MPa}$, Flow $\left(\mathrm{CO}_{2}\right)=3.5 \mathrm{~mL} / \mathrm{min}$, Flow $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right)=0.6 \mathrm{~mL} / \mathrm{min}, 25{ }^{\circ} \mathrm{C}, \lambda=$ 250 nm). Retention time: $t_{\mathrm{R}}=2.8 \mathrm{~min}$ (minor R-enantiomer) and 3.1 min (major S-enantiomer).

Reaction of $\mathbf{1 k}$ giving $(\boldsymbol{R}) \mathbf{- 2 k}$ (99% yield, 99% ee): The general procedure was followed with 2-dimethyl(3-methylphenyl)silylbenzaldehyde (1k) ($51.0 \mathrm{mg}, 0.2 \mathrm{mmol}$) and reaction was conducted
at room temperature for 3 h . Purification by short silica gel column chromatography gave (R)-1,1-dimethyl-3-(m-tolyl)-1,3-dihydrobenzo[c][1,2]oxasilole ($\mathbf{2 k}$) as pale yellow oil in 99% yield $(50.0 \mathrm{mg}, 0.2 \mathrm{mmol}) .{ }^{\mathbf{1}} \mathbf{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 0.44\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{SiCH}_{3}\right), 0.53\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{SiCH}_{3}\right), 2.33$ $\left(\mathrm{s}, 3 \mathrm{H}, \mathrm{Ar}-\mathrm{CH}_{3}\right), 6.13(\mathrm{~s}, 1 \mathrm{H}, \mathrm{CHOSi}), 7.00-7.12(\mathrm{~m}, 4 \mathrm{H}, \mathrm{Ar}-H), 7.22(\mathrm{t}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{Ar}-H)$, 7.28-7.35 (m, 2H, Ar-H), 7.58-7.64 (m, 1H, Ar-H). $[\alpha]_{\mathrm{D}}{ }^{23}=(-) 133.3^{\circ}\left(c=0.1\right.$, in $\left.\mathrm{CHCl}_{3}\right)$. Spectroscopic data of $\mathbf{2 k}$ was identified to that previously reported for racemic compound. ${ }^{S 2}$ The absolute stereochemistry of $\mathbf{2 k}$ was assigned by analogy to $\mathbf{2 h}$ and enantioselectivity was evaluated
 2.24 (br s, 1H, CHOH), $2.33\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{Ar}-\mathrm{CH}_{3}\right), 5.79(\mathrm{~s}, 1 \mathrm{H}, \mathrm{CHOH}), 7.07(\mathrm{~d}, J=7.3 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{Ar}-\mathrm{H})$, 7.14-7.28 (m, 4H, Ar- H), 7.30-7.40 (m, 4H, Ar- H). Spectroscopic data of $\mathbf{4 k}$ was identified to that previously reported. ${ }^{\text {S7 }}$ Chiral separation: The enantioselectivity was determined by means of SFC using Chiralpak IA $\left(\right.$ Back pressure $=15 \mathrm{MPa}$, Flow $\left(\mathrm{CO}_{2}\right)=2.0 \mathrm{~mL} / \mathrm{min}$, Flow (isopropanol) $=0.3$ $\mathrm{mL} / \mathrm{min}, 25{ }^{\circ} \mathrm{C}, \lambda=250 \mathrm{~nm}$). Retention time: $t_{\mathrm{R}}=5.6 \mathrm{~min}$ (major S-enantiomer) and 5.9 min (minor R-enantiomer).

Reaction of $1 \mathbf{l}$ giving (\boldsymbol{R})-2l (97% yield, 99% ee): The general procedure was followed with 2-dimethyl(4-methylphenyl)silylbenzaldehyde (11) $(50.5 \mathrm{mg}, 0.2 \mathrm{mmol})$ and reaction was conducted at room temperature for 3 h . Purification by silica gel column chromatography gave (R)-1,1-dimethyl-3-(p-tolyl)-1,3-dihydrobenzo[c][1,2]oxasilole (21) as pale yellow oil in 97% yield $(49.0 \mathrm{mg}, 0.19 \mathrm{mmol})$. Spectroscopic data of $\mathbf{2 l}$ was identified to that previously reported. ${ }^{\mathrm{S} 2} \underline{\mathbf{1}} \mathbf{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 0.44\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{SiCH}_{3}\right), 0.51\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{SiCH}_{3}\right), 2.33\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{Ar}-\mathrm{CH}_{3}\right), 6.14$ (, $1 \mathrm{H}, \mathrm{CHO}), 6.99-7.05(\mathrm{~m}, 1 \mathrm{H}, \mathrm{Ar}-H), 7.11-7.18$ (m, 4H, Ar-H), 7.28-7.34 (m, 2H, Ar-H), 7.58-7.63 $(\mathrm{m}, 1 \mathrm{H}, \operatorname{Ar}-H) \cdot[\alpha]_{\mathrm{D}}{ }^{23}=(-) 121.7\left(c=0.1\right.$, in $\left.\mathrm{CHCl}_{3}\right)$. The absolute stereochemistry of $\mathbf{2 l}$ was assigned by analogy to $\mathbf{2 h}$ and enantioselectivity of $\mathbf{2 l}$ was evaluated after converting it into desilylation product $\mathbf{4 l}\left(75 \%\right.$ yield, 99% ee). ${ }^{\mathbf{1}} \mathbf{H} \mathbf{~ N M R ~ (~} 400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 2.21(\mathrm{~s}, 1 \mathrm{H}, \mathrm{CHOH})$, $2.30\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 5.77(\mathrm{~s}, 1 \mathrm{H}, \mathrm{CHOH}), 7.11(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{Ar}-\mathrm{H}), 7.19-7.25(\mathrm{~m}, 3 \mathrm{H}, \mathrm{Ar}-\mathrm{H})$, 7.26-7.37 (m, 4H, Ar-H). Spectroscopic data of 41 was identified to that previously reported. ${ }^{\text {S7 }}$

Chiral separation: The enantioselectivity was determined by SFC using Chiralpak IB (Back pressure $=15 \mathrm{MPa}$, Flow $\left(\mathrm{CO}_{2}\right)=3.0 \mathrm{~mL} / \mathrm{min}$, Flow (isopropanol $\left.)=0.3 \mathrm{~mL} / \mathrm{min}, 25^{\circ} \mathrm{C}, \lambda=250 \mathrm{~nm}\right)$. Retention time: $t_{\mathrm{R}}=3.9 \mathrm{~min}$ (major S-enantiomer) and 4.2 min (minor R-enantiomer).

Diastereoselective synthesis of 3-arylbenzoxasiloles (2m-o)

Reaction of $\mathbf{1 m}$ giving $\left(\boldsymbol{R}_{\mathbf{C}}, \boldsymbol{S}_{\mathbf{S i}}\right)-\mathbf{2 m}(99 \%$ yield, $89: 11 \mathrm{dr}, 98 \%$ ee $)$: The general procedure for catalytic reaction was slightly modified. A reaction tube charged with $(R, R) \cdot \mathbf{L 5} \cdot \mathbf{H B F}_{4}(12.0 \mathrm{mg}$, $0.022 \mathrm{mmol}), \mathrm{NaO}^{t} \mathrm{Bu}(1.9 \mathrm{mg}, 0.02 \mathrm{mmol})$ and $\mathrm{Ni}(\operatorname{cod})_{2}(6.0 \mathrm{mg}, 0.022 \mathrm{mmol})$ in toluene $(5.0 \mathrm{~mL})$ was stirred for 15 min . 2-Diphenylmethylsilylbenzaldehyde ($\mathbf{1 m}$) ($300.0 \mathrm{mg}, 1.0 \mathrm{mmol}$) was added and stirred at room temperature for 0.5 h . Purification by short silica gel column chromatography gave 1-methyl-1,3-diphenyl-1,3-dihydrobenzo[c][1,2]oxasilole ($\mathbf{2 m}$) as pale yellow oil in 99% yield $(296.0 \mathrm{mg}, \quad 0.2 \mathrm{mmol})$ as a mixture of diastereomers ($89: 11 \mathrm{dr}$) ${ }^{\mathbf{1} \mathbf{H} \mathbf{N M R}(400 \mathrm{MHz} \text {, }}$ $\mathrm{C}_{6} \mathrm{D}_{6}$): $\delta 0.43$ ($\mathrm{s}, 3 \mathrm{H}, \mathrm{SiCH}_{3}$, minor), 0.48 ($\mathrm{s}, 3 \mathrm{H}, \mathrm{SiCH}_{3}$, major), 6.03 (s, $1 \mathrm{H}, \mathrm{CHOSi}$, major), 6.05 (s , $1 \mathrm{H}, \mathrm{CHOSi}$, major), 6.72-7.76 (m, 1H each for both diastereomers, Ar- H), 6.83-6.92 (m, 3H each for both diastereomers, Ar-H), 6.92-7.00 (m, 5H each for both diastereomers, Ar-H), 7.07 (d, $J=7.0$ $\mathrm{Hz}, 2 \mathrm{H}, \mathrm{Ar}-H$, minor), 7.09 (d, $J=7.0 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{Ar}-H$, major), $7.23-7.29$ (m, 1H each for both diastereoisomers, $\operatorname{Ar}-H$), $7.38-7.46(\mathrm{~m}, 2 \mathrm{H}$ each for both diastereomers, $\mathrm{Ar}-H) .{ }^{13} \mathbf{C}\left\{{ }^{1} \mathbf{H}\right\} \mathbf{N M R}(100$ $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta-0.7_{\text {minor }},-0.5_{\text {major }}, 85.1_{\text {minor }}, 85.3_{\text {major }}, 124.9,128.1,128.2,128.5,128.7,128.9$, $129.2,129.3,130.8,131.1,132.1,132.2,134.6,134.9,135.2,137.5,144.9,145.1,154.5$. Several carbons of phenyl groups are overlapped. $[\alpha]_{\mathrm{D}}{ }^{23}=(-) 176.3\left(c=0.1\right.$, in $\left.\mathrm{CHCl}_{3}\right)$. The absolute stereochemistries of $\mathbf{2 m}$ was assigned to be ($R_{\mathrm{c}}, S_{\mathrm{Si}}$) by analogy to $\mathbf{2 n}$ (determined by X-ray analysis, vide infra). The enantioselectivity of $\mathbf{2 m}$ with respect to carbon-stereogenic centre was evaluated after converting it into $\mathbf{3 a}$ using TFO conditions as employed previously (98% ee at carbon) for $\mathbf{2 a}$ and 2b. Chiral separation: The enantioselectivity was determined by SFC using Chiralpak ID $\left(\right.$ Back pressure $=15 \mathrm{MPa}$, Flow $\left(\mathrm{CO}_{2}\right)=2.0 \mathrm{~mL} / \mathrm{min}$, Flow $($ isopropanol $)=0.3 \mathrm{~mL} / \mathrm{min}, 25^{\circ} \mathrm{C}, \lambda=$ 250 nm). Retention time: $t_{\mathrm{R}}=4.0 \mathrm{~min}$ (minor S-enantiomer) and 4.5 min (major R-enantiomer).

Reaction of 1n giving ($\boldsymbol{R}_{\mathbf{C}}, \boldsymbol{S}_{\mathbf{S i}}$)-2n (99\% yield, $99: 1 \mathrm{dr}, 95 \%$ ee): A reaction tube was charged with $(R, R)-\mathbf{L 5} \cdot \mathbf{H B F}_{4}(24.0 \mathrm{mg}, 0.044 \mathrm{mmol}), \mathrm{NaO}^{t} \mathrm{Bu}(3.8 \mathrm{mg}, 0.04 \mathrm{mmol})$ and $\mathrm{Ni}(\mathrm{cod})_{2}(12.0 \mathrm{mg}, 0.044$ mmol) in toluene (10.0 mL) was stirred for 15 min . 2-(tert-Butyldiphenylsilyl)benzaldehyde (1n) ($720.0 \mathrm{mg}, 2.0 \mathrm{mmol}$) was added and stirred at room temperature for 8 h . Purification by short silica gel column chromatography gave 1-(tert-butyl)-1,3-diphenyl-1,3-dihydrobenzo[c][1,2]oxasilole (2n) as a while solid in 99% yield ($712.0 \mathrm{mg}, 1.9 \mathrm{mmol}$) as a mixture of diastereomers (99:1 dr). It was recrystallized (in hexane, $-20^{\circ} \mathrm{C}$) to a single diastereomer. ${ }^{1} \mathbf{H} \mathbf{N M R}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 1.14(\mathrm{~s}$, $\left.9 \mathrm{H}, \mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right), 6.30(\mathrm{~s}, 1 \mathrm{H}, \mathrm{CHOSi}), 7.06(\mathrm{~d}, J=6.0 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{Ar}-H), 7.15-7.33(\mathrm{~m}, 5 \mathrm{H}, \mathrm{Ar}-\mathrm{H})$, $\left.7.32-7.56(\mathrm{~m}, 5 \mathrm{H}, \mathrm{Ar}-H), 7.82(\mathrm{~d}, J=6.0 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{Ar}-H), 7.88(\mathrm{~d}, J=6.0 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{Ar}-H) .{ }^{13} \mathbf{C}{ }^{1} \mathbf{H}\right\}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 19.8,25.7,85.2,123.9,127.2,127.3,127.7,127.8,128.4,129.8,130.0$, 131.7, 134.1, 134.3, 143.6, 153.5. HRMS (ESI): m / z Calcd for $\mathrm{C}_{23} \mathrm{H}_{24} \mathrm{OSiNa}:\left(\mathrm{M}^{+}+\mathrm{Na}\right) 367.1494$, found 367.1481. $[\alpha]_{\mathrm{D}}{ }^{23}=(-) 172.2^{\circ} \quad\left(c=0.1\right.$, in $\left.\mathrm{CHCl}_{3}\right)$. The absolute stereochemistries $\left(S_{(S i)}, R_{(C)}\right)$ of $\mathbf{2 n}$ was confirmed by X-ray analysis (Flack parameter $0.03(15)$. The enantioselectivity with respect to carbon centre was evaluated after converting it into $\mathbf{3 a}$ using TFO conditions as employed previously. Chiral separation: The enantioselectivity of 3a was determined by SFC using Chiralpak ID $\left(\right.$ Back pressure $=15 \mathrm{MPa}$, Flow $\left(\mathrm{CO}_{2}\right)=2.0 \mathrm{~mL} / \mathrm{min}$, Flow $($ isopropanol $)=0.3 \mathrm{~mL} / \mathrm{min}, 25^{\circ} \mathrm{C}, \lambda$ $=250 \mathrm{~nm}$). Retention time: $t_{\mathrm{R}}=3.7 \mathrm{~min}$ (minor S-enantiomer) and 3.9 min (major R-enantiomer).

Reaction of $\mathbf{1 0}$ giving ($\left.\boldsymbol{R}_{\mathrm{C}}, \boldsymbol{S}_{\mathrm{Si}}\right)$-2o (99\% yield, $99: 1 \mathrm{dr}, 96 \%$ ee): A reaction tube was charged with $(R, R)-\mathbf{L 5} \cdot \mathbf{H B F}_{4}(12.0 \mathrm{mg}, 0.022 \mathrm{mmol}), \mathrm{NaO}^{t} \mathrm{Bu}(1.9 \mathrm{mg}, 0.02 \mathrm{mmol})$ and $\mathrm{Ni}(\mathrm{cod})_{2}(6.0 \mathrm{mg}, 0.022$ $\mathrm{mmol})$ in toluene (5.0 mL) was stirred for 15 min . 2-(tert-Butyldiphenylsilyl)-5-fluorobenzaldehyde
(10) ($362.0 \mathrm{mg}, 1.0 \mathrm{mmol}$) was added and stirred at room temperature for 12 h . Purification by short silica gel column chromatography gave 1-(tert-butyl)-6-fluoro-1,3-diphenyl-1,3-dihydrobenzo[c][1,2]oxasilole (20) as a while solid in 99% yield ($358.0 \mathrm{mg}, 0.99 \mathrm{mmol}$) as a mixture of diastereomers (99:1 dr). It was recrystallized (in hexane, $-20^{\circ} \mathrm{C}$) to single diastereomer. ${ }^{\mathbf{1}} \mathbf{H} \mathbf{N M R}$ (400 MHz, CDCl_{3}): $\delta 1.06\left(\mathrm{~s}, 9 \mathrm{H}, \mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right), 6.20(\mathrm{~s}, 1 \mathrm{H}, \mathrm{CHOSi}), 6.91-6.97(\mathrm{~m}, 1 \mathrm{H}, \mathrm{Ar}-\mathrm{H}), 7.00(\mathrm{td}$, $J=2.1,8.7 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{Ar}-H), 7.10-7.17(\mathrm{~m}, 2 \mathrm{H}, \mathrm{Ar}-H), 7.19-7.27(\mathrm{~m}, 3 \mathrm{H}, \mathrm{Ar}-H), 7.35-7.48(\mathrm{~m}, 4 \mathrm{H}$, $\mathrm{Ar}-H), 7.73(\mathrm{dd}, J=1.7,7.0 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{Ar}-H) .{ }^{\mathbf{1 3}} \mathbf{C}\left\{{ }^{\mathbf{1}} \mathbf{H}\right\} \mathbf{N M R}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 19.8,25.7,84.7$, $117.3\left(\mathrm{~d}, J_{\mathrm{CF}}=15.4 \mathrm{~Hz}\right), 117.5\left(\mathrm{~d}, J_{\mathrm{CF}}=17.0 \mathrm{~Hz}\right), 125.6\left(\mathrm{~d}, J_{\mathrm{CF}}=7.3 \mathrm{~Hz}\right), 127.2,127.9,128.0,128.5$, $130.1,133.6,134.0,134.5\left(\mathrm{~d}, J_{\mathrm{CF}}=5.7 \mathrm{~Hz}\right), 143.3,148.9\left(\mathrm{~d}, J_{\mathrm{CF}}=2.1 \mathrm{~Hz}\right), 162.2\left(\mathrm{~d}, J_{\mathrm{CF}}=246.4 \mathrm{~Hz}\right)$. HRMS (EI): m / z Calcd for $\mathrm{C}_{23} \mathrm{H}_{23} \mathrm{FOSi}:\left(\mathrm{M}^{+}\right) 362.1502$, found 362.1501. $[\alpha]_{\mathrm{D}}{ }^{23}=(-) 156.8^{\circ} \quad(c=$ 0.1 , in CHCl_{3}). The absolute stereochemistries of $\mathbf{2 0}$ was assigned by analogy to $\mathbf{2 n}$ and the enantioselectivity with respect to carbon centre was evaluated after converting it into desilylation product $\mathbf{4 f}$ using TBAF (83% yield, 96% ee). The spectroscopic data of $\mathbf{4 f}$ was identified to that previously reported as obtained from 2 f . Chiral separation: The enantioselectivity of $\mathbf{4 f}$, obtained from 20 was determined by SFC using Chiralpak ID (Back pressure $=15 \mathrm{MPa}$, Flow $\left(\mathrm{CO}_{2}\right)=4.0$ $\mathrm{mL} / \mathrm{min}$, Flow $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right)=0.6 \mathrm{~mL} / \mathrm{min}, 25{ }^{\circ} \mathrm{C}, \lambda=250$). Retention time: $t_{\mathrm{R}}=3.1 \mathrm{~min}$ (major R-enantiomer) and 3.9 min (minor S-enantiomer).

Reaction of 1p: A sample vial was charged with $(R, R)-\mathbf{L 5} \cdot \mathbf{H B F} \mathbf{4}(12.0 \mathrm{mg}, 0.022 \mathrm{mmol})$ and $\mathrm{NaO}^{t} \mathrm{Bu}(1.9 \mathrm{mg}, 0.02 \mathrm{mmol})$ and after 10 min of stirring $\mathrm{Ni}(\mathrm{cod})_{2}(5.5 \mathrm{mg}, 0.02 \mathrm{mmol})$ was added. To the stirring solution was added 2-trimethylsilylbenzaldehyde (1p) and transferred to J. Young NMR tube. The reaction was monitored by NMR. After 24 h (observed no reaction), it was hearted to $80^{\circ} \mathrm{C}$. No reaction took place and starting material was intact as such, recovered after filtration.

Scope of 3-vinyl- and alkynyl-2,1-benzoxasiloles (Table 3)

Table 3. Catalytic Enantioselective Synthesis of 3-Vinyl- and Alkynylbenzoxasiloles

Reaction of 1q giving (\boldsymbol{R})-2q (80% yield, $\mathbf{7 6 \%}$ ee): A screwed reaction tube was charged with $(R, R)-\mathbf{L 5} \cdot \mathbf{H B F}_{4}(54.3 \mathrm{mg}, 0.1 \mathrm{mmol})$ and $\mathrm{NaO}^{t} \mathrm{Bu}(9.6 \mathrm{mg}, 0.1 \mathrm{mmol})$ in THF (1.5 mL). After 10 \min of stirring, $\mathrm{Ni}(\operatorname{cod})_{2}(13.7 \mathrm{mg}, 0.05 \mathrm{mmol})$ was added. The resulting reaction mixture was stirred at room temperature for 1 h followed by addition of a solution of $\mathbf{1 q}(190.0 \mathrm{mg}, 1.0 \mathrm{mmol}$ in 1 mL THF). The reaction mixture was stirred at $60^{\circ} \mathrm{C}$ for 18 h . The reaction mixture was filtered through small silica column. It was further purification by recycle GPC to get (R)-1,1-dimethyl-3-vinyl-1,3-dihydrobenzo[c][1,2]oxasilole (2q) as volatile colorless oil in 80% yield ($136.0 \mathrm{mg}, 0.36 \mathrm{mmol}$). The spectroscopic data was identified to that reported data for racemic compound. ${ }^{\mathrm{S} 2} \mathbf{1} \mathbf{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 0.40\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{SiCH}_{3}\right), 0.41\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{SiCH}_{3}\right), 5.18(\mathrm{~d}, J=$ $\left.10.1 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}=\mathrm{CH}_{2}\right), 5.40\left(\mathrm{~d}, J=16.8 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}=\mathrm{CH}_{2}\right), 5.58(\mathrm{~d}, J=6.8 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CHOSi}), 5.91$ (ddd, $\left.J=6.8,10.1,16.8 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}=\mathrm{CH}_{2}\right), 7.21(\mathrm{~d}, J=7.2 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{Ar}-H), 7.31(\mathrm{t}, J=7.2 \mathrm{~Hz}, 1 \mathrm{H}$, $\operatorname{Ar}-H), 7.40(\mathrm{dt}, J=1.3,7.6 \mathrm{~Hz}, 1 \mathrm{H}, \operatorname{Ar}-H), 7.56(\mathrm{~d}, J=7.2 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{Ar}-H) .[\alpha]_{\mathrm{D}}{ }^{23}=(-) 15.1(c=$ 0.09 , in CHCl_{3}). The absolute stereochemistry of $\mathbf{2 q}$ was assigned by analogy to $\mathbf{2 h}$ and enantioselectivity was evaluated after converting it into oxidation product $\mathbf{3 q}$. To the stirred solution
of benzoxasilole $\mathbf{2 q}(30 \mathrm{mg}, 0.15 \mathrm{mmol})$ in 1 mL MeOH and THF ($1: 1$) KHCO3 (30 mg) and $\mathrm{H}_{2} \mathrm{O}_{2}$ (35% aqueous solution, 0.12 mL) was added. The reaction flask was closed with stopper and stirred at room temperature for overnight gave vinyl alcohol $\mathbf{3 q}$ (isolated with $15 \% \mathrm{EtOAc}: H e x a n e ; 10 \mathrm{mg}$, 66% yield, 76% ee). ${ }^{1} \mathbf{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 2.80(\mathrm{br} \mathrm{s}, 1 \mathrm{H}, \mathrm{CHOH}), 5.24-5.37(\mathrm{~m}, 3 \mathrm{H}$, CHOH and $\left.\mathrm{CH}=\mathrm{CH}_{2}\right), 6.14\left(\mathrm{ddd}, J=16.9,10.3,6.3 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}=\mathrm{CH}_{2}\right), 6.83-6.89(\mathrm{~m}, 2 \mathrm{H}, \mathrm{Ar}-\mathrm{H})$, $7.01(\mathrm{dd}, J=7.5,1.6 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{Ar}-H), 7.19(\mathrm{td}, J=8.1,1.7 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{Ar}-H), 7.74$ (br s, 1H, Ar-OH). ${ }^{13} \mathbf{C}\left\{{ }^{1} \mathbf{H}\right\}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl} 3$): $\delta 76.3,116.4,117.2,120.0,125.5,127.6,129.4,138.0,155.5$. HRMS (ESI) m / z calcd for $\mathrm{C}_{9} \mathrm{H}_{10} \mathrm{O}_{2}$ 150.0681, found 150.0680. Chiral separation: The enantioselectivity for $\mathbf{3 q}$ was determined by HPLC using Chiralpak OB-H; Isopropanol/Hexane $=$ 3:97; Flow $=0.5 \mathrm{~mL} / \mathrm{min} ; \mathrm{T}=40{ }^{\circ} \mathrm{C} ; \lambda=250 \mathrm{~nm}$. Retention time: $t_{\mathrm{R}}=43.1 \mathrm{~min}$ (minor S-enantiomer) and 47.4 min (major R-enantiomer).

Reaction of $1 \mathbf{r}$ giving $2 \mathbf{2 r}$ (78% yield, 73% ee): The general procedure was followed with 2-dimethylvinylsilyl-5-methoxybenzaldehyde (1r) ($220.0 \mathrm{mg}, 1.0 \mathrm{mmol}$) and reaction was conducted at $60^{\circ} \mathrm{C}$ for 24 h . The reaction mixture was filtered through small silica column. It was further purification by recycle GPC to get (R)-5-methoxy-1,1-dimethyl-3-vinyl-1,3-dihydrobenzo[c] -[1,2]oxasilole ($\mathbf{2 r}$) as colorless and volatile oil in 78% yield ($170.0 \mathrm{mg}, 0.77 \mathrm{mmol}$). The spectroscopic data was identified to that reported data for racemic compound. ${ }^{\text {S2 }}{ }^{\mathbf{1} \mathbf{H} \mathbf{N M R}}$ (400 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 0.44\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{SiCH}_{3}\right), 0.45\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{SiCH}_{3}\right), 3.82\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{OCH}_{3}\right), 5.22(\mathrm{td}, J=1.2,10.0$ $\left.\mathrm{Hz}, 1 \mathrm{H}, \mathrm{CH}=\mathrm{CH}_{2}\right), 5.46\left(\mathrm{td}, J=1.2,17.0 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}=\mathrm{CH}_{2}\right), 5.58(\mathrm{~d}, J=6.8 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CHO}), 5.97$ (ddd, $J=6.8,10.0,17.0 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}=\mathrm{CH}_{2}$), $6.77(\mathrm{~d}, J=2.4 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{Ar}-H), 6.93(\mathrm{dd}, J=2.0,8.0 \mathrm{~Hz}$, $1 \mathrm{H}, \operatorname{Ar}-H), 7.51(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}, \operatorname{Ar}-H) \cdot[\alpha]_{\mathrm{D}}{ }^{23}=(-) 9.7\left(c=0.09\right.$, in $\left.\mathrm{CHCl}_{3}\right)$. The absolute stereochemistry of $\mathbf{2 r}$ was assigned by analogy to $\mathbf{2 h}$ and enantioselectivity was evaluated after converting it into oxidation product $\mathbf{3 r}$ (69% yield, 73% ee). ${ }^{\mathbf{1}} \mathbf{H} \mathbf{~ N M R ~ (~} 400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 2.62$ (br s, $1 \mathrm{H}, \mathrm{CHOH}$), $3.74\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{OCH}_{3}\right), 5.25-5.37\left(\mathrm{~m}, 3 \mathrm{H}, \mathrm{CHOH}\right.$ and $\left.\mathrm{CH}=\mathrm{CH}_{2}\right), 6.09-6.18(\mathrm{~m}, 1 \mathrm{H}$, $\left.\mathrm{CH}=\mathrm{CH}_{2}\right), 6.59(\mathrm{~s}, J=2.7 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{Ar}-H), 6.75(\mathrm{dd}, J=8.7,2.5 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{Ar}-H), 6.81(\mathrm{~d}, J=8.7 \mathrm{~Hz}$, $1 \mathrm{H}, \mathrm{Ar}-H), 7.20(\mathrm{~d}, J=2.5 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{Ar}-\mathrm{OH}) .{ }^{13} \mathbf{C}\left\{{ }^{1} \mathbf{H}\right\} \mathbf{N M R}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 55.9,75.9,113.2$, $114.3,116.5,117.7,126.5,137.9,149.2,153.0$. HRMS (ESI) m / z calcd for $\mathrm{C}_{10} \mathrm{H}_{13} \mathrm{O}_{3} 181.0864$: $\left(\mathrm{M}^{+}\right)$
found 181.0861. Chiral separation: The enantioselectivity for $\mathbf{3 r}$ was determined by SFC using Chiralpak IB (Back pressure $=15 \mathrm{MPa}$, Flow $\left(\mathrm{CO}_{2}\right)=4.0 \mathrm{~mL} / \mathrm{min}$; Flow (isopropanol) $=0.2$ $\mathrm{mL} / \mathrm{min} ; \mathrm{T}=25{ }^{\circ} \mathrm{C} ; \lambda=230 \mathrm{~nm}$). Retention time: $t_{\mathrm{R}}=6.0 \mathrm{~min}$ (major R-enantiomer) and 6.9 min (minor S-enantiomer).

Reaction of 1s giving 2 s (76% yield, 93% ee): A screwed reaction tube was charged with (R, R) $\mathbf{L 5} \cdot \mathbf{H B F}_{4}(27.3 \mathrm{mg}, 0.05 \mathrm{mmol})$ and $\mathrm{NaO}^{t} \mathrm{Bu}(4.8 \mathrm{mg}, 0.05 \mathrm{mmol})$ in THF $(1.5 \mathrm{~mL})$. After 10 min of stirring, $\mathrm{Ni}(\operatorname{cod})_{2}(6.8 \mathrm{mg}, 0.025 \mathrm{mmol})$ was added. The resulting reaction mixture was stirred at room temperature for 1 h followed by addition of a solution of 2-diethyl(trimethylsilylethynyl)silylbenzaldehyde (1s) ($144.0 \mathrm{mg}, 0.5 \mathrm{mmol}$) in THF (1.0 mL) was added the solution. The reaction mixture was stirred at $60{ }^{\circ} \mathrm{C}$ for 8 h . The reaction mixture was filtered through small silica column. It was further purified by Kugelrohr distillation $(0.4 \mathrm{mmHg}$, $100{ }^{\circ} \mathrm{C}$) to get (R)-1,1-diethyl-3-((trimethylsilyl)ethynyl)-1,3-dihydrobenzo[c][1,2]oxasilole (2s) as colorless oil in 76% ($109.4 \mathrm{mg}, 0.38 \mathrm{mmol}$). The spectroscopic data was identified to that reported data for racemic compound. ${ }^{S 21}$ H NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 0.18\left(\mathrm{~s}, 9 \mathrm{H}, \mathrm{Si}\left(\mathrm{CH}_{3}\right)_{3}\right), 0.77-1.02(\mathrm{~m}$, $\left.10 \mathrm{H}, \mathrm{Si}\left(\mathrm{CH}_{2} \mathrm{CH}_{3}\right)_{2}\right), 5.91$ (s, 1H, CHO), 7.31-7.36 (m, 1H, Ar-H), 7.43-7.46 (m, 2H, Ar-H), 7.54 (dd, $J=0.8,7.3 \mathrm{~Hz} 1 \mathrm{H}, \mathrm{Ar}-H) .[\alpha]_{\mathrm{D}}{ }^{23}=(+) 8.9\left(c=0.2\right.$, in $\left.\mathrm{CHCl}_{3}\right)$. The absolute stereochemistry of 2s was assigned by analogy to $\mathbf{2 h}$ and enantioselectivity was evaluated after converting it into oxidation product 3 s according to the previously reported procedure (68% yield). The spectroscopic data was identified to that reported data for racemic compound. ${ }^{\text {S2 }} \mathbf{~ \mathbf { H ~ N M R }}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta$ 0.22 (s, 9H, TMS), 2.59 (br s, 1H, OH), 5.66 (s, 1H, ArCH), 6.87-6.91 (m, 2H, Ar-H), 7.10 (br s, 1H, $\mathrm{OH}), 7.22-7.26(\mathrm{~m}, 1 \mathrm{H}, \mathrm{Ar}-H), 7.36(\mathrm{dd}, J=1.4,7.8 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{Ar}-H)$. Chiral separation: The enantioselectivity for 3s was determined by SFC using Chiralpak IA (Back pressure $=15 \mathrm{MPa}$, Flow $\left(\mathrm{CO}_{2}\right)=4.0 \mathrm{~mL} / \mathrm{min}$; Flow (isopropanol) $=0.3 \mathrm{~mL} / \mathrm{min} ; \mathrm{T}=25^{\circ} \mathrm{C} ; \lambda=220 \mathrm{~nm}$). Retention time: $t_{\mathrm{R}}=3.1 \mathrm{~min}($ minor S-enantiomer) and 3.2 min (major R-enantiomer).

[5] Synthetic utilities of 3-arylbenzoxasiloles

Reaction of (R)-2a giving (R)-5 (61\% yield, 98% ee): To the stirring solution of (R)-2a ($86 \mathrm{mg}, 0.4$ mmol, 98% ee) in THF (2 mL) was added $\mathrm{Ag}(\mathrm{I}) \mathrm{F}(208 \mathrm{mg}, 1.6 \mathrm{mmol})$ followed by N-iodosuccinamide ($360 \mathrm{mg}, 1.6 \mathrm{mmol}$). The reaction flask was covered with aluminum foil and allowed to stir at room temperature for overnight under N_{2} atmosphere. After completion of reaction, it was filtered through celite and further purified by silica gel column chromatography to yield yellow oil product $6(189.0 \mathrm{mg}, 61 \%$ yield, isolated with $10 \% \mathrm{EtOAc}$:Hexane). Spectral data was identified to that previously reported. ${ }^{\text {S10 }} \mathbf{1} \mathbf{H} \mathbf{N M R}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 2.36-2.50(\mathrm{~m}, 1 \mathrm{H}, \mathrm{CHOH})$, $6.06(\mathrm{~d}, J=3.2 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CHOH}), 6.99(\mathrm{td}, J=1.4,7.6 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{Ar}-H), 7.26-7.44(\mathrm{~m}, 6 \mathrm{H}, \mathrm{Ar}-H), 7.52$ $(\mathrm{dd}, J=1.0,7.7 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{Ar}-H), 7.83(\mathrm{dd}, J=1.0,7.7 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{Ar}-H) .[\alpha]_{\mathrm{D}}^{23}=(+) 53.9^{\circ} \quad(c=0.18$, in $\left.\mathrm{CHCl}_{3}\right)\left(\right.$ Lit. $^{\mathrm{S} 11}[\alpha]_{\mathrm{D}}=(+) 68.2^{\circ} \quad(c=1.5$, in acetone for $>95 \%$ ee, R-analogue $)$. Chiral separation: The enantioselectivity was determined by SFC using Chiralpak IB (Back pressure $=15 \mathrm{MPa}$, Flow $\left(\mathrm{CO}_{2}\right)=2.0 \mathrm{~mL} / \mathrm{min}$, Flow $\left.(\mathrm{IPA})=0.3 \mathrm{~mL} / \mathrm{min}, 25^{\circ} \mathrm{C}, \lambda=250 \mathrm{~nm}\right)$. Retention time: $t_{\mathrm{R}}=5.8 \mathrm{~min}$ (major R-enantiomer) and 6.4 min (minor S-enantiomer). The absolute stereochemistry of 5 was assigned by analogy to previous report. ${ }^{\text {S10 }}$

Reaction of (R)-2a giving (R)-6 (74\% yield, 98% ee): To a stirring solution of $\mathbf{2 a}$ ($96 \mathrm{mg}, 0.4 \mathrm{mmol}$, 98% ee) and 4-iodoanisol ($140 \mathrm{mg}, 0.48 \mathrm{mmol}$) in dioxane (2 mL) was added a freshly prepared solution of $\mathrm{Pd}(\mathrm{OAc})_{2}(9 \mathrm{mg}, 8 \mathrm{~mol} \%)$ and 1,2-bis(dicyclohexylphosphino)ethane ($18 \mathrm{mg}, 16 \mathrm{~mol} \%$) in dioxane (2 mL). After stirring the reaction mixture for 30 min at room temperature, aqueous $\mathrm{NaOH}(2 \mathrm{M}, 2.0 \mathrm{mmol})$ was added. The biphasic solution was stirred further for 30 min followed by heated at $65^{\circ} \mathrm{C}$. After completion of reaction, it was cooled to rt and then diluted with ethyl acetate, filtered through silica and concentrated. It was dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and purified by silica gel column chromatography (with 15% EtOAc:hexane, 74% yield). ${ }^{1} \mathbf{H} \mathbf{~ N M R ~ (4 0 0 ~ M H z , ~} \mathrm{CDCl}_{3}$): $\delta 2.18$ (br s,
$1 \mathrm{H}, \mathrm{CHOH}), 3.77\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{OCH}_{3}\right), 5.88(\mathrm{~s}, 1 \mathrm{H}, \mathrm{CHOH}), 6.84(\mathrm{~d}, J=8.8 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{Ar}-H), 7.10-7.15(\mathrm{~m}$, $4 \mathrm{H}, \mathrm{Ar}-H), 7.16-7.23(\mathrm{~m}, 4 \mathrm{H}, \mathrm{Ar}-H), 7.25(\mathrm{td}, J=1.6,7.5 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{Ar}-H), 7.30(\mathrm{td}, J=1.6,7.5 \mathrm{~Hz}$,
 $\delta 55.4,72.5,113.5,126.7,127.2,127.3,127.4,127.7,128.3,130.3,130.5,133.2,141.1,141.3$, 144.0, 158.9. HRMS (EI): m / z Calcd for $\mathrm{C}_{20} \mathrm{H}_{18} \mathrm{O}_{2}:\left(\mathrm{M}^{+}\right)$290.1307, found 290.1308. $[\alpha]_{\mathrm{D}}{ }^{23}=(+)$ $160.8^{\circ}\left(c=0.2\right.$, in $\left.\mathrm{CHCl}_{3}\right)$. Chiral separation: The enantioselectivity was determined by SFC using Chiralpak IB (Back pressure $=15 \mathrm{MPa}$, Flow $\left(\mathrm{CO}_{2}\right)=2.0 \mathrm{~mL} / \mathrm{min}$, Flow $($ IPA $)=0.3 \mathrm{~mL} / \mathrm{min}$, $25{ }^{\circ} \mathrm{C}, \lambda=250 \mathrm{~nm}$). Retention time: $t_{\mathrm{R}}=5.6 \mathrm{~min}$ (major R-enantiomer) and 6.1 min (minor S-enantiomer).

Reaction of (R)-2a giving (R)-7 (78\% yield, 98% ee): To a solution of (R)-2a(240 mg, 1.0 mmol , 98% ee $)$ in dry THF (3 mL) was added $\mathrm{MeLi}\left(1.5 \mathrm{mmol}, 1.05 \mathrm{M}\right.$ in $\left.\mathrm{Et}_{2} \mathrm{O}\right)$ at $-78{ }^{\circ} \mathrm{C}$. After stirring for 30 min , the solution was transferred through cannula slowly to a pre-mixed homogeneous solution of HMPA (2.5 mL) and copper iodide ($228 \mathrm{mg}, 1.2 \mathrm{mmol}$) at room temperature, which turns the color of solution black. After 30 min , MeI (2.0 mmol) was added drop wise and the resulting solution was stirred at room temperature for 16 h , then diluted with reaction mixture was diluted with ether (10 mL) and quenched with aqueous $1 \mathrm{M} \mathrm{HCl}(10 \mathrm{~mL})$, and allowed to stir for 30 min . The reaction mixture was extracted with ethyl acetate ($3 \times 15 \mathrm{~mL}$). The combined organic layers were washed with brine, dried with $\mathrm{Na}_{2} \mathrm{SO}_{4}$, and concentrated in vacuo. The crude product was purified by silica gel chromatography (with 10% EtOAc:hexane) to yield 7 as a white solid ($155.0 \mathrm{mg}, 78 \%$). The spectral data was identified to that previously reported. ${ }^{\mathrm{S7}} \mathbf{1} \mathbf{H} \mathbf{~ N M R}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 2.12$ (br s, 1H, CHOH), $2.18\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{Ar}-\mathrm{CH}_{3}\right), 5.93(\mathrm{~d}, J=2.4 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CHOH}), 7.08(\mathrm{~d}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}$, $\mathrm{Ar}-H), 7.11-7.30(\mathrm{~m}, 7 \mathrm{H}, \mathrm{Ar}-H), 7.45(\mathrm{~d}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{Ar}-H) .[\alpha]_{\mathrm{D}}{ }^{23}=(-) 4.6^{\circ}(c=0.1$, in $\left.\mathrm{CHCl}_{3}\right)\left(\right.$ Lit. ${ }^{\mathrm{S7}}[\alpha]_{\mathrm{D}}{ }^{23}=(+) 3.0^{\circ} \quad\left(c=0.65\right.$, in CHCl_{3} for 86% ee, S-analogue). Chiral separation: The enantioselectivity was determined by SFC using Chiralpak IB (Back pressure $=15 \mathrm{MPa}$, Flow $\left(\mathrm{CO}_{2}\right)=2.0 \mathrm{~mL} / \mathrm{min}$, Flow $\left.(\mathrm{IPA})=0.3 \mathrm{~mL} / \mathrm{min}, 25^{\circ} \mathrm{C}, \lambda=250 \mathrm{~nm}\right)$. Retention time: $t_{\mathrm{R}}=4.2 \mathrm{~min}$ (minor S-enantiomer) and 4.4 min (major R-enantiomer). The absolute stereochemistry of 7 was assigned by analogy to previous report. ${ }^{\text {S7 }}$

Synthesis of (R)-orphenadrine from (R)-7: To a suspension of $(\mathbb{R}) \mathbf{- 2 a}(105 \mathrm{mg}, 0.53 \mathrm{mmol}, 98 \%$ ee) and hydrochloride salt of 2-(N, N-dimethylamino)ethylchloride ($152.7 \mathrm{mg}, 1.06 \mathrm{mmol}$) in DMSO $(1.5 \mathrm{~mL})$, a grinded KOH (excess, $297 \mathrm{mg}, 5.3 \mathrm{mmol}$) was added. The reaction mixture was stirred at room temperature. After 16 h , it was diluted with ether and aqueous $\mathrm{NaOH}(1 \mathrm{M}, 10 \mathrm{~mL}$) was added and stirred vigorously for 30 min . The biphasic mixture was extracted well and aqueous phase was extracted with ether (3 x 10 mL). The combined organic layer was dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, concentrated and purified by short silica gel column chromatography (with $20 \% \mathrm{EtOAc}:$ hexane: 1% TEA; 76% yield). The spectral data was identified to previously reported. ${ }^{\text {S12,13 }} \mathbf{1} \mathbf{H} \mathbf{N M R}(400 \mathrm{MHz}$, CDCl_{3}): $\delta 2.18$ (br s, $\left.9 \mathrm{H}, \mathrm{Ar}-\mathrm{CH}_{3}, \mathrm{~N}\left(\mathrm{CH}_{3}\right)_{2}\right), 2.51\left(\mathrm{t}, J=6.1 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{NCH}_{2}\right), 3.45-3.53(\mathrm{~m}, 2 \mathrm{H}$, OCH_{2}), $5.46(\mathrm{~s}, 1 \mathrm{H}, \mathrm{CHOCH} 2), 7.04-7.20(\mathrm{~m}, 5 \mathrm{H}, \mathrm{Ar}-H), 7.21-7.27(\mathrm{~m}, 3 \mathrm{H}, \mathrm{Ar}-H), 7.36(\mathrm{~d}, J=7.5$ $\mathrm{Hz}, 1 \mathrm{H}, \mathrm{Ar}-H) .{ }^{\mathbf{1 3}} \mathbf{C}\left\{{ }^{1} \mathbf{H}\right\} \mathbf{N M R}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 19.4,46.0,59.0,67.6,81.3,125.9,127.1,127.3$, 127.4, 127.6, 128.2, 130.5, 135.9, 139.8, 141.1. HRMS (CI): m / z Calcd for $\mathrm{C}_{18} \mathrm{H}_{24} \mathrm{NO}:\left(\mathrm{M}^{+}+\mathrm{H}\right)$ 270.1852, found 270.1856. $[\alpha]_{\mathrm{D}}{ }^{23}=(+) 3.4^{\circ}\left(c=0.1\right.$, in $\left.\mathrm{CHCl}_{3}\right)\left\{\left(\mathrm{Lit}^{\mathrm{S} 13}[\alpha]_{\mathrm{D}}{ }^{27}=(+) 11.0^{\circ}(c=\right.\right.$ 3.61, in THF for 81% ee, R-analogue) \}.

One pot synthesis of (S)-neobenodine from 11 (75% yield): In a globe box, a screw cap vial was charged with NHC-salt $\mathbf{L 5} \cdot \mathbf{H B F}_{4}(2.4 \mathrm{mg}, 2.2 \mathrm{~mol} \%)$ and $\mathrm{NaO}^{t} \mathrm{Bu}(0.4 \mathrm{mg}, 2 \mathrm{~mol} \%)$ in toluene (1 $\mathrm{mL})$. After 10 min of stirring, $\mathrm{Ni}(\operatorname{cod})_{2}(1.1 \mathrm{mg}, 2 \mathrm{~mol} \%)$ was added. After $10 \mathrm{~min}, \mathbf{1 1}(51 \mathrm{mg}, 0.2$ mmol) was added and allowed it stir till completion of reaction, monitored by GC. Dry DMSO (1 mL) was added to the reaction mixture. To the reaction solution, freshly grinded $\mathrm{KOH}(112 \mathrm{mg}, 2.0$ mmol) and hydrochloride salt of 2-(N, N-dimethylamino) ethylchloride ($57 \mathrm{mg}, 0.4 \mathrm{mmol}$) were added. The reaction mixture was stirred at room temperature for 12 h . GC analysis shows a sole
product of required product. It was diluted with ether and aqueous $\mathrm{NaOH}(1 \mathrm{M}, 5 \mathrm{~mL})$ was added and stirred vigorously for 30 min . The biphasic mixture was extracted well and aqueous phase was extracted with ether ($3 \times 10 \mathrm{~mL}$). The combined organic layer was dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, concentrated and purified by silica gel column chromatography (with 20% EtOAc:hexane:1\% TEA; 45.0 mg , overall yield 75\%). ${ }^{1} \mathbf{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 2.26\left(\mathrm{~s}, 6 \mathrm{H}, \mathrm{N}\left(\mathrm{CH}_{3}\right)_{2}\right), 2.30\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{Ar}-\mathrm{CH}_{3}\right)$, $2.59\left(\mathrm{t}, J=6.1 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{NCH}_{2}\right), 3.55\left(\mathrm{t}, J=6.1 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{OCH}_{2}\right), 5.32\left(\mathrm{~s}, 1 \mathrm{H}, \mathrm{CHOCH}_{2}\right), 7.10(\mathrm{~d}, J=$
 $67.5,83.8,126.9,127.0,127.2,128.3,129.0,137.0,139.3,142.5$. HRMS (FAB): m / z Calcd for $\mathrm{C}_{18} \mathrm{H}_{24} \mathrm{NO}:\left(\mathrm{M}^{+}+\mathrm{H}\right) 270.1852$, found 270.1853. $[\alpha]_{\mathrm{D}}{ }^{23}=(-) 9.4^{\circ} \quad\left(c=0.1\right.$, in $\left.\mathrm{CHCl}_{3}\right)$.

Synthesis of (S)-3-Phenylisobenzofuran-1(3H)one (8) from 1u (65\% yield, 87% ee): In a globe box, a screw cap vial was charged with NHC-salt $\mathbf{L 5} \cdot \mathbf{H B F}_{4}(44 \mathrm{mg}, 4.0 \mathrm{~mol} \%)$ and $\mathrm{NaO}^{t} \mathrm{Bu}(7.7 \mathrm{mg}$, $4.0 \mathrm{~mol} \%)$ in THF $(20 \mathrm{~mL})$. After 10 min of stirring, $\mathrm{Ni}(\operatorname{cod})_{2}(11 \mathrm{mg}, 2.0 \mathrm{~mol} \%)$ was added and stirred at room temperature for additional 60 min . To a stirring solution, $\mathbf{1 u}(536 \mathrm{mg}, 2 \mathrm{mmol})$ was added and stirred for 30 min followed by heating at $60^{\circ} \mathrm{C}$ till completion of reaction (ca. 16 h), monitored by GC. The reaction mixture was filtered though short silica column. $\mathbf{2 u}$: ${ }^{1} \mathbf{H} \mathbf{N M R}(400$ $\mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 0.47\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{SiCH}_{3}\right), 0.55\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{SiCH}_{3}\right), 6.91-6.99(\mathrm{~m}, 1 \mathrm{H}, \operatorname{Ar}-H), 6.15(\mathrm{~s}, 1 \mathrm{H}$, CHOSi), 7.27-7.36 (m, 3H, Ar-H), $7.46(\mathrm{t}, J=7.4 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{Ar}-H), 7.53(\mathrm{t}, J=7.4 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{Ar}-H)$, 7.59-7.67 (m, 1H, Ar-H), 7.90 (d, J = 7.4 Hz, 1H, Ar-H), 10.39 ($\mathrm{s}, 1 \mathrm{H}, \mathrm{Ar}-\mathrm{CHO}$). ${ }^{\mathbf{1 3} \mathbf{C}\left\{{ }^{\mathbf{1}} \mathbf{H}\right\} \mathbf{N M R}}$ ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 0.5,0.9,78.4,123.7,127.3,128.0,128.3,129.9,130.9,131.8,133.6,134.1$, 135.2, 151.8, 192.8. HRMS (EI): m / z Calcd for $\mathrm{C}_{16} \mathrm{H}_{16} \mathrm{O}_{2} \mathrm{Si}:\left(\mathrm{M}^{+}\right)$268.0920, found 268.0919. $[\alpha]_{\mathrm{D}}{ }^{23}$ $=(-) 148.8^{\circ} \quad\left(c=0.1\right.$, in $\left.\mathrm{CHCl}_{3}\right)$. It was forwarded for without further purification. To a solution of $\mathbf{2 u}(110 \mathrm{mg}, 0.4 \mathrm{mmol})$ in THF was added TBAF ($1 \mathrm{M}, 1.0 \mathrm{~mL}, 1.0 \mathrm{mmol}$) at $0{ }^{\circ} \mathrm{C}$ allowed to stir at room temperature for 5 h . After the completion of reaction, it was quenched with aqueous $\mathrm{NH}_{4} \mathrm{Cl}$ solution and stirred vigorously for further 30 min . The reaction mixture was extracted and aqueous phase was washed with ethyl acetate ($3 \times 15 \mathrm{~min}$). Combined organic layer was dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, concentrated and used for next oxidation step. The compound was dissolved in dry $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ and then

PCC ($172 \mathrm{mg}, 0.8 \mathrm{mmol}$) was added. After $1 \mathrm{~h}, \mathrm{CH}_{2} \mathrm{Cl}_{2}$ was evaporated completely and ether was added to the black residue. It was filtered through celite, washed the residue ($3 \times 10 \mathrm{~mL}$) and filtered, concentrated to get desired product with quantitative conversion. It was further purified by silica gel column chromatography (with 15% ethyl acetate:hexane, white solid, 65% over all yield). The spectroscopic data was identified to previously reported. ${ }^{\mathrm{S} 13} \mathbf{1} \mathbf{H} \mathbf{N M R}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 6.3$ (s, $1 \mathrm{H}, \mathrm{OCHPh}), 7.14-7.20(\mathrm{~m}, 2 \mathrm{H}, \mathrm{Ar}-H), 7.20-7.31(\mathrm{~m}, 4 \mathrm{H}, \mathrm{Ar}-H), 7.44(\mathrm{t}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{Ar}-H)$, $7.54(\mathrm{t}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{Ar}-H), 7.85(\mathrm{~d}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{Ar}-H) .[\alpha]_{\mathrm{D}}^{23}=(+) 32.8^{\circ}\left(c=0.1\right.$, in $\left.\mathrm{CHCl}_{3}\right)$ (Lit. ${ }^{S 14}[\alpha]_{\mathrm{D}}{ }^{27}=(+) 40.3^{\circ} \quad\left(c=1.0\right.$, in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ for 84% ee, S-analogue). Chiral separation: The enantioselectivity was determined by SFC using Chiralpak IA (Back pressure $=15 \mathrm{MPa}$, Flow $\left(\mathrm{CO}_{2}\right)$ $=2.4 \mathrm{~mL} / \mathrm{min}$, Flow $\left.\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right)=0.4 \mathrm{~mL} / \mathrm{min}, 40^{\circ} \mathrm{C}, \lambda=250 \mathrm{~nm}\right)$. Retention time: $t_{\mathrm{R}}=7.0 \mathrm{~min}$ (minor R-enantiomer) and 7.3 min (major S-enantiomer). The absolute stereochemistry of $\mathbf{8}$ was assigned by analogy to literature report. ${ }^{\text {S14 }}$

[6] Isolation of ($\eta^{2}: \eta^{2}$-dialdehyde)Ni complex ($2 u^{\prime}$)

To the stirring solution of $\mathrm{Ni}(\operatorname{cod})_{2}(22.0 \mathrm{mg}, 0.08 \mathrm{mmol})$ and $\operatorname{IPr}(31.0 \mathrm{mg}, 0.08 \mathrm{mmol})$ in $\mathrm{C}_{6} \mathrm{D}_{6}(1 \mathrm{~mL})$ was added 2,2'-(dimethylsilanediyl)dibenzaldehyde (21.5, 0.08 mmol). After 5 min the volatile materials were evaporated under high vacuum for a long time. A yellow crystalline solid $\mathbf{2 u}$ ' was obtained quantitatively and the complex was analyzed by ${ }^{1} \mathrm{H},{ }^{13} \mathrm{C}$ and X-ray analyses. ${ }^{\mathbf{1}} \mathbf{H}$ NMR ($400 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}$): $\delta 0.37\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{SiCH}_{3}\right), 0.96\left(\mathrm{~d}, J=6.8 \mathrm{~Hz}, 6 \mathrm{H}, \operatorname{IPr}-\mathrm{CH}_{3}\right), 1.08(\mathrm{~d}, J=6.8$ $\mathrm{Hz}, 6 \mathrm{H}, \mathrm{IPr}-\mathrm{CH}_{3}$), $1.21\left(\mathrm{~d}, J=6.8 \mathrm{~Hz}, 6 \mathrm{H}, \mathrm{IPr}-\mathrm{CH}_{3}\right), 1.68\left(\mathrm{~d}, J=6.8 \mathrm{~Hz}, 6 \mathrm{H}, \mathrm{IPr}-\mathrm{CH}_{3}\right), 3.08$ (sept, J $\left.=6.8 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{IPr}-\mathrm{CHCH}_{3}\right), 3.14\left(\mathrm{sept}, J=6.8 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{IPr}^{2} \mathrm{CHCH}_{3}\right), 4.97(\mathrm{~s}, 2 \mathrm{H}, \mathrm{CHO}), 6.04(\mathrm{~d}, J=$ $7.6 \mathrm{~Hz}, 2 \mathrm{H}, \operatorname{Ar}-H), 6.66(\mathrm{~s}, 2 \mathrm{H}, \operatorname{IPr}-\mathrm{NCHCHN}), 6.96(\mathrm{t}, J=7.2 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{Ar}-H), 7.14(\mathrm{t}, J=7.6 \mathrm{~Hz}$, $4 \mathrm{H}, \operatorname{Ar}-H), 7.31(\mathrm{~d}, J=7.6 \mathrm{~Hz}, 2 \mathrm{H}, \operatorname{Ar}-H), 7.36(\mathrm{~d}, J=7.6 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{Ar}-H), 7.40(\mathrm{t}, J=7.6 \mathrm{~Hz}, 2 \mathrm{H}$,
 $123.9,124.1,124.2,126.5,129.4,129.6,133.5,133.8,137.2,146.5,147.3,149.3,193.7$.

[7] Crossover experiments

(a) Crossover experiments with 1c and 1d (Scheme S3): To a stirring solution of NHC salt $\mathbf{L 5} \cdot \mathbf{H B F}_{4}(4.8 \mathrm{mg}, 0.0088 \mathrm{mmol}), \mathrm{NaO}^{t} \mathrm{Bu}(0.8 \mathrm{mg}, 0.008 \mathrm{mmol})$, and $\mathrm{Ni}(\operatorname{cod})_{2}(2.2 \mathrm{mg}, 0.008$ $\mathrm{mmol})$ in toluene $(1 \mathrm{~mL})$ was added a pre-dissolved solution of $\mathbf{1 c}(54.0 \mathrm{mg}, 0.2 \mathrm{mmol})$ and $\mathbf{1 d}(54.0$, $0.2 \mathrm{mmol})$ in toluene $(1 \mathrm{~mL})$ at room temperature. The reaction mixture was stirred at room temperature. The reaction was monitored by GC using n-pentadecane as an internal standard for 4 h . The corresponding benzoxasiloles 2c and 2d were obtained in 80% yield each, with no formation of crossover products (entry 1). The influence of salts and base on mechanism switching was studied. In all of these cases, crossover products were obtained (entries 2-5).

Scheme S3. Crossover experiments with 1c and 1d ${ }^{\text {a }}$

${ }^{\text {a }}$ Yields were determined by GC using n-pentadecane as an internal standard.

Entry 1: Under the optimized enantioselective reaction conditions using $\mathbf{L 5} \cdot \mathbf{H B F}_{\mathbf{4}}$.
Entry 2: ref. S2.
Entry 3: $\mathrm{IPr} \cdot \mathrm{HCl}$ salt was used for in situ generation of IPr (free carbene) in the presence of $\mathrm{KO}^{t} \mathrm{Bu}$ and yields were obtained after 42% and 76% conversion of $\mathbf{1 c}$ and $\mathbf{1 d}$, respectively.

Entry 4: NaBF_{4} was used as an additive in $\mathrm{Ni}(\operatorname{cod})_{2} / \mathrm{IPr}$ catalytic system. Yields were mentioned at 58% and 87% conversion of $\mathbf{1 c}$ and $1 \mathbf{d}$, respectively.

Entry 5: Commercially available $\operatorname{SIPr} \cdot \mathrm{HBF}_{4}$ was employed as a precursor of SIPr in the presence of $\mathrm{NaO}^{t} \mathrm{Bu}$. Yields were mentioned after quantitative conversion of $\mathbf{1 c}$ and $\mathbf{1 d}$.
(b) Crossover experiments with $1 \mathbf{c}$ and $1 \mathbf{k}$ (Scheme S4): The crossover experiments was examined with $\mathbf{1 c}(54.0 \mathrm{mg}, 0.2 \mathrm{mmol})$ and $\mathbf{1 k}(51.0 \mathrm{mg}, 0.2 \mathrm{mmol})$ under the identical reaction conditions

Scheme S4: Crossover experiments with 1 c and $\mathbf{1 k}{ }^{\mathbf{a}}$

${ }^{\text {a }}$ Yields were determined by GC using n-pentadecane as an internal standard.
using NHC salt $\mathbf{L 5} \cdot \mathbf{H B F}_{4}$. The corresponding benzoxasiloles $\mathbf{2 c}$ and $\mathbf{2 k}$ were obtained in 91 and 99% yields, respectively, with no crossover products (entry 2). After completion of reaction, it was passed through the small pad of silica and volatile material was evaporated. The crude material was subjected to desilylation using TBAF ($0.9 \mathrm{~mL}, 0.88 \mathrm{mmol}$) in THF (2 mL). The desilylated products $\mathbf{4 c}$ ($31 \mathrm{mg}, 72 \%$ yield) and $\mathbf{4 k}(29 \mathrm{mg}, 73 \%$ yield) were obtained after silica column chromatography (isolated with 20 and 10% EtOAc:hexane, respectively). The enantioselectivities measured for desilylation products ($\mathbf{4 c}$ and $\mathbf{4 k}$) correspond to benzoxasiloles ($\mathbf{2 c}$ and $\mathbf{2 k}$, respectively), which were remain consistent with the results of those of individual experiments (see below the chiral SFC charts). Entry 1 showed the results of crossover experiments, when $\mathrm{IPr} \cdot \mathrm{HCl}$ was employed.

Comparative Chiral SFC chart of 4 c correspond to 2 c

Sequence Name R-323-rac and ohir-OMeChromatogram m-OMe-rac
Name

$\#$	CH	tR	Area	Height	Area\%
1	8	6.9783	544771	83822	50.035
2	9	7.3533	544008	77287	49.965

Individual Experiment
$2 c \equiv 4 c$
98.6% se
Sequence Name $\quad \mathrm{m}$-OM and m -Me-chiral
Chromatogram R-325-2-C.O.pdt

After Crossover Experiment
$2 c \equiv 4 c$
98.6% ae

Top SFC (for racemic sample), center SFC (for individual experiment's product) and bottom SFC (for crossover experiment's product).

Comparative Chiral SFC chart of 4 k correspond to 2 k

Sequence Name
Chromatogram
meMe and m-Me-racemic
m-Me-rac- 317

Name					
\#	CH	tR	Area	Height	AreaS
1	9	5.5967	324642	61381	50.471
2	9	5.8400	318580	56477	49.529

$$
R a c-2 k \quad R a c-2 k
$$

Sequence Name m-OMe and m-Me-chiral Chromatogram R-313-m-Me
Name

\#	CH	tR	Area	Height	Area\%
1	9	5.5967	2755352	440426	99.515
2	9	5.8783	13428	2901	0.485

Individual Experiment
$2 k \equiv 4 k$ 99% el

After Crossover Experiment

$$
2 k \equiv 4 k
$$

99% er

Top SFC (for racemic sample), center SFC (for individual experiment's product) and bottom SFC (for crossover experiment's product).
[8] Comparative ${ }^{1} \mathbf{H}$ NMR spectra for diastereoselectivity (IPr verses L5) in case of $\mathbf{2 m - 0}$

[9] Computational Details:

All calculations were performed with the Gaussian 09 package ${ }^{515}$ of programs with the hybrid B3LYP functional. ${ }^{\text {S16 }}$ For geometry optimizations, nickel was represented by the effective core potentials (ECPs) of Hay and Wadt with a double- ζ basis set (LANL2DZ) ${ }^{\text {S17 }}$ augmented with an f-type polarization function. ${ }^{518}$ The $6-311 \mathrm{G}(\mathrm{d}, \mathrm{p})$ basis set was used for C, H, and N , whereas the $6-311 \mathrm{G}+(\mathrm{d})$ basis set was used for Si and O . The geometry optimizations were performed without any symmetry constraint followed by analytical frequency calculations to confirm that a minimum had been reached. The Gibbs energies were calculated at 298 K and 1 atm from the harmonic approximation for frequencies. Potential energies were also obtained by performing single point calculations using the above optimized geometries with the following basis sets: the LANL2DZ effective core potential for the inner electrons and the LANL2TZ ${ }^{\text {S19 }}$ basis set, augmented by an f polarization function, for the outer ones for Ni , the $6-311+\mathrm{G}(2 \mathrm{~d}, \mathrm{p})$ basis set for all the other atoms. Solvent effects (toluene, $\varepsilon=2.3741$) were introduced through the single-point calculation at the optimized gas-phase geometries for all the minima by means of the polatizable continuum model (IEFPCM) implemented in Gaussian 09. ${ }^{\text {s20 }}$ Relative Gibbs energies were obtained by adding the Gibbs energy corrections derived from the analytical frequency calculations. These calculations involve a certain margin error.

Coordinates, E and G at 298 K in a.u. for all calculated extrema:

$\mathrm{Ni}\left(\mathrm{NHC}^{*}\right)\left(\mathrm{NHC}^{*}=(R, R)-\mathrm{L} 5\right)$
$E=-1556.579862, G=-1556.649748$
$\begin{array}{llll}\mathrm{N} & -1.04907600 & -0.52881600 & 0.01674300\end{array}$
C $\quad-2.14893700 \quad-1.31576900 \quad-0.46580500$
C $\quad-3.15875400 \quad-3.38867800 \quad-1.14113800$
C $\quad-4.37753600 \quad-2.74970800 \quad-1.34023300$
H $\quad-3.08538200$-4.45257700 -1.33871900
H $\quad-5.23633100 \quad-3.31764400-1.68060100$
C $2.00254900 \quad 1.26731300 \quad-0.47193600$
C $3.00742300 \quad 3.36168500$-1.08527700
C $4.21399300 \quad 2.72417800 \quad-1.35189000$
H $2.93653200 \quad 4.43391700$-1.23212900
H $5.06625200 \quad 3.30111600$-1.69354000
$\begin{array}{llll}\text { C } & 0.58641000 & 0.39324600 & 1.45340100\end{array}$
H $\quad 0.31182400 \quad 1.39195200 \quad 1.81030300$
C $\quad-0.68148800-0.51623400 \quad 1.45242100$
H $\quad-0.39768800 \quad-1.52888000 \quad 1.75918300$
C $\quad 1.70864000 \quad-0.12122400 \quad 2.33351100$
C $\quad 2.33969100 \quad-1.34326300 \quad 2.07187500$
C $2.11314500 \quad 0.61669500 \quad 3.44768400$
C 3.34823000 -1.81410800 2.90640900
H 2.04645200 -1.92481200 1.20468100
C $3.12188500 \quad 0.14644300 \quad 4.28832900$
H $1.63441000 \quad 1.56668700 \quad 3.66080700$
C 3.74222600 -1.07011200 4.01943400
H 3.82970600 -2.76093100 2.68850000
$\begin{array}{llll}\mathrm{H} & 3.42285800 & 0.73297000 & 5.14906000\end{array}$
H 4.52891100 -1.43704100 4.66887300
C $\quad-1.77779100 \quad-0.03969200 \quad 2.38496400$
C $\quad-2.14875400 \quad-0.82251400 \quad 3.47997400$
C $\quad-2.41731200 \quad 1.19048700 \quad 2.19094800$
C $\quad-3.13297800 \quad-0.38847800 \quad 4.36782000$
H $\quad-1.66301800$-1.77926800 3.64062700
$\begin{array}{llll}\text { C } & -3.40149500 & 1.62538500 & 3.07276500\end{array}$
H $\quad-2.15006100 \quad 1.80666100 \quad 1.33939500$
$\begin{array}{llll}\text { C } & -3.76210100 & 0.83652100 & 4.16605200\end{array}$
H $\quad-3.40815700 \quad-1.00965600 \quad 5.21272300$
H $-3.89015900 \quad 2.57908200 \quad 2.90712500$
$\begin{array}{llll}\mathrm{H} & -4.52991600 & 1.17536500 & 4.85229600\end{array}$
C $1.87856400 \quad 2.65844900-0.64326300$
C $\quad-2.02115900 \quad-2.69692300 \quad-0.70347900$

C	-0.08059700	-0.01311500	-0.80219600
C	0.56857300	3.39978400	-0.41170500
H	-0.15865900	2.67588500	-0.03998900
C	0.70775800	4.51039400	0.64508500
H	1.09043400	4.11664000	1.59056500
H	1.39059600	5.29757100	0.31293300
H	-0.26321000	4.97590000	0.83852500
C	0.00457700	3.95065100	-1.73458300
H	0.67800200	4.68887400	-2.17992300
H	-0.13873500	3.13713700	-2.45052700
H	-0.96214700	4.43512900	-1.56628700
C	-0.69948300	-3.43742100	-0.54729600
H	0.03300800	-2.72677100	-0.16061300
C	-0.79906600	-4.60069200	0.45596700
H	-1.15697400	-4.25845600	1.43075200
H	-1.48483400	-5.37685800	0.10461300
H	0.18085600	-5.06602900	0.59774300
C	-0.17041300	-3.91644200	-1.91206700
H	-0.85286800	-4.63493400	-2.37560400
H	-0.05094300	-3.06649400	-2.58903800
H	0.80286600	-4.40311000	-1.79584200
Ni	-0.10814500	0.02804100	-2.56353700
C	-4.48757400	-1.38102000	-1.10532900
H	-5.42975000	-0.86842700	-1.26191400
C	-3.37446700	-0.67413000	-0.66782100
H	-3.43630600	0.39065100	-0.48531700
C	3.21569800	0.62714100	-0.74193700
H	3.27428400	-0.44521300	-0.60966800
C	4.32011000	1.34549600	-1.18267100
H	5.25258900	0.83413700	-1.39234400

o-dimethylphenylsilylbenzaldehyde (1a)
$E=-945.9365012, G=-945.9844812$

Si $0.17666800-1.09307300 \quad 0.00000100$
O $\quad-4.35933400-1.33513100 \quad-0.00000300$
C $-3.15165800-1.13886100 \quad-0.00000300$
C $\quad-2.51658500 \quad 0.19622500 \quad-0.00000300$
C $\quad 1.92066300 \quad-0.31302900 \quad 0.00000100$
C $2.58537700 \quad-0.02023600-1.20082400$
C $\quad-0.61852000 \quad 1.66745500-0.00000200$
C $-1.11006000 \quad 0.35323200-0.00000200$
C $4.50047300 \quad 0.828081000 .00000200$
C $\quad-2.85155300 \quad 2.59646900 \quad-0.00000400$

C	3.86006200	0.54397900	-1.20459900
C	3.86006300	0.54397400	1.20460300
C	-3.36861200	1.31033400	-0.00000400
C	-1.46854200	2.77243000	-0.00000300
C	2.58537800	-0.02024100	1.20082700
C	-0.00531700	-2.16377600	1.56722900
H	-2.46644300	-2.00427000	-0.00000300
H	-4.43774000	1.13464800	-0.00000400
H	-3.51485500	3.45372200	-0.00000500
H	-1.04733000	3.77191300	-0.00000400
H	0.45163000	1.83607700	-0.00000200
H	0.00034900	-1.54896500	2.47006700
H	-0.93510500	-2.73629700	1.56021500
H	0.82582400	-2.87087200	1.62989100
H	2.10763500	-0.23540800	2.15102000
H	4.35311200	0.75908000	2.14638000
H	5.49278200	1.26531700	0.00000200
H	4.35311000	0.75908900	-2.14637600
H	2.10763200	-0.23540000	-2.15101800
C	-0.00531400	-2.16377900	-1.56722700
H	0.00034900	-1.54897000	-2.47006500
H	0.82583000	-2.87087200	-1.62988800
H	-0.93510000	-2.73630300	-1.56021100

($\left.\eta^{2}-1 \mathrm{a}\right) \mathrm{Ni}\left(\mathrm{NHC}^{\star}\right)$ (Figure S2)

$E=-2502.569344, G=-2502.660506$

C	0.63757600	-1.59420700	-1.29109000
H	1.42116500	-2.10017900	-0.71162500
C	1.00796800	-1.27278400	-2.69077900
C	2.30943300	-0.79594900	-2.91658600
H	2.97915800	-0.68460300	-2.07138000
C	2.74141800	-0.44326800	-4.18781400
H	3.74880500	-0.06922000	-4.33461100
C	1.87158900	-0.57530400	-5.26772100
H	2.18850700	-0.30087800	-6.26813200
C	0.59454600	-1.09113400	-5.05712100
H	-0.04768400	-1.22670900	-5.91917800
C	0.12879900	-1.46414900	-3.78531500
O	-0.62274300	-1.79323500	-0.95566100
Si	-1.57902400	-2.35539900	-3.70367600
C	-2.03745400	-2.79992800	-5.51683100
H	-1.26394100	-3.41586600	-5.98358200

H -2.96628400 -3.37722900
H $\quad-2.20585900$-1.92432900 -6.14838600
C $\quad-1.49707700 \quad-4.03100900 \quad-2.80021000$
H $\quad-1.33496200 \quad-3.90205400 \quad-1.73207200$
H $\quad-2.42705600 \quad-4.58348400 \quad-2.96234800$
H $\quad-0.67763100 \quad-4.62691500 \quad-3.21221500$
C $\quad-3.05344800-1.29678300-3.09899800$
C $\quad-3.77631200-1.63110800-1.94547500$
C $\quad-3.51685400 \quad-0.21696100 \quad-3.86560500$
C $\quad-4.93004100 \quad-0.93576800-1.58616100$
H $\quad-3.43316400 \quad-2.44517800 \quad-1.31785300$
C $\quad-4.66427000 \quad 0.49034200 \quad-3.50843800$
H $\quad-2.98506300 \quad 0.07550200$-4.76613900
C $\quad-5.38038000 \quad 0.12520300$-2.36978900
H $\quad-5.47547400 \quad-1.22073300-0.69270000$
H $\quad-5.00382000 \quad 1.31748800$-4.12341500
H $\quad-6.28203700 \quad 0.66283700 \quad-2.09595000$
$\mathrm{Ni} \quad-0.07332800 \quad-0.16658400 \quad-0.17160400$
C $0.68796100 \quad 1.33677300 \quad 0.69781800$
$\begin{array}{llll}\mathrm{N} & -0.10774900 & 2.19042800 & 1.38939300\end{array}$
N $1.96970800 \quad 1.74801300 \quad 0.86981000$
C $\quad-1.54272200 \quad 2.13191900 \quad 1.35929300$
C $\quad 0.61831200 \quad 3.33811500 \quad 1.98776300$
C $3.12837300 \quad 1.02752300 \quad 0.42443100$
C $2.10033300 \quad 2.86759000 \quad 1.84488600$
C $\quad-2.28370100 \quad 1.87753700 \quad 2.52808100$
C $\quad-2.19015500 \quad 2.34959100 \quad 0.13767300$
$\begin{array}{llll}\mathrm{H} & 0.36299700 & 3.42444200 & 3.04435400\end{array}$
C $0.32411200 \quad 4.66937100 \quad 1.31854700$
C $4.08037900 \quad 1.63053700 \quad-0.41839800$
C $\quad 3.31286600-0.28296500 \quad 0.87858300$
H $2.69384500 \quad 3.66898800 \quad 1.40652500$
C $2.74383500 \quad 2.46876100 \quad 3.16193500$
$\begin{array}{llll}\text { C } & -3.68084900 & 1.89026200 & 2.42174100\end{array}$
C $\quad-1.63270000 \quad 1.54339900 \quad 3.86396300$
$\begin{array}{llll}\mathrm{H} & -1.59372500 & 2.53097200 & -0.74669300\end{array}$
C $\quad-3.57644500 \quad 2.33507100 \quad 0.05770700$
C $\quad 0.34150800 \quad 4.81499700$-0.07348300
$\begin{array}{llll}\text { C } & 0.06842400 & 5.79227000 & 2.10943100\end{array}$
C $\quad 5.21831300 \quad 0.88062700 \quad-0.74943000$
C $3.91207800 \quad 3.03066700 \quad-0.99716800$
C $4.43936900 \quad-1.01046200 \quad 0.51834900$
$\begin{array}{llll}\mathrm{H} & 2.55611100 & -0.72382600 & 1.51335000\end{array}$
C $3.69312600 \quad 3.31502500 \quad 3.74122400$
C $2.38054800 \quad 1.30054900 \quad 3.84135700$
C $\quad-4.32506500 \quad 2.11724200 \quad 1.21119600$
$\begin{array}{llll}\mathrm{H} & -4.27745800 & 1.69961900 & 3.30695000\end{array}$
H $\quad-0.55136900 \quad 1.58468400 \quad 3.72799700$
C $\quad-2.00380200 \quad 2.55627600 \quad 4.96252700$
C $\quad-1.96721500 \quad 0.10357000 \quad 4.29919000$
$\begin{array}{llll}\mathrm{H} & -4.06315300 & 2.48828100 & -0.89698200\end{array}$
C $0.11554600 \quad 6.05823200-0.65725500$
H $0.52273400 \quad 3.95318300$-0.70554900
$\begin{array}{llll}\text { C } & -0.15641500 & 7.03895100 & 1.52675600\end{array}$
$\begin{array}{llll}\mathrm{H} & 0.04444500 & 5.69174200 & 3.18966600\end{array}$
C $\quad 5.40515500-0.41872900 \quad-0.29320100$
H $\quad 5.96978600 \quad 1.32378000 \quad-1.39329200$
$\begin{array}{llll}\mathrm{H} & 2.94007200 & 3.40799500 & -0.67700100\end{array}$
C $4.99278300 \quad 3.99821300 \quad-0.47793400$
C 3.887924003 .01532800 -2.53701700
H 4.56576500 -2.02533700 0.87685200
C $4.26343600 \quad 3.00921900 \quad 4.97615600$
H $3.98855200 \quad 4.22192800 \quad 3.22373400$
C $2.95026500 \quad 0.99197500 \quad 5.07354900$
$\begin{array}{llll}\mathrm{H} & 1.65665800 & 0.62310800 & 3.40393800\end{array}$
H $\quad-5.40828000 \quad 2.11222700 \quad 1.16671600$
$\begin{array}{llll}\mathrm{H} & -1.75148100 & 3.57813400 & 4.66673200\end{array}$
$\begin{array}{llll}\mathrm{H} & -3.07457900 & 2.53102700 & 5.18339500\end{array}$
$\begin{array}{llll}\mathrm{H} & -1.46805200 & 2.32785800 & 5.88822200\end{array}$
H $\quad-3.03804900 \quad-0.02050900 \quad 4.48281100$
$\begin{array}{llll}\mathrm{H} & -1.67356100 & -0.61658400 & 3.53153200\end{array}$
$\begin{array}{llll}\mathrm{H} & -1.43863400 & -0.14609700 & 5.22395200\end{array}$
C $\quad-0.13256700 \quad 7.17472700 \quad 0.14142000$
$\begin{array}{llll}\text { H } & 0.12765200 & 6.15487100 & -1.73699300\end{array}$
$\begin{array}{llll}\mathrm{H} & -0.35583700 & 7.89942800 & 2.15535100\end{array}$
H $\quad 6.29612300 \quad-0.96857800 \quad-0.57451800$
$\begin{array}{llll}\mathrm{H} & 5.01827500 & 4.02840100 & 0.61435400\end{array}$
$\begin{array}{llll}\text { H } & 5.98724700 & 3.69866600 & -0.82089700\end{array}$
H $4.80547000 \quad 5.01190100$-0.84330600
H $4.84389900 \quad 2.68197900$-2.95075500
$\begin{array}{llll}\text { H } & 3.10779000 & 2.35105100 & -2.91384800\end{array}$
H $3.69568000 \quad 4.02228300$-2.91893000
C $3.89273900 \quad 1.84616900 \quad 5.64567700$
$\begin{array}{llll}\text { H } & 5.00022000 & 3.67619200 & 5.40926900\end{array}$
H $2.66222900 \quad 0.08066400 \quad 5.58533700$
$\begin{array}{llll}\mathrm{H} & -0.31188200 & 8.14144200 & -0.31503600\end{array}$
H $4.33811900 \quad 1.60236800 \quad 6.60338400$

Figure S2 Optimized structures of $\left(\eta^{2}-\mathbf{1 a}\right) \mathrm{Ni}\left(\mathrm{NHC}^{*}\right)$

($\eta^{2}: \eta^{2}-1$ a) $\mathbf{N i}\left(\mathrm{NHC}^{*}\right)$ (Figure $\mathbf{S 3}$)

where $\mathrm{NHC}^{*}=(R, R) \mathbf{L 5}$
$E=-2502.568039, G=-2502.657091$

C	1.29503500	-0.05654300	-2.76167200
H	2.28978800	0.40153900	-2.73056400
C	0.32739900	0.55387200	-3.69444600
C	0.62141000	1.80508200	-4.25614200
H	1.55498400	2.29361000	-3.99141400
C	-0.24757400	2.41707700	-5.15257400
H	0.00073600	3.38260700	-5.58022500
C	-1.43033400	1.77282400	-5.50567400
H	-2.11589500	2.22982000	-6.21101100
C	-1.72706200	0.52623900	-4.95011600
H	-2.65407000	0.04597400	-5.24108000
C	-0.87547100	-0.11252800	-4.03942100
O	1.18907000	-1.34762200	-2.51217900
Si	-1.39850800	-1.83279300	-3.33719000
C	-3.21800600	-2.09800700	-3.90902300
H	-3.26889900	-2.21852100	-4.99490800
H	-3.60229500	-3.01731900	-3.45826700
H	-3.88879500	-1.28256400	-3.62854900
C	-0.46568000	-3.32217500	-4.06942800
H	0.58105400	-3.31766800	-3.77449500

H	-0.93557100	-4.25279700	-3.73698300
H	-0.52673300	-3.28830600	-5.16117000
C	-1.50325100	-1.91016300	-1.40839900
C	-0.53038600	-2.55184500	-0.60794000
C	-2.66202900	-1.44999300	-0.75791500
C	-0.71549700	-2.71176700	0.77150600
H	0.34087900	-2.99157200	-1.07571800
C	-2.85630300	-1.62934800	0.60919400
H	-3.43915200	-0.95649700	-1.32967700
C	-1.88138800	-2.25794200	0
H	0.04216400	-3.22398600	1.35506000
H	-3.77366300	-1.27973200	1.06929700
H	-2.03443000	-2.40298000	2.44643300
Ni	0.59776500	-0.39900500	-0.94900900
C	0.70294000	1.05782000	0.27904000
N	-0.15034100	2.03645000	0.68309300
N	1.89954500	1.29987900	0.87969900
C	-1.50173200	2.20117600	0.22200200
C	0.53692700	3.12624000	1.42784500
C	3.02229900	0.40683000	0.80620700
C	1.86572200	2.42714400	1.84310100
C	-2.57257500	2.35321800	1.12668700
C	-1.73256900	2.23784800	-1.15605900
H	-0.02810200	3.38808600	2.31939600
C	0.74578100	4.39110300	0.61046300
C	4.26284000	0.82768400	0.29251300
C	2.86059600	-0.89876400	1.28452100
H	2.70282000	3.09907000	1.65705700
C	1.91342800	2.00051200	3.30086400
C	-3.84761600	2.57064200	0.58635600
C	-2.41813900	2.28656000	2.64346800
H	-0.89893000	2.10602700	-1.83022100
C	-3.01124300	2.43139700	-1.66246900
C	1.08342100	4.35558100	-0.74624600
C	0.64630400	5.63213800	1.24702200
C	5.31456800	-0.09938000	0.30287900
C	4.49471600	2.21635400	-0.29092200
C	3.91425800	-1.80267300	1.26427600
H	1.89576100	-1.19351200	1.67524200
C	2.71259800	2.71713000	4.19592500
C	1.14670100	0.93575400	3.78770400
C	-4.07595900	2.61074900	-0.78399400
H	-4.68644100	2.70076300	1.26096300
H	-1.39418900	1.98423600	2.86514400
C	-2.66745500	3.66018000	3.29777000
C	-3.32678000	1.21896200	3.28014600

H	-3.16342400	2.45263100	-2.73481400
C	1.32288000	5.53596500	-1.44590100
H	1.14693100	3.40574600	-1.26309300
C	0.88891300	6.81386300	0.54919600
H	0.37610600	5.67548200	2.29730300
C	5.15367200	-1.39552100	0.77708300
H	6.28125600	0.19958400	-0.08650900
H	3.53534100	2.73615200	-0.30553000
C	5.47105700	3.04082300	0.57040900
C	4.98334500	2.15290700	-1.75023500
H	3.77017100	-2.81150900	1.63310000
C	2.74172700	2.38672300	5.55001800
H	3.31834300	3.54059200	3.83157100
C	1.17529100	0.60331600	5.13954700
H	0.52969500	0.35950600	3.10836900
H	-5.07861800	2.77828800	-1.16137300
H	-2.03587300	4.43909100	2.86343000
H	-3.70709800	3.97230400	3.16318100
H	-2.46759300	3.61609500	4.37231800
H	-4.38608900	1.44964100	3.13911600
H	-3.13459400	0.23441300	2.85104600
H	-3.14127100	1.16486300	4.35692100
C	1.22889300	6.76824700	-0.80067400
H	1.57575300	5.49281400	-2.49921700
H	0.80362700	7.76742700	1.05796300
H	5.98998600	-2.08515900	0.76139300
H	5.13822200	3.10633800	1.60945200
H	6.46783400	2.59031400	0.57360400
H	5.56452400	4.05714900	0.17719700
H	5.97051000	1.68916600	-1.82597200
H	4.29586800	1.57741700	-2.37407800
H	5.05875600	3.16207200	-2.16553000
C	1.97187800	1.32844600	6.02545100
H	3.37040400	2.95149400	6.22910200
H	0.57839800	-0.22628500	5.50149500
H	1.41116400	7.68561500	-1.34865200
H	1.99594300	1.06529400	7.07673900

Figure S3 Optimized structures of $\left(\eta^{2}: \eta^{2}-\mathbf{1 a}\right) \mathrm{Ni}\left(\mathrm{NHC}^{*}\right)$

$\mathrm{Ni}(\mathrm{IPr})$

$\mathrm{E}=-\mathbf{- 1 3 2 9 . 1 1 5 2 0 8 ,} \mathrm{G}=-\mathbf{- 1 3 2 9 . 1 8 0 3 8 3}$

Ni	0.68413100	0.06509700	-0.50808900
N	2.32311500	1.23216700	1.50707100
N	0.86599100	2.62650500	0.72529600
C	1.29561000	1.32042800	0.58729700
C	2.51319400	2.43749000	2.17950600
H	3.27114400	2.55766200	2.93416100
C	1.60308300	3.30849000	1.69112200
H	1.41017100	4.33882100	1.93533900
C	3.10641900	0.04821500	1.74961900
C	4.28857300	-0.14922300	1.01183600
C	5.03962100	-1.29750800	1.27988900
H	5.94991900	-1.48154400	0.72081200
C	4.63680100	-2.21024400	2.24701600
H	5.23303200	-3.09572800	2.43846300
C	3.47092600	-1.98839600	2.96965100
H	3.16504300	-2.70796400	3.72043000
C	2.68306600	-0.85636800	2.74130300
C	4.74598700	0.81854500	-0.07332600
H	4.07967800	1.68218600	-0.05190200
C	4.61225500	0.18078700	-1.46865800

H $3.57492200 \quad-0.11184500 \quad-1.65179600$
H $\quad 5.24479900$-0.70689600 -1.56416500
H $4.91051300 \quad 0.89271600$-2.24427200
$\begin{array}{llll}\text { C } & 6.17414800 & 1.33619000 & 0.17502600\end{array}$
$\begin{array}{llll}\mathrm{H} & 6.91315400 & 0.53172800 & 0.12234000\end{array}$
$\begin{array}{llll}\mathrm{H} & 6.26166700 & 1.80661200 & 1.15814400\end{array}$
H $6.44230000 \quad 2.07962500 \quad-0.58128500$
$\begin{array}{llll}\text { C } & 1.39597600 & -0.65719600 & 3.53325800\end{array}$
$\begin{array}{llll}\mathrm{H} & 0.99555700 & 0.32484700 & 3.27719400\end{array}$
C $0.33546700 \quad-1.69682400 \quad 3.12548300$
H $0.12418500 \quad-1.62156900 \quad 2.05543800$
H $\quad-0.59671200$-1.52634200 3.67263300
H 0.67197300 -2.71536000 3.34130100
$\begin{array}{llll}\text { C } & 1.64105600 & -0.66887100 & 5.05283800\end{array}$
$\begin{array}{llll}\text { H } & 0.71077700 & -0.45250800 & 5.58609500\end{array}$
H $2.38007900 \quad 0.08304300 \quad 5.34261800$
H 2.00037600 -1.64190100 5.39952900
C $\quad-0.20688800 \quad 3.22083100 \quad-0.02970600$
$\begin{array}{llll}\text { C } & -1.51514000 & 3.16357400 & 0.48614700\end{array}$
C $\quad-2.53543700 \quad 3.76321000 \quad-0.25803600$
H $\quad-3.55470600 \quad 3.72725900 \quad 0.10904200$
C $\quad-2.26665200 \quad 4.40035000$-1.46326500
H $-3.07296800 \quad 4.85785300$-2.02609900
C $\quad-0.96517400 \quad 4.45264600 \quad-1.94709300$
H $\quad-0.76735600 \quad 4.95066600$-2.88934700
C $0.09209000 \quad 3.86944700$-1.24245400
C $\quad-1.84836500 \quad 2.44781600 \quad 1.79001700$
$\begin{array}{llll}\mathrm{H} & -0.90790200 & 2.15518200 & 2.25932300\end{array}$
C $\quad-2.63777500 \quad 1.15396300 \quad 1.51680800$
$\begin{array}{llll}\mathrm{H} & -3.59515000 & 1.36647900 & 1.03145300\end{array}$
$\begin{array}{llll}\mathrm{H} & -2.84360900 & 0.62681300 & 2.45337100\end{array}$
H \quad-2.06050700 $0.48951400 \quad 0.86819300$
C $\quad-2.58961900 \quad 3.36102000 \quad 2.78280200$
$\begin{array}{llll}\mathrm{H} & -2.74535800 & 2.83826400 & 3.73097800\end{array}$
$\begin{array}{llll}\mathrm{H} & -3.57233800 & 3.65864100 & 2.40632200\end{array}$
H $\quad-2.02013400 \quad 4.27159900 \quad 2.98781500$
C $\quad 1.50400200 \quad 3.92193400 \quad-1.81447000$
H $2.18203500 \quad 3.50746800$-1.06693100
C 1.619937003 .03596000 -3.06875900
$\begin{array}{llll}\text { H } & 0.95326900 & 3.38205000 & -3.86437100\end{array}$
H $1.36161200 \quad 2.00176200$-2.82565600
H $2.64363400 \quad 3.05267300$-3.45500900
C $1.96292100 \quad 5.36341800$-2.09859700
H $1.89727800 \quad 5.98605300$-1.20220900
H $1.35995100 \quad 5.83607200$-2.87902400
$\begin{array}{llll}\text { H } & 3.00267100 & 5.36753200 & -2.43843400\end{array}$

```
( }\mp@subsup{\eta}{}{2}-1\textrm{a})\textrm{Ni}(IPr) (Figure S4
E=-2275.105496,G=-2275.193851
```

$\begin{array}{llll}\mathrm{Ni} & 0.22247000 & 0.18924500 & -0.48192800\end{array}$
N $2.36297100 \quad 1.12558800 \quad 1.44520600$
N $0.99484000 \quad 2.64483300 \quad 0.78054700$
C $0.08314800 \quad-1.73724600 \quad-0.77846800$
H $\quad-0.05220200 \quad-2.20511800 \quad 0.20630600$
C 1.07471400 -2.41099100 -1.64749300
C 2.22230700 -2.92624600 -1.02366400
H 2.33835100 -2.79704500 0.04716800
C 3.21593100 -3.56808100 -1.74932300
H $4.09705500 \quad-3.94876600 \quad-1.24439100$
C 3.07041200 -3.71326200 -3.12662600
H 3.83682800 -4.20828000 -3.71328000
C $\quad 1.91684200 \quad-3.23654100 \quad-3.74676800$
H $\quad 1.81073300$-3.39628800 -4.81301700
C 0.88852300 -2.59041600 -3.04119800
C $1.30533100 \quad 1.32061900 \quad 0.59588700$
C $2.68973600 \quad 2.29303300 \quad 2.13197900$
$\begin{array}{llll}\mathrm{H} & 3.49763300 & 2.32996500 & 2.84154600\end{array}$
$\begin{array}{llll}\text { C } & 1.82940700 & 3.24730800 & 1.71461200\end{array}$
H $1.73270300 \quad 4.28394100 \quad 1.98672300$
C $3.09512100-0.10429100 \quad 1.63115600$
C $\quad 4.26312200 \quad-0.31119900 \quad 0.87547300$
C $4.99986800 \quad-1.47275700 \quad 1.12789700$
H $\quad 5.90418900$-1.66277800 0.56167800
C $4.59191200-2.38681300 \quad 2.09076000$
H $\quad 5.17861900$-3.28058200 2.27225900
C $3.43305000 \quad-2.15799500 \quad 2.82404900$
H 3.12873700 -2.87716300 3.57517100
C $2.66027800 \quad-1.01173200 \quad 2.61567400$
C $\quad 4.74976500 \quad 0.68153500 \quad-0.17480700$
H $4.01060200 \quad 1.48031900 \quad-0.24862400$
C $4.85658100 \quad 0.03891600$-1.56914200
H 3.90426300 -0.39554800 -1.87767600
H $5.61089300 \quad-0.75268700 \quad-1.59160500$
H $5.14576300 \quad 0.79304000$-2.30686200
C $6.08546000 \quad 1.32631900 \quad 0.24292500$
H $6.88293700 \quad 0.58098500 \quad 0.31352700$
$\begin{array}{llll}\mathrm{H} & 6.00512200 & 1.82204600 & 1.21400100\end{array}$
H $6.39233000 \quad 2.07368300$-0.49444700
C $\quad 1.42661600-0.75531900 \quad 3.47488000$
H $0.86625600 \quad 0.06114400 \quad 3.01701500$
$\begin{array}{llll}\text { C } & 0.48166500 & -1.96743300 & 3.53548900\end{array}$

H 0.18070500 -2.28450700 2.53506100
H $\quad-0.42252800-1.70737900 \quad 4.09273500$
H 0.94240600 -2.82163800 4.03913000
C $1.83327300-0.30800300 \quad 4.89328300$
$\begin{array}{llll}\mathrm{H} & 0.94567400 & -0.08001400 & 5.49060700\end{array}$
$\begin{array}{llll}\mathrm{H} & 2.46152800 & 0.58588900 & 4.86723600\end{array}$
H 2.39241700 -1.09512100 5.40784500
$\begin{array}{llll}\text { C } & -0.06218100 & 3.33581600 & 0.08174200\end{array}$
C $\quad-1.36018800 \quad 3.32486300 \quad 0.62636100$
C $\quad-2.35574000 \quad 4.02229000-0.06472100$
$\begin{array}{llll}\mathrm{H} & -3.36718200 & 4.03139000 & 0.32454600\end{array}$
C $\quad-2.07062000 \quad 4.70437900$-1.24094900
H $\quad-2.85828400 \quad 5.23924800 \quad-1.76004100$
C $\quad-0.77969800 \quad 4.70182900$-1.75489900
H $\quad-0.57221300 \quad 5.23177900$-2.67697800
C $0.25411300 \quad 4.02041200 \quad-1.10702300$
C $\quad-1.70651400 \quad 2.59642000 \quad 1.92009700$
$\begin{array}{llll}\mathrm{H} & -0.79395400 & 2.13546900 & 2.30112000\end{array}$
$\begin{array}{llll}\text { C } & -2.71865600 & 1.46204600 & 1.67460800\end{array}$
$\begin{array}{llll}\mathrm{H} & -3.67163400 & 1.84856200 & 1.30196600\end{array}$
$\begin{array}{llll}\mathrm{H} & -2.91800700 & 0.92557000 & 2.60692400\end{array}$
$\begin{array}{llll}\mathrm{H} & -2.33371400 & 0.74505600 & 0.94524800\end{array}$
$\begin{array}{llll}\text { C } & -2.21049000 & 3.57241000 & 2.99989300\end{array}$
$\begin{array}{llll}\mathrm{H} & -2.39466400 & 3.03774300 & 3.93611700\end{array}$
$\begin{array}{llll}\mathrm{H} & -3.14682200 & 4.05279400 & 2.70246500\end{array}$
$\begin{array}{llll}\mathrm{H} & -1.47875200 & 4.36025100 & 3.19787500\end{array}$
C $1.65624000 \quad 4.02022300$-1.70548800
H $2.31892300 \quad 3.50393400$-1.00926300
C 1.691789003 .23795900 -3.03120000
H 1.06303300 3.70988200 -3.79052900
H $1.33523200 \quad 2.21483600$-2.89441100
$\begin{array}{llll}\text { H } & 2.71416300 & 3.19562600 & -3.41837500\end{array}$
C $2.20686800 \quad 5.44721300$-1.88204500
$\begin{array}{llll}\mathrm{H} & 2.20541400 & 5.99625500 & -0.93651700\end{array}$
H $1.61860500 \quad 6.02119600$-2.60330700
H $3.23586200 \quad 5.41027800$-2.25085400
O $\quad-0.92726900-1.06568200 \quad-1.29483600$
Si $\quad-0.72179200 \quad-2.17683700 \quad-4.02128300$
C $\quad-0.55429000$-3.05844900 -5.72183000
H $\quad-0.43221800 \quad-4.13742400 \quad-5.59322800$
H $\quad-1.47368000$-2.89028100 -6.28980000
H 0.27706100 -2.69293800 -6.32912200
C $\quad-2.27841100$-2.95107000 -3.23974700
H $\quad-2.52174200$-2.48750800 $\quad-2.28612900$
$\begin{array}{llll}\mathrm{H} & -3.12540700 & -2.83985100 & -3.92294400\end{array}$
H $\quad-2.11318800$-4.02071100 -3.08142200

C	-0.99579400	-0.33302900	-4.46538800
C	-1.96478400	0.44951100	-3.82039200
C	-0.28762100	0.25537100	-5.52440600
C	-2.23151400	1.75524500	-4.23001700
H	-2.51049400	0.03334100	-2.98287300
C	-0.54200900	1.56383600	-5.93445900
H	0.46989300	-0.31525400	-6.05222900
C	-1.52218400	2.31620300	-5.29087100
H	-2.99049700	2.33597700	-3.71677500
H	0.01923900	1.99108500	-6.75903700
H	-1.73199500	3.33054100	-5.61360500

Figure S4 Optimized structures of $\left(\eta^{2}-\mathbf{1 a}\right) \mathrm{Ni}(\operatorname{IPr})$

Table S1. Selected Geometries for $\left(\eta^{2} \mathbf{- 1 a}\right) \mathrm{Ni}\left(\mathrm{NHC}^{*}\right),\left(\eta^{2}: \eta^{2}-\mathbf{1 a}\right) \mathrm{Ni}\left(\mathrm{NHC}^{*}\right)$, and $\left(\eta^{2}-\mathbf{1 a}\right) \mathrm{Ni}(\operatorname{IPr})$

			$\left(\eta^{2}-\mathbf{1 a}\right) \mathrm{Ni}(\mathrm{IPr})$
bond distances / \AA			
$\mathrm{Ni}-\mathrm{O}$	1.8875	1.9217	1.8862
$\mathrm{Ni}-\mathrm{C}$	1.9485	1.9721	1.9542
C-O	1.3193	1.3192	1.3186
$\mathrm{Ni}-\mathrm{C}_{\text {NHC }}$	1.8962	1.9083	1.9011
$\mathrm{Ni}-\mathrm{C}_{\text {insn }}$	(4.3276)	2.6285	(4.1982)
$\mathrm{Ni}-\mathrm{C}_{\text {rrtho }}$	(4.3593)	2.4543	(3.9997)
$\mathrm{Si} \cdots \mathrm{O}$	2.9635	2.7589	2.9513
$\mathrm{Ni} \cdots \mathrm{Si}$	4.4197	3.4270	4.3609
bond angles $/{ }^{\circ}$			
$\mathrm{C}_{\mathrm{NHC}}-\mathrm{Ni}-\mathrm{O}$	172.14	152.05	170.93
$\mathrm{C}_{\text {NHC- }}-\mathrm{Ni}-\mathrm{C}$	134.25	116.07	135.51
torsion angles $/{ }^{\circ}$			
$\mathrm{N}_{\mathrm{NHC}}-\mathrm{C}_{\text {NHC }}-\mathrm{Ni}-\mathrm{C}$	-7.23	-79.70	3.86

[10] References for the Supporting Information

S1. Seiders, T. J.; Ward, D. W; Grubbs, R. H. Org. Lett. 2001, 3, 3225.
S2. Hoshimoto, Y.; Yabuki, H.; Kumar, R.; Ohashi, M.; Ogoshi, S. J. Am. Chem. Soc. 2014, 136, 16752.

S3. Takacs, J. M.; Reddy, D. S.; Moteki, S. A.; Wu, Di; Palencia, H. J. Am. Chem. Soc. 2004, 126, 4494.

S4. Martinez-Solorio, D.; Hoye, A. T.; Nguyen, M. H.; Smith, A. B., III. Org. Lett. 2013, 15, 2454.
S5. Davies, S. G.; Hume, W. E.; Roberts, P. M.; Thomson, J. E. Tetrahedron 2010, 66, 8076.
S6. Sato, I.; Toyota, Y.; Asakura, N, Eur. J. Org. Chem. 2007, 2608.
S7. Glynn, D.; Shannonm, J.; Woodward, S. Chem. Eur. J. 2010, 16, 1053.
S8. Moro, A. V.; Tiekink, E. R. T.; Zukerman-Schpector, J.; Luedtke, D. S.; Correia, C. R. D. Eur. J. Org. Chem. 2010, 3639.

S9. Lee, C.-T.; Lipshutz, B. H. Org. Lett. 2008, 10, 4187.

S10. Cvengroš, J.; Stolz, D.; Togni, A. Synthesis 2009, 2818.
S11. Brown, E.; Lézé, A.; Touet J. Tetrahedron: Asymmetry 2010, 3, 841.
S12. Sälinger, D.; Brückner, R. Chem. Eur. J. 2009, 15, 6688.
S13. Yamamoto, K.; Tsurumi, K.; Sakurai, F.; Kondo, K.; Aoyama, T. Synthesis, 2008, 3585.
S14. Chang, H. -T.; Jeganmohan, M.; Cheng, C. -H. Chem. Eur. J. 2007, 13, 4356.
S15. Frisch, M. J.; Trucks, G. W.; Schlegel, H. B.; Scuseria, G. E.; Robb, M. A.; Cheeseman, J. R.; Scalmani, G.; Barone, V.; Mennucci, B.; Petersson, G. A.; Nakatsuji, H.; Caricato, M.; Li, X.; Hratchian, H. P.; Izmaylov, A. F.; Bloino, J.; Zheng, G.; Sonnenberg, J. L.; Hada, M.; Ehara, M.; Toyota, K.; Fukuda, R.; Hasegawa, J.; Ishida, M.; Nakajima, T.; Honda, Y.; Kitao, O.; Nakai, H.; Vreven, T.; Montgomery, Jr., J. A.; Peralta, J. E.; Ogliaro, F.; Bearpark, M.; Heyd, J. J.; Brothers, E.; Kudin, K. N.; Staroverov, V. N.; Kobayashi, R.; Normand, J.; Raghavachari, K.; Rendell, A.; Burant, J. C.; Iyengar, S. S.; Tomasi, J.; Cossi, M.; Rega, N.; Millam, J. M.; Klene, M.; Knox, J. E.; Cross, J. B.; Bakken, V.; Adamo, C.; Jaramillo, J.; Gomperts, R.; Stratmann, R. E.; Yazyev, O.; Austin, A. J.; Cammi, R.; Pomelli, C.; Ochterski, J. W.; Martin, R. L.; Morokuma, K.; Zakrzewski, V. G.; Voth, G. A.; Salvador, P.; Dannenberg, J. J.; Dapprich, S.; Daniels, A. D.; Farkas, O.; Foresman, J. B.; Ortiz, J. V.; Cioslowski, J.; Fox, D. J.; Gaussian 09, Revision A.02, Gaussian, Inc., Wallingford CT, 2009. S16. a) Becke, A. D. J. Chem. Phys. 1993, 98, 5648. b) Lee, C.; Yang, W.; Parr, R. G. Phys. Rev. 1988, 785. c) Miehlich, B.; Savin, A.; Stoll, H.; Preuss, H. Chem. Phys. Lett. 1989, 157, 200.

S17. a) Hay, P. J.; Wadt, W. R. J. Chem. Phys. 1985, 82, 270. b) Hay, P. J.; Wadt, W. R. J. Chem. Phys. 1985, 82, 299. c) Hay, P. J.; Wadt, W. R. J. Chem. Phys. 1985, 82, 284.

S18. Ehlers, A. W.; Böhme, M.; Dapprich, S.; Gobbi, A.; Höllwarth, A.; Jonas, V.; Köhler, K. F.; Stegmann, R.; Veldkamp, A.; Frenking, G. Chem. Phys. Lett. 1993, 208, 111. S19. Roy, L. E.; Hay, P. J.; Martin, R. L. J. Chem. Theory Comput. 2008, 4, 1029. S20. a) Mennucci, B.; Cancès, E.; Tomasi, J. J. Phys. Chem. B 1997, 101, 10506. b) Cancès, E.; Mennucci, B.; Tomasi, J. J. Chem. Phys.1997, 107, 3032. c) See also a recent review: Tomasi, J.; Mennucci, B.; Cammi, R. Chem. Rev. 2005, 105, 2999.
$[11]{ }^{1} \mathrm{H},{ }^{13} \mathrm{C}$ NMR spectra and SFC/HPLC chart

1 g

$1 i$

[^0]

Chiral Separation：SFC；Chiralpak ID；Flow $\left(\mathrm{CO}_{2}\right)=2.0 \mathrm{~mL} / \mathrm{min}$ ；Flow（isopropanol）$=0.3 \mathrm{~mL} / \mathrm{min}$ ； $\mathrm{T}=25^{\circ} \mathrm{C} ; \lambda=250 \mathrm{~nm}$ ；Back pressure $=15 \mathrm{Mpa}$

Chromatogram R－147
Name

$\#$	CH	tR	Area	Height	Area\％
1	9	3.6433	610382	114294	49.964
2	9	3.9733	611254	99098	50.036

Chiral Separation：SFC；Chiralpak ID；Flow $\left(\mathrm{CO}_{2}\right)=2.0 \mathrm{~mL} / \mathrm{min}$ ；Flow（isopropanol）$=0.3 \mathrm{~mL} / \mathrm{min}$ ；

$$
\mathrm{T}=25^{\circ} \mathrm{C} ; \lambda=250 \mathrm{~nm} ; \text { Back pressure }=15 \mathrm{Mpa}
$$

クロマトグラム＋ピーク情報

Name

$\#$	CH	tR	Area	Height	Area\％
1	9	4.0417	572491	127741	49.801
2	9	4.5450	577068	111220	50.199

98% ee

Chromatogram R－366＿20140913＿001
Name

$\#$	CH	tR	Area	Height	Area\％
1	9	4.0533	41505	10384	0.678
2	9	4.4350	6076228	730603	99.322

Chiral Separation: SFC; Chiralpak IA; Flow $\left(\mathrm{CO}_{2}\right)=2.0 \mathrm{~mL} / \mathrm{min}$; Flow (isopropanol) $=0.3 \mathrm{~mL} / \mathrm{min}$; $\mathrm{T}=25^{\circ} \mathrm{C} ; \lambda=250 \mathrm{~nm}$; Back pressure $=15 \mathrm{Mpa}$

Chromatogram m-OMe-rac
Name

\#	CH	tR	Area	Height	Area\%
1	9	6.9783	544771	83822	50.035
2	9	7.3533	544008	77287	49.965

Chromatogram R-323-m
Name

$\#$	CH	tR	Area	Height	Area\%
1	9	7.0300	19436	3328	0.758
2	9	7.3133	2544898	291999	99.242

Chiral Separation: SFC; Chiralpak ID; Flow $\left(\mathrm{CO}_{2}\right)=2.0 \mathrm{~mL} / \mathrm{min}$; Flow (isopropanol) $=0.3 \mathrm{~mL} / \mathrm{min}$;

$\stackrel{\bullet}{\stackrel{m}{1}}$

Chiral Separation：SFC；Chiralpak ID；Flow $\left(\mathrm{CO}_{2}\right)=2.0 \mathrm{~mL} / \mathrm{min}$ ；Flow（isopropanol）$=0.3 \mathrm{~mL} / \mathrm{min}$ ； $\mathrm{T}=25^{\circ} \mathrm{C} ; \lambda=250 \mathrm{~nm}$ ；Back pressure $=15 \mathrm{Mpa}$

Chiral Separation：SFC；Chiralpak ID；Flow $\left(\mathrm{CO}_{2}\right)=4.0 \mathrm{~mL} / \mathrm{min}$ ；Flow $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right)=0.6 \mathrm{~mL} / \mathrm{min}$ ；

$$
\mathrm{T}=25^{\circ} \mathrm{C} ; \lambda=250 \mathrm{~nm} ; \text { Back pressure }=15 \mathrm{Mpa}
$$

クロマトグラム＋ビーク情報

Name

$\#$	CH	tR	Area	Height	Area\％
1	9	3.3733	5257878	490293	99.132
2	9	3.8833	46057	5806	0.868

Chiral Separation：SFC；Chiralpak IC；Flow $\left(\mathrm{CO}_{2}\right)=4.0 \mathrm{~mL} / \mathrm{min}$ ；Flow（isopropanol）$=0.2 \mathrm{~mL} / \mathrm{min}$ ； $\mathrm{T}=25^{\circ} \mathrm{C} ; \lambda=250 \mathrm{~nm}$ ；Back pressure $=15 \mathrm{Mpa}$

クロマトグラムーヒーク情報

Chromatogram R－506
Name

$\#$	CH	tR	Area	Height	Area\％
1	9	3.5417	5840725	708510	99.622
2	9	3.8850	22161	4295	0.378

Chiral Separation: HPLC; Chiralpak OD-H; Isopropanol/Hexane $=1: 9$; Flow $=0.5 \mathrm{~mL} / \mathrm{min}$; $\mathrm{T}=30^{\circ} \mathrm{C} ; \lambda=250 \mathrm{~nm}$

แ!и!

Racemic

Chiral Separation: HPLC; Chiralpak OD-H; Isopropanol/Hexane $=1: 9$; Flow $=0.5 \mathrm{~mL} / \mathrm{min}$;
$\mathrm{T}=30^{\circ} \mathrm{C} ; \lambda=250 \mathrm{~nm}$

3h
2h
ANALYZED: $01 / 29 / 14$ 12:49 SYSTEM : 1
METHOD : 1 OPERATOR:
FILE : 9
CALC-METHOD: AR/HI\% 〈AREA> COMPONENT

NO.	RT	$A R E A$	CONC	$B C$
1	7.29	16418	1.208	$B B$
2	8.48	3578	9.263	$B B$
3	9.44	126291	9.287	$B B$
4	16.16	17799	1.399	$B B$
5	19.99	1194935	87.933	$B B$
TOTAL				
PEAK REJ:	1358922	109.909		

แ!и!!!!!!!иі!!!!!

Chiral Separation: HPLC; Chiralpak OB-H; Isopropanol/Hexane $=1: 9$; Flow $=1.0 \mathrm{~mL} / \mathrm{min}$; $\mathrm{T}=30^{\circ} \mathrm{C} ; \lambda=250 \mathrm{~nm}$

Chiral Separation: HPLC; Chiralpak OB-H; Isopropanol/Hexane $=1: 9$; Flow $=1.0 \mathrm{~mL} / \mathrm{min}$; $\mathrm{T}=30^{\circ} \mathrm{C} ; \lambda=254 \mathrm{~nm}$

Chiral Separation：SFC；Chiralpak IB；Flow $\left(\mathrm{CO}_{2}\right)=5.0 \mathrm{~mL} / \mathrm{min}$ ；Flow（isopropanol）$=0.2 \mathrm{~mL} / \mathrm{min}$ ； $\mathrm{T}=25^{\circ} \mathrm{C} ; \lambda=230 \mathrm{~nm}$ ；Back pressure $=15 \mathrm{Mpa}$
クロマド゙ラムービーク情軙

Chromatogram R－495
Name

$\#$	CH	tR	Area	Height	Area\％
1	10	3.4650	1705957	380557	50.711
2	10	3.6383	1658110	277602	49.289

Chiral Separation：SFC；Chiralpak ID；Flow $\left(\mathrm{CO}_{2}\right)=3.5 \mathrm{~mL} / \mathrm{min}$ ；Flow $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right)=0.6 \mathrm{~mL} / \mathrm{min}$ ； $\mathrm{T}=25^{\circ} \mathrm{C} ; \lambda=250 \mathrm{~nm}$ ；Back pressure $=15 \mathrm{Mpa}$

クロマトグラム＋ビーク情報

Chiral Separation：SFC；Chiralpak IA；Flow $\left(\mathrm{CO}_{2}\right)=2.0 \mathrm{~mL} / \mathrm{min}$ ；Flow（Isopropanol）$=0.3 \mathrm{~mL} / \mathrm{min}$ ； $\mathrm{T}=25^{\circ} \mathrm{C} ; \lambda=250 \mathrm{~nm}$ ；Back pressure $=15 \mathrm{Mpa}$

Chiral Separation: SFC; Chiralpak IB; Flow $\left(\mathrm{CO}_{2}\right)=3.0 \mathrm{~mL} / \mathrm{min}$; Flow (Isopropanol) $=0.3 \mathrm{~mL} / \mathrm{min}$; $\mathrm{T}=25^{\circ} \mathrm{C} ; \lambda=250 \mathrm{~nm}$; Back pressure $=15$ Mpa

Chromatogram
Name
$\#$ CH tR Area Height Area\% 1 9 3.8600 801408 176611 49.975 2 9 4.1117 802202 149874 50.025
:---

Chromatogram R-348-1_20141001_001
Name

$\#$	CH	tR	Area	Height	Area\%
1	9	3.8567	1113148	221329	99.541
2	9	4.1800	5134	1674	0.459

Chiral Separation: SFC; Chiralpak ID; Flow $\left(\mathrm{CO}_{2}\right)=2.0 \mathrm{~mL} / \mathrm{min}$; Flow (isopropanol)
$=0.3 \mathrm{~mL} / \mathrm{min}$;

Chromatogram R-147_20140913_001

$\#$	CH	tR	Area	Height	Area\%
1	9	4.0417	572491	127741	49.801
2	9	4.5450	577068	111220	50.199

$$
\mathrm{T}=25^{\circ} \mathrm{C} ; \lambda=250 ; \text { Back pressure }=15
$$

	omat ie	$\underset{\mathcal{2 q 1}}{\mathrm{R}=341} 20140913 _001$			
\#	CH	tR	Area	Height	Area\%
1	9	4.0717	37987	9501	1.039
2	9	4.4883	3617895	507773	98.961

Chiral Separation: SFC; Chiralpak ID; Flow $\left(\mathrm{CO}_{2}\right)=2.0 \mathrm{~mL} / \mathrm{min}$; Flow (isopropanol) $=0.3 \mathrm{~mL} / \mathrm{min}$; $\mathrm{T}=25^{\circ} \mathrm{C} ; \lambda=250$; Back pressure $=15$ Mpa,

Chiral Separation: SFC; Chiralpak ID; Flow $\left(\mathrm{CO}_{2}\right)=4.0 \mathrm{~mL} / \mathrm{min}$; Flow $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right)=0.6 \mathrm{~mL} / \mathrm{min}$;

Chiral Separation: HPLC; Chiralpak OB-H; Isopropanol/Hexane $=3: 97$; Flow $=0.5 \mathrm{~mL} / \mathrm{min}$;

$$
\mathrm{T}=40^{\circ} \mathrm{C} ; \lambda=250 \mathrm{~nm}
$$

Chiral Separation：SFC；Chiralpak IB；Flow $\left(\mathrm{CO}_{2}\right)=4.0 \mathrm{~mL} / \mathrm{min}$ ；Flow（isopropanol）$=0.2 \mathrm{~mL} / \mathrm{min}$ ； $\mathrm{T}=25^{\circ} \mathrm{C} ; \lambda=230 \mathrm{~nm}$ ；Back pressure $=15 \mathrm{Mpa}$
クロマトゲラム＋ビーク情軗

Chromatogram R－504
Name

$\#$	CH	tR	Area	Height	Area\％
1	10	5.9400	14029189	1178273	48.718
2	10	6.7217	14767645	986556	51.282

Chromatogram R－514－OMe－V

Name					
$\#$ CH tR Area Height Area\％					
1	10	5.9683	5714600	488809	86.539
2	10	6.8800	888902	73926	13.461

Chiral Separation：SFC；Chiralpak IA；Flow $\left(\mathrm{CO}_{2}\right)=4.0 \mathrm{~mL} / \mathrm{min}$ ；Flow（isopropanol）$=0.3 \mathrm{~mL} / \mathrm{min}$ ； $\mathrm{T}=25^{\circ} \mathrm{C} ; \lambda=220 \mathrm{~nm}$ ；Back pressure $=15 \mathrm{Mpa}$

Chromatogram R－480（1）－alkynyl－TMS－diol
Name

$\#$	CH	tR	Area	Height	Area\％
1	10	3.0483	3714641	788023	49.317
2	10	3.2600	3817569	698938	50.683

Chromatogram R－484（1）－alkynyl－TMS－diol in THF
Name

$\#$	CH	tR	Area	Height	Area\％
1	10	3.0967	279441	90151	3.306
2	10	3.2167	8172820	1174613	96.694

Chiral Separation：SFC；Chiralpak IB；Flow $\left(\mathrm{CO}_{2}\right)=2.0 \mathrm{~mL} / \mathrm{min}$ ；Flow（Isopropanol）$=0.3 \mathrm{~mL} / \mathrm{min}$ ； $\mathrm{T}=25^{\circ} \mathrm{C} ; \lambda=250$ ；Back pressure $=15 \mathrm{Mpa}$ ，
クロマトグラム＋ピーク情報

Chromatogram
R－357－2＿20140930＿002

$\#$	CH	tR	Area	Height	Area\％
1	9	5.8650	1832166	290535	50.071
2	9	6.3817	1826934	264247	49.929

5

Chromatogram R－364－pure20140930＿002
Name

\＃	CH	tR	Area	Height	Area\％
1	9	5.8117	3271865	467411	98.955
2	9	6.4050	34553	5797	1.045

Chiral Separation：SFC；Chiralpak IB；Flow $\left(\mathrm{CO}_{2}\right)=2.0 \mathrm{~mL} / \mathrm{min}$ ；Flow（Isopropanol）$=0.3 \mathrm{~mL} / \mathrm{min}$ ； $\mathrm{T}=25^{\circ} \mathrm{C} ; \lambda=250$ ；Back pressure $=15 \mathrm{Mpa}$ ，
クロマトグラム＋ビーク情報

Chiral Separation：SFC；Chiralpak IB；Flow $\left(\mathrm{CO}_{2}\right)=2.0 \mathrm{~mL} / \mathrm{min}$ ；Flow（Isopropanol）$=0.3 \mathrm{~mL} / \mathrm{min}$ ；

(S)－neobenodine

BRUKER

Current Data Parameters	
NAME	Neobenodine
EXPNO	14101201
PROCNO	，
F2－Acquisition Parameters	
Date＿	20141012
Time	17.07
INSTRUM	spect
PRobhD	5 mm PABBO BB－
PULPROG	zg30
TD	65536
SOLVENT	CDC13
NS	16
DS	${ }^{2}$
Swh	8223.685 Hz
FIDRES	0.125483 Hz
${ }^{\text {AQ }}$	3.9845889 sec
RG	71.8
DW	60.800 usec
DE	6.50 usec
TE	297.9 K
D1	1.00000000 sec
TDO	1
NUC1	
P1	14.00 usec
PL1	$-1.20 \mathrm{~dB}$
PLIW	13.97373390 W
SEO1	400.1324710 MHz
F2－Processing parameters	
SI	32768
SE	400.1300237 MHz
WDW EM	
SSB	0 0．30
LB $\quad 0.30 \mathrm{~Hz}$	
GB	0 －
PC	1.00

昭寝臣

Chiral Separation：SFC；Chiralpak IA；Flow $\left(\mathrm{CO}_{2}\right)=2.4 \mathrm{~mL} / \mathrm{min}$ ；Flow $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right)=0.4 \mathrm{~mL} / \mathrm{min}$ ； $\mathrm{T}=40^{\circ} \mathrm{C} ; \lambda=250$ ；Back pressure $=15 \mathrm{Mpa}$ ，
クロマトグラムーピーク情報
Chromatogram R－223－rac－2
Name

$\#$	CH	tR	Area	Height	Area\％
1	10	6.9067	7128018	573902	49.207
2	10	7.5017	7357845	486547	50.793

Chromatogram R－223－chir－2
Name

$\#$	CH	tR	Area	Height	Area\％
1	10	6.9717	1222845	171222	6.338
2	10	7.2650	18070834	870158	93.662

[^0]: F2 - Processing parameters
 $\begin{array}{lc}\text { F2 - Processing parameters } \\ \text { SI } & 32768 \\ \text { SF } & 100.6127774 \mathrm{MHz} \\ \text { WDW } & \text { EM }\end{array}$

 1.40

