## **Supporting Information**

Impact of Surface Polyethylene Glycol (PEG) Density on Biodegradable Nanoparticle Transport in Mucus *ex vivo* and Distribution *in vivo* 

Qingguo Xu,<sup>▲,#</sup> Laura M. Ensign,<sup>▲,#,†</sup> Nicholas J. Boylan,<sup>#,†</sup> Arne Schön,<sup>♥</sup> Xiaoqun Gong,<sup>▲,#,▶,+</sup> Jeh-Chang Yang,<sup>†</sup> Nicholas W. Lamb,<sup>▲,#</sup> Shutian Cai,<sup>†</sup> Tao Yu,<sup>‡,#</sup> Ernesto Freire,<sup>♥</sup> Justin Hanes<sup>▲,#,†,‡,◀,\*</sup>

▲Department of Ophthalmology, The Wilmer Eye Institute, The Johns Hopkins University School of Medicine, Baltimore, MD 21231, USA

<sup>#</sup>Center for Nanomedicine, The Johns Hopkins University School of Medicine, MD 21231, USA

<sup>†</sup>Department of Chemical and Biomolecular Engineering, The Johns Hopkins University, Baltimore, MD 21218, USA

Institute of Nanobiotechnology, School of Materials Science and Engineering, Tianjin University, Tianjin 300072, PR China

+ School of Life Science, Tianjin University, Tianjin 300072, PR China

<sup>•</sup>Department of Biology, The Johns Hopkins University, Baltimore, MD 21218, USA

‡ Department of Biomedical Engineering, The Johns Hopkins University, Baltimore, MD 21205, USA

Departments of Environmental Health Sciences, Oncology, Neurosurgery, and Pharmacology & Molecular Sciences, The Johns Hopkins University, Baltimore, MD 21231, USA

| Block polymer                | mer PEG LA:G.<br>(kDa) <sup>[a]</sup> | LA:GA | PEG<br>content<br><sup>[b]</sup> (%) | 2     | Mn <sup>[d]</sup> | Mw <sup>[d]</sup> | PDI <sup>[d]</sup> |
|------------------------------|---------------------------------------|-------|--------------------------------------|-------|-------------------|-------------------|--------------------|
|                              |                                       | [a]   |                                      | (kDa) | (kDa)             | (kDa)             |                    |
| PLGA-PEG <sub>5k</sub> , 25% | 5                                     | 78:22 | 25.2                                 | 19.9  | 15.1              | 21.9              | 1.75               |
| PLGA-PEG <sub>5k</sub> , 20% | 5                                     | 49:51 | 21.4                                 | 23.4  | 25.4              | 38.7              | 1.52               |
| PLGA-PEG <sub>5k</sub> , 10% | 5                                     | 55:45 | 9.8                                  | 50.8  | 40.5              | 71.0              | 1.45               |

Table S1. Characteristics of PEG-containing block copolymers

<sup>[a]</sup> The molar ratio of LA:GA was measured by comparing the <sup>1</sup>H NMR integral intensity at 5.22 ppm (-CH- on lactide), 1.59 ppm (-CH<sub>3</sub> on lactide) and 4.83 ppm (-CH<sub>2</sub>- on glycolide), as shown in Figure. S3. <sup>[b]</sup> PEG content in the block copolymers were determined by <sup>1</sup>H NMR.

<sup>[c]</sup> PLGA-PEG molecular weight (Mn) was determined by <sup>1</sup>H NMR through comparing the integral at 5.22 ppm (-CH- in lactide), 1.59 ppm (-CH<sub>3</sub> on lactide), 4.83 ppm (-CH<sub>2</sub>in glycolide) and 3.65 ppm (-CH<sub>2</sub>CH<sub>2</sub>- in PEG) and by taking into account of the known Mn of PEG. For PCL-PEG, integrals at 4.06 ppm (-O-CH<sub>2</sub>-) and 2.31 ppm (-CH<sub>2</sub>-CO-) were analyzed.

<sup>[d]</sup> Mn, Mw and polydispersity (PDI) were measured by GPC.

| Target<br>PEG<br>content<br>(wt%) | ζ-<br>potential<br>(mV) | D (nm)  | Total PEG<br>content<br>(wt%) | Surface<br>PEG content<br>(wt%) | [Γ]<br>(chains/<br>100 nm <sup>2</sup> ) | [ Γ]/[Γ*] |
|-----------------------------------|-------------------------|---------|-------------------------------|---------------------------------|------------------------------------------|-----------|
| 10                                | -3.4±0.4                | 117±1.4 | 6.5±0.1                       | 5.8±0.2                         | 15.8±0.6                                 | 3.6±0.1   |

Table S2. Characteristics of PLGA-PEG<sub>5k</sub> nanoparticles prepared by nanoprecipitation mathad

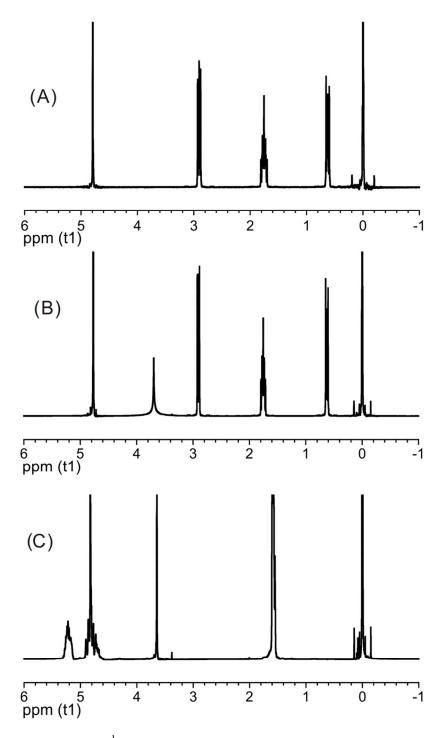



Figure S1. Representative <sup>1</sup>H NMR spectra of (A) PLGA (0% PEG) nanoparticles and (B) PLGA-PEG<sub>10%</sub> nanoparticles suspended in D<sub>2</sub>O with 1 wt% DSS as internal standard. Peaks at 2.91, 1.76, 0.65 and 0 ppm are from DSS. PEG on the nanoparticle surface shows broadened peak around 3.65 ppm, however, no peaks were observed from PLGA nanoparticles at 3.65 ppm. (C) <sup>1</sup>H NMR spectra of lyophilized PLGA-PEG<sub>10%</sub> nanoparticles dissolved in CDCl<sub>3</sub> with TMS as internal standard and PEG shows sharp peak around 3.65 ppm.

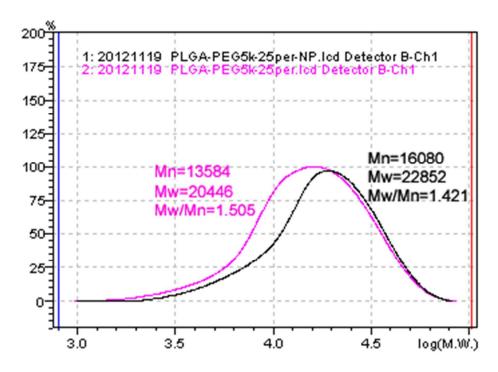



Figure S2. GPC results of PLGA-PEG<sub>5k</sub> (25 wt% PEG) raw materials (pink color) and the nanoparticles prepared from PLGA-PEG<sub>5k</sub> (25 wt% PEG) by the emulsification method (black color)

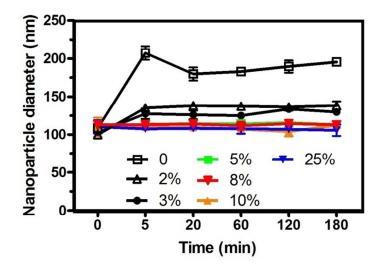



Figure S3. Nanoparticle stability over time *in vitro* in mucin solution. PLGA nanoparticles with different PEG content (0, 2%, 3%, 5%, 8%, 10% and 25% PEG) were incubated with 10 mg/ml mucin solution at 37°C under gentle stirring. At each time point, an aliquot of the nanoparticle suspension was removed to measure the hydrodynamic diameter using dynamic light scattering.

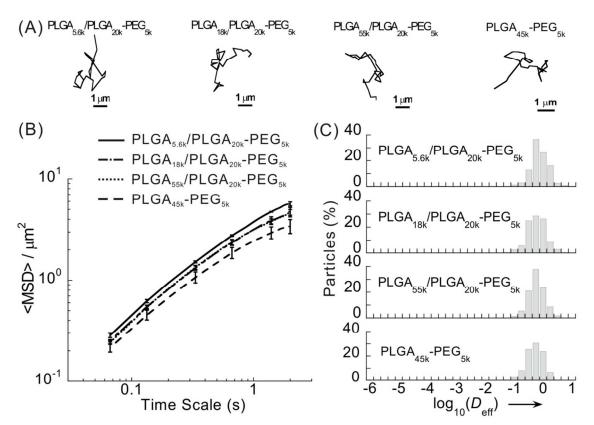



Figure S4. Transport of PTX-loaded PLGA-PEG and PLGA/PLGA-PEG blended nanoparticles in fresh, undiluted CVM. A) Representative trajectories for 3 s of particle motion. B) Ensemble-averaged geometric mean square displacement ( $\langle MSD \rangle$ ) as a function of time scale. C) Distributions of the logarithms of individual particle effective diffusivities ( $D_{eff}$ ) at a time scale of 1 s. Data represent three independent experiments with  $\geq 120$  nanoparticles tracked for each experiment (mean  $\pm$  SEM).

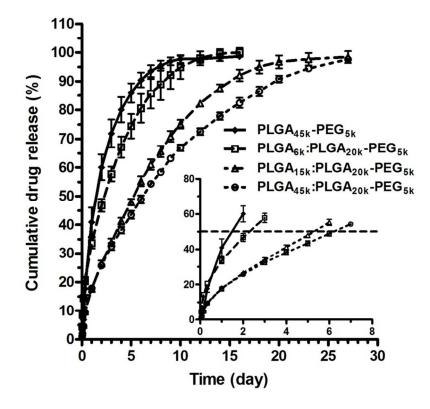



Figure S5. *In vitro* release of PTX from PLGA-PEG and PLGA/PLGA-PEG nanoparticles. The insert highlights the release profiles with extrapolated  $T_{1/2}$ , the time to release 50% of encapsulated drug.