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FIGURES AND TABLES 
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S Figure 1. Nitrogen Adsorption Isotherm of reduced graphene oxide aerogel (rGA), carbon 
nitride aerogel (CNA) and graphitic carbon nitride (g-C3N4).  
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S Figure 2. TEM image with selected area of line scanning (green line) for core-loss spectrum 
from electron energy loss spectroscopy (EELS). Core-loss spectrum is used to measure thick-
ness (t) of CNA, where I0 and It corresponds to energy loss intensity at baseline and accumu-
lated intensity sum in 0-20 eV range, λ as the mean path average.  
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S Figure 3. PXRD pattern of CNA, D-rGA, and rGA sample showing amorphous surface of re-
duced graphene oxide aerogel .  
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S Figure 4. TEM images and SAED (bottom right inset) of dicyandiamide functionalized re-
duced graphene oxide aerogel (D-rGA) transforming into carbon nitride aerogel (CNA) upon 
thermal treatment. 
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S Figure 5. XPS analysis of (top) C1s and (bottom) N1s scan showing how dicyandiamide on 
graphene surface transformed into condensed carbon nitride phase under temperature in-
crease up to 600°C. Superscript ‘AP’ and ‘AR’ stands for aliphatic and aromatic state. 
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S Figure 6. (top) SEM analysis of CNA samples treated at various temperature conditions. 
Scale bar corresponds to 20 μm length. (bottom) Thermal treatment effect on surface area of 
CNA.  

 

S Figure 7. Optimized geometry of CO2 adsorptions on (a) carbon top, (b) hexagonal ring and 
(c) bond center of a 6 x 6 x 1 supercell of pristine graphene. Here, only a portion of the gra-
phene substrate is shown for the sake of clarity. The corresponding optimized geometries of 
N2 adsorptions are shown in (d), (e) and (f), respectively. The inset numbers represents the 
distance from center of gas molecule to graphene surface, in the unit of Å.  
 

 

S Figure 8. (a) Iso-surface plot of the differential charge density for CO2/N2 adsorption at the 
tertiary N site. b) Same as (a) for the heptazine site of g-C3N4. Blue and red colors represent 
electron depletion and accumulation, respectively. 
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S Table 1. Experimental ATR-IR vibrational frequencies of CNA and D-rGA 

Vibrational Frequency [cm-1] 

 2400-3600 1300-2400 1000-1300 600-1000 

DCG 3360 [m, br] 
νN-H 
3180 [w, br] 
νO-H 
3020 [m, br] 
melamine 
2941 [m, vbr] 
νC-H 

1700, 1730 [m] 
νC=O (carboxylic) 
1630 [vw] 
C=N (aliaphatic) 
1550 [m] 
νC=C (aromatic) 
1357 [w] 
δC-H (aromatic) 

1260 [w, sh] 
νC-O (carbox-
ylic) 
1200 [m, br] 
νC-O-C 
1100 [m, sh] 
νC-O 
1060 [m, br] 
δC-C 

910 [s] 
ωC-H 
730 [s] 
ωN-H (amines) 
620 [w] 
δC-C (aromatic) 

CNG 3360 [m, br] 
νN-H 
3180 [w, br] 
νO-H 
2990[s] 
2900 [m, sh] 
νC-H 

2350 [m] 
vCO2 
1750 [m, br] 
νC=O (carboxylic) 
1570 [w] 
νC-N (aromatic) 
1530 [m, sh] 
νC=C (aromatic) 
1480 [m] 
νC-N (aromatic) 

1270 [m] 
νC-O (carbox-
ylic) 
1350 [w, sh] 
νC-N (aromatic) 
1073 [m] 
δC-C 

910 [s] 
ωC-H 
812 [w, sh] 
s-triazine 
736 [s] 
ωN-H (amines) 
620 [w] 
δC-C (aromatic) 

s : strong / m : medium / w : weak / br : broad / sh : shoulder / vw : very weak / ν: vibration / 
δ : in-plane deformation / ω : bending 
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