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MATERIALS AND METHODS 

1. Catalytic growth of graphene  

Graphene single crystals were synthesized on a 25-m-thick Cu foil (Alfa Aesar, purity 99.8%) 

in an LPCVD chamber. The reaction chamber is composed of a 90-cm-long quartz tube with 2.54 

cm in outer diameter and a split-tube furnace (Thermo Scientific, Lindberg/Blue M) with a 10-cm-

long heating zone (Figure S1 and 1). For graphene synthesis, the as-received Cu foil was treated 

with glacial acetic acid (Sigma-Aldrich, ≥99.85%) for 8 hr to remove oxides and contaminations on 

the Cu surface, followed by thoroughly rinsing with DI water and blow-drying with N2. The acid-

treated Cu foil was then cut into 1 × 2 cm2 strips and mounted on a tungsten (W) boat to be located 

in the LPCVD chamber. The tungsten boat was shifted out of the heating zone quickly via a small 

magnetic dragger after reaction. In the synthetic reaction, the CVD system was first evacuated to ~2 

× 10−2 torr for 10 min, followed by filling the gas mixture of Ar (FMI Corp., 99.9995%) and H2 

(FMI Corp., 99.9995%). The chamber temperature was then ramped up to 1050 °C within 40 min 

and kept at 1050 °C (typically for 30 min) for the substrate annealing (Figure S2, Steps I and II). 

After the annealing, the system temperature was maintained at 1050 °C, followed by introducing 

CH4 (FMI Corp., 99.9995%) as the carbon source into the reaction chamber to initiate graphene 

growth (Figure S2, Step III). After the reaction, while both H2 and CH4 flows were turned off, the 

tungsten boat containing the Cu substrate grown with graphene was quickly shifted out of the hot 

zone. Finally, the system was cooled to room temperature under an Ar flow (Figure S2, Step IV). 

2. Selected oxidation-assisted optical image 

To rapidly identify how different synthesis protocols vary the graphene domains produced, we 

adopted the selective oxidation method, reported by C. Jia and coworkers, which enables the direct 

optical inspection of the as-grown graphene without going through the laborious transfer process.S1 

With this method, a Cu substrate with the as-grown graphene grains was oxidized in ambient air on 

a hot plate at 180 °C for 20 min. The graphene film on the Cu substrate could serve as a protection 
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layer to prevent the underlying Cu surface from oxidation because of its high chemical/thermal 

stability and impermeability to gases and liquids.S2, 3 In contrast, the surrounding surface of the Cu 

foil without being covered by graphene exhibited high reactivity and was readily oxidized to copper 

oxides with an obvious color change. The apparent color contrast between the oxidized and non-

oxidized Cu surfaces made the synthesized graphene domains easy to be observed in an optical 

microscope (Olympus, BX51) equipped with a charge-coupled device (CCD) camera (Leica, 

DFC495). 

3. Thin-film transfer 

For further optical/electrical characterization and device fabrication, the as-grown graphene 

domains/films on the Cu substrate were transferred onto a p-doped Si wafer with a 300-nm-thick 

SiO2 layer or a TEM grid (Electron Microscopy Sciences, LC200-Cu) via a conventional polymer-

assisted method.S4 Because graphene domains/films were grown on both sides of the Cu substrate, 

we selected one side of the Cu foil (1 × 1 cm2) to transfer the as-grown graphene by spin-coating 50 

L of polymethyl methacrylate (MicroChem, 950 PMMA, A4) at 3000 rpm for 30 sec, followed by 

baking the PMMA/graphene/Cu on a hot plate at 135 °C for 5 min. Meanwhile, the other side of the 

Cu foil without the PMMA coating was cleaned with O2 plasma to remove graphene. The plasma 

cleaned PMMA/graphene/Cu sample was then floated over Marble’s solution (CuSO4 : HCl : H2O = 

10 g : 50 mL : 50 mL) to etch away the Cu substrate, resulting in a PMMA/graphene membrane 

suspending on the solution surface. The PMMA/graphene membrane was then transferred to DI 

water to further remove the remaining etchants and subsequently scooped up with a receiving 

substrate (a SiO2/Si wafer or a TEM grid). The PMMA/graphene membrane on the receiving 

substrate was vacuum dried in a desiccator at room temperature for 2 hr and heated on a hot plate at 

85 °C for 15 min to promote the adhesion between graphene and the receiving substrate. The 

PMMA/graphene/substrate stack was then immersed into acetone at room temperature overnight to 

remove PMMA, followed by rinsing the graphene/substrate with isopropanol and DI water to 
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remove organic residues on the graphene surface. Finally, the graphene/substrate was blow-dried 

with N2. 

4. Device fabrication and electrical measurement 

To fabricate filed-effect-transistor (FET) devices, the graphene/substrate was first annealed at 

200 °C under diluted H2 flow (H2 10 sccm/Ar 100 sccm) for 1 hr to remove the remained organic 

residues during the transfer process. After annealing, selected domains of the graphene/substrate 

were mounted carefully with a TEM copper grid which served as a shadow mask for the thermal-

evaporation deposition of source/drain electrodes (10 nm Cr/50 nm Au). The electrical 

measurements of the as-fabricated graphene-FET devices were conducted in a probe station 

(Lakeshore, TTPX) equipped with a source meter (Keithley, 2636A) under the chamber pressure of 

~ 2 × 10-3 torr at room temperature. In the measurements, a back gate voltage (Vg) was applied 

through the p-doped Si substrate with a 300-nm-thick SiO2 dielectric layer. From the recorded 

source-drain current vs. source-drain voltage (IsdVsd) and source-drain current vs. gate voltage 

(IsdVg) curves, the device resistance (Rtot), which is composed of the contact resistance (Rcontact) of 

metal/graphene and the graphene channel resistance (Rchannel), can be determined.S5, 6 
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In Equation S1, L refers to the channel length between the source and drain electrodes, W is the 

channel width, and  denotes the channel resistivity of the graphene-FET device. In addition, the 

conductivity () of the graphene channel is related to filed-effect mobility (EF), elementary 

charge (e), and carrier density (n) as shown in Equation S2.S6  
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In Equation S2, n0 is the residual carrier density at the Dirac point due to charged impurity, Cg is the 

capacitance per unit area of the gate dielectric, and VDirac refers to the recorded potential shift at the 

Dirac point. The combination of Equation S1 and S2 yields Equation S3, in which Rtot is 
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represented as a function of Vg–VDirac. It is noted that Rcontact can be determined from Equation S3 

by fitting the recorded data of Rtot and Vg–VDirac.
S7 
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5. FEM simulation of the flow field in confined reaction space 

Two COMSOL Multiphysics modules in the finite element model (FEM), i.e., laminar flow 

(Navier-Stokes equation) and transport of dilute species (convection-diffusion equation), were 

coupled to solve the flow field and mass transport of the reactants flow involved in our CVD 

reaction. Simulations were performed with a commercial FEM package of COMSOL Multiphysics 

(version 4.4). The three-dimensional geometry shown in Figure S1a describes the CVD reaction 

system used in this study for graphene synthesis. This system consists of a quartz tube (2.54 

cm/2.15 cm in outer/inner diameter and 90 cm in length) with a rectangular reactor (L 25 mm × W 

18 mm × H 4 mm) located in the center. Within the rectangular reactor, a confined reaction room (L 

22 mm × W 13 mm × H 50 m) with one open end (as an inlet) was designed to allow the insertion 

of a 25-m-thick Cu foil and the entry of reacting gases. It is noteworthy that the inlet was oriented 

towards tailwind to prevent the direct injection of gas flow. To save the memory space required in 

computation and to facilitate the illustration of simulated results, a reduced three-dimensional 

geometry with a plane of symmetry (Figure S1b) was utilized for the FEM simulations. In addition, 

the graphene synthesis was conducted in the heating zone located within the central 10-cm-long 

region of the quartz tube (Figure 1 and S1). Therefore, our discussion about the simulated flow 

fields and mass transports is focused on this region (Figure S1c). In this simulation, the flow was 
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considered as a gas mixture of CH4, H2, and Ar with a constant inlet speed consistent with the 

experimental conditions. In addition, to demonstrate the scalability of the CVD method adopted in 

this study, a simulation for the CVD reaction system composed of a large tube furnace (Figure 

S6ac, 20.32 cm in diameter and 120 cm in length, adapted from the chamber dimensions reported 

by Bae, S. et. al., Nat. Nanotechnol., 2010, 5, 574-578)S8 with an amplified rectangular reactor 

(Figure S6d, L 20 cm × W 14.4 cm × H 4 mm containing a confined reaction room of L 17.6 cm × 

W 10.4 cm × H 50 m) was performed. 

6. Estimation of boundary layer thickness 

Over a flat plane, the boundary layer thickness () can be estimated with the following 

equation:S9, 10 

U

x 91.4           (S4) 

where  refers to the kinematic viscosity (m2/s), x is the distance downstream from the start of the 

boundary layer (m) and U is the free stream velocity (m/s). In the LPCVD system at 1050 ˚C and 

1.71 torr, the kinematic viscosity of ~ 110-2 m2/s was estimated for the reactant mixture (i.e., H2, 

CH4, and Ar).S11 The free stream velocity (U) at the entrance of the confined reaction space is 

~110-2 m/s obtained from the FEM simulation. Since the Cu substrate was located typically at ~1 

mm away from the entrance of the confined reaction space, the distance from the start of the 

boundary (x) was assumed to be 10-3 m in the calculation. From the calculation with Equation S4,  




 



2

32

10

1010
91.491.4

U

x 0.16 m = 16 cm. 

Since the height of the confined reaction room to accommodate the catalytic Cu substrate is only 50 

m, the boundary layer is believed to extend over the entire space between the Cu surface and 

quartz slides. 
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Table S1. Synthesis protocols utilized in this study 

Protocol  Temp Annealing step Growing step Reactor type Grain size Grain density 
  

(˚C) 
Pressure  Ar H2 Time Pressure Ar H2 CH4 Time  

(m) (nuclei/cm2) 
  (torr)  (sccm) (min) (torr) (sccm) (min)  
             

P1  1050 1.04  200 50 60 0.18 0 25 1 20 on W boat ~15 ~9.6E+5 
                

P2   1050 1.04  200 50 60 0.18 0 25 1 90 
sandwiched 

between 
quartz slides

~50 ~6.8E+4 

                

P3   1050 1.04  200 50 60 3.43 1000 25 1 25 
Confined 

space 
~20 ~4.7E+4 

                
P4   1050 1.03  200 10 60 1.71 500 22 1 60 

Confined 
space 

~100 ~1.2E+4 
P5   1050 1.67  500 10 60 1.71 500 22 1 100 ~150 ~8.7E+3 
P6   1050  2.45  1000 10 60 1.71 500  22 1 105 ~200 ~5.7E+3 
P7   1050  3.12  1500 10 60 1.71 500  22 1 135 ~250 ~4.4E+3 
P8   1050 3.69  2000 10 60 1.71 500 22 1 155 ~300 ~2.8E+3 
P9   1050 3.12  1500 10 30 1.71 500 22 1 165 ~300 ~4.0E+3 

P10   1050 3.69  2000 10 30 1.71 500 22 1 180 ~350 ~2.5E+3 
P11   1050  3.67  2000 8 30 1.71  500  22 1 240 ~550 ~6.3E+2 
P12   1050 3.65  2000 5 30 1.71 500 22 1 270 ~800 ~2.1E+2 
P13   1050 3.69  1500 10 60 1.30 330 28 1 120 ~180* ~8.2E+2* 

*These results are obtained using the reactor with a gap size of 50 m.  
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Table S2. Performance parameters of representative protocols for the synthesis of large graphene single crystals. 

Ref. 

Maximum 

Grain size 

Averaged 

growth rate 

Duration of a synthesis cycle to 

obtain 0.8 mm graphene grain* 

Electrical 

mobility 

Required 

highest temperature 

(mm) m/min) (min) (cm2V–1s–1) (˚C) 

12 10 13.9 90 15000~30000 1035 

13 0.5† 6 N. A. 4000 1035 

14 2 5.6 160 5200 1035 

15 1.1 3.6 340 N. A. 1100 

16 2.3 18.4 460 11000 1077 

17 5 2.1 400 16000 1070 

20 0.61 22 N. A. N. A. 1045 

21 0.1 3.3 N. A. 4200 1000 

22 1.2 4 320 2440 1050 

This work 0.84 3.1 300 4800 1050 

*Duration of a synthesis cycle includes the annealing and growth periods to obtain a graphene grain with 0.8 mm in diameter. 
†Performance parameters that are less superior or comparable to this work are marked with shading for easier comparison. 
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Figure S2. A workflow diagram for the graphene synthesis in LPCVD reaction employed in this 

study. Experimental details for the chamber pressure, flow rate of each reacting gas, and elapsed 

reaction time involved in the annealing and growing stages are tabulated in Table S1. In all tests, the 

ramp-up time for the chamber temperature, from 25 to 1050 °C, at the heating-up stage was 40 min. 
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Figure S10. The electrical measurements show that the field-effect mobility of graphene devices is 

dependent on the channel length (Lch) ranging from 8, 100, 200, to 560 m, where the channel 

width (Wch) of the graphene devices was maintained to be >50 m to minimize the effect of width-

dependent mobility. 
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Figure S11. Comparison of the sheet resistances of several pristine CVD-synthesized monolayer 

graphene films. While the intrinsic sheet resistance of graphene is estimated to be ~30 Ω/sq as 

indicated with a blue bar,S12 the sheet resistances reported recently by several representative groups 

are illustrated with gray bars.S8, 13-20 For the continuous graphene films prepared in this study 

(marked by red), the sheet resistances are determined to be 171.9 ± 87.4 Ω/sq for the graphene films 

composed of multiple large graphene single crystals and 367.7 ± 120.5 Ω/sq for those films that 

consist of multiple small graphene grains. 

Chen et al. 2008 (ref. S12)
Bae et al. 2010 (ref. S8)
This work (large grain)

Lee et al. 2014 (ref. S13)
Chan et al. 2014 (ref. S14)
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