Supporting Information

Intramolecularly H-Bonded Aromatic Pentamers as Modularly Tunable Macrocyclic Receptors for Selective Recognition of Metal Ions

Ying Liu, ${ }^{\dagger} \stackrel{\perp}{ }$ Jie Shen, ${ }^{\ddagger} \stackrel{\perp}{ }$ Chang Sun, $\stackrel{\S}{\S}, \perp$ Changliang Ren, ${ }^{\ddagger}$ and Huaqiang Zeng ${ }^{*}, \ddagger$
${ }^{\dagger}$ Prinbury Biopharm. Co., Ltd, 538 Cailun Road, Zhangjiang Hi-Tech Park, Pudong District, Shanghai, 201203, China
${ }^{\ddagger}$ Institute of Bioengineering and Nanotechnology, 31 Biopolis Way, The Nanos, Singapore 138669
${ }^{\text {§ }}$ College of Textiles and Clothing, Jiangnan University, 1800 Lihu Avenue, Wuxi, Jiangsu, 214122,
\perp Y.L., J.S. and C.S. contributed equally to the work.
Corresponding Author: hqzeng@ibn.a-star.edu.sg

General Remarks S2-S4
Scheme S1. Synthetic Routes That Affords Pentamers 5-20 S5-S12
Synthetic Procedures and Characterizations S12-S51
X-ray Crystal Data Sheet for 2, 5, 6 and 14 S52
Figure S1. Computationly Determined Structures of Trimers $(\mathbf{A})_{3}-(\mathbf{E})_{3}$ S61
Figure S2. Computationly Determined Structures of Pentamers $(\mathbf{A})_{5}$ and $(\mathbf{E})_{5}$ S62
Figure S3. Possible Groups for incorporation into the Pentameric Framework S63
Figure S4. Optimzied Structures of $\mathbf{2 b} \bullet \mathrm{Ba}^{2+}$ and $(\mathbf{2 b})_{2} \bullet \mathrm{Cs}^{+}$ S64
Table S1. ICP Data for Macrocyclic Hosts 2b and 6-23. S65
Table S2. ICP Data for Macrocyclic Hosts 2b and 7-9 S66
Picrate Extraction Experiment for Determination of Binding Constants S67
${ }^{1} \mathrm{H}$ NMR, ${ }^{13}$ C NMR Spectra and HRMS data for 5-20 S68-S101

General remarks

All the reagents were obtained from commercial suppliers and used as received unless otherwise noted. Aqueous solutions were prepared from distilled water. The organic solutions from all liquid extractions were dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$ for a minimum of 15 minutes before filtration. Reactions were monitored by thin-layer chromatography (TLC) on silica gel pre-coated glass plate (0.225 mm thickness, $60 \mathrm{~F}-254$, E. Merck). Flash column chromatography was performed using pre-coated 0.2 mm silica plates from Selecto Scientific. Chemical yields refer to pure isolated substances. Mass spectra were obtained using the Instrumentation includes Finnigan MAT95XL-T and Micromass VG7035. ${ }^{1} \mathrm{H}$ NMR spectra were recorded on Bruker ACF300 (300 MHz) and ACF500 $(500 \mathrm{MHz})$ spectrometers. In addition, key compounds were characterized by X-ray Diffraction. The solvent signal of CDCl_{3} was referenced at $\delta=7.26 \mathrm{ppm}$, and DMSO- d_{6} at 2.50 ppm . Coupling constants (J values) are reported in $\mathrm{Hertz}(\mathrm{Hz}) .{ }^{1} \mathrm{H}$ NMR data are recorded in the order: chemical shift value, multiplicity (s, singlet; d, doublet; t, triplet; q, quartet; m, multiplet; br, broad), number of protons that gave rise to the signal and coupling constant, where applicable. ${ }^{13} \mathrm{C}$ spectra were proton-decoupled and recorded on Bruker ACF300 (300 MHz) and ACF500 spectrometers (500 MHz). The solvent, CDCl_{3} was referenced at 77 ppm and $\mathrm{DMS} 0-d_{6}$ at $39.5 \mathrm{ppm} . \mathrm{CDCl}_{3}(99.8 \%$ deuterated) was purchased from Aldrich and used without further purification.

The synthetic procedures for compounds $\mathbf{1 a}, \mathbf{1 e}, \mathbf{1 f}, \mathbf{1 g}, \mathbf{1 k}$ and $\mathbf{7 a}$ can be found from our previous publication (Qin, B. et al. Persistently folded circular aromatic amide pentamers containing modularly tunable cation-binding cavities with high ion selectivity. J. Am. Chem. Soc. 2010, 132, 9564-9566).

1a

$1 \mathbf{e}$

1k

7a

The synthetic procedures for $\mathbf{1 b}$ and $\mathbf{2 0 b}$ can be found from our previous publication (Ren, C. L. et al. Crystallographic realization of the mathematically predicted densest "All Pentamer" packing lattice by C5-symmetric "sticky" fluoropentamers. Angew. Chem., Int. Ed. 2011, 50, 10612-10615).

1b

20b

The synthetic procedures for $\mathbf{1 i} \mathbf{1} \mathbf{7 b}, \mathbf{1 0 d}$, 11f and 13a can be found from our previous publication (Ren, C. L. et al. Fivefold-symmetric macrocyclic aromatic pentamers: High affinity cation recognition, ion-pair induced columnar stacking and nanofibrillation. J. Am. Chem. Soc. 2011, 133, 13930-13933).

7b

The synthetic procedure of $\mathbf{8 a}$ can be found from our previous publication (Y. Yan et al. Helical Organization in Foldable Aromatic Oligoamides by a Continuous Hydrogen-Bonding Network. Org. Lett. 2009, 11, 1201-1204).

8 a

Scheme S1a: Synthesis of Compound 5d

1). $\mathrm{Fe}, \mathrm{AcOH}, \mathrm{EtOH}$, reflux

1d
2). $1 \mathrm{e}, \mathrm{SOCl}_{2}$.
3). DIEA, $\mathrm{CH}_{2} \mathrm{Cl}_{2}$, r.t

Scheme S1b: Synthesis of Compound 5e

1). $\mathrm{Fe}, \mathrm{AcOH}, \mathrm{EtOH}$, reflux
2). 1b, SOCl_{2}
3). Pyridine, $\mathrm{CH}_{2} \mathrm{Cl}_{2}$, r.t.

Scheme S1c: Synthesis of Compound 6a

Scheme S1d: Synthesis of Compound 6b

Scheme S1e: Synthesis of Compounds 7, 8 and 9

7c: $\mathrm{R}_{1}=\mathrm{OC}_{8} \mathrm{H}_{17}, \mathrm{R}_{\mathbf{2}}=\mathbf{O M e}$
7: $\mathrm{R}_{\mathbf{1}}=\mathrm{OC}_{\mathbf{8}} \mathrm{H}_{17}, \mathrm{R}_{\mathbf{2}}=\mathbf{O M e}$
8d: $\mathbf{R}_{1}=\mathrm{OC}_{8} \mathrm{H}_{17}, \mathrm{R}_{2}=\mathbf{O E t}$
8: $\mathrm{R}_{1}=\mathrm{OC}_{8} \mathrm{H}_{17}, \mathrm{R}_{\mathbf{2}}=$ OEt
9b: $R_{1}=H, R_{2}=F$
9: $R_{1}=H, R_{2}=F$

Scheme S1f: Synthesis of Compound 10

Scheme S1g: Synthesis of Compound 11

11f

Scheme S1h: Synthetic Route that Affords Pentamers 12 \& 18.

Scheme S1i: Synthetic Route that Affords Pentamers 13 \& 19.

Scheme S1j: Synthetic Route that Affords Pentamer 14.

$\mathrm{Pd} / \mathrm{C}, \mathrm{H}_{2}, \mathrm{THF}, 60^{\circ} \mathrm{C}, 4 \mathrm{~h}$

Scheme S1k: Synthetic Route that Affords Pentamer 15.

Scheme S1I: Synthetic Route that Affords Pentamer 16.

Scheme S1m: Synthetic Route that Affords Pentamer 17.

Scheme S1n: Synthetic Route that Affords Pentamer 20.

Synthetic Procedures and Characterizations

Methyl 3-(2-fluoro-3-nitrobenzamido)-2-methoxybenzoate (1c)

To a solution of $\mathbf{1 a}(2.11 \mathrm{~g}, 10 \mathrm{mmol})$ and iron $(2.24 \mathrm{~g}, 40$ $\mathrm{mmol})$ in $\mathrm{EtOH}(100 \mathrm{~mL})$ was added acetate acid (10 mL). The reaction was refluxed for 2 hours at room temperature. After cooling, the solvent was removed and the residue was dissolved with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ and washed with water and Brine. The organic layer was dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$. Removal of the solvent gave the amine product used for the next step reaction without further purification. $\mathbf{1 b}(2.04 \mathrm{~g}, 11.0 \mathrm{mmol})$ was dissolved in $\mathrm{SOCl}_{2}(5.5 \mathrm{~mL})$ at room temperature. The reaction mixture was reflux for 2 hours at room temperature, then the excess SOCl_{2} was removed in vacuo to produce the chloride compound. A solution of amine $(1.81 \mathrm{~g}$, $10 \mathrm{mmol})$ and pyridine $(2.0 \mathrm{~mL}, 25 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(75 \mathrm{~mL})$ was added. The reaction mixture was allowed to stir continuously overnight at room temperature. The reaction mixture was washed with $1 \mathrm{M} \mathrm{HCl}(50 \mathrm{~mL})$, followed by saturated $\mathrm{NaCl}(100 \mathrm{~mL})$. Drying over
$\mathrm{Na}_{2} \mathrm{SO}_{4}$ and removal of solvent in vacuo gave the crude product, which was recrystallized from methanol to give the pure product 1 c as a white solid. Yield: $2.96 \mathrm{~g}, 85 \%$. ${ }^{1} \mathrm{H}$ NMR (500 $\mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 9.25(\mathrm{~d}, 1 \mathrm{H}, J=12.7 \mathrm{~Hz}), 8.71(\mathrm{~d}, 1 \mathrm{H}, J=8.2 \mathrm{~Hz}), 8.45(\mathrm{td}, 1 \mathrm{H}, J=9,1.5$ $\mathrm{Hz}), 8.22(\mathrm{td}, 1 \mathrm{H}, J=9,1.5 \mathrm{~Hz}), 7.65(\mathrm{dd}, 1 \mathrm{H}, J=7.9,1.5 \mathrm{~Hz}), 7.49(\mathrm{t}, 1 \mathrm{H}, J=8.0 \mathrm{~Hz}), 7.22$ ($\mathrm{t}, 1 \mathrm{H}, J=8.1 \mathrm{~Hz}$), $3.97(\mathrm{~s}, 3 \mathrm{H}), 3.95(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($126 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 165.70,159.23$, $154.25,152.10,149.42,137.54,132.22,129.45,127.00,125.07,125.01,124.56,124.32$, 123.55, 62.63, 52.37. MS-ESI: calculated for [M] $]^{-}\left(\mathrm{C}_{16} \mathrm{H}_{12} \mathrm{FN}_{2} \mathrm{O}_{6}\right)$: m/z 347.0685, found: m / z 347.0680

Methyl 3-(2-fluoro-3-(2-fluoro-3-nitrobenzamido)benzamido)-2-methoxybenzoate (1d)

To a solution of $\mathbf{1 c}(0.7 \mathrm{~g}, 2 \mathrm{mmol})$ and iron $(0.45 \mathrm{~g}, 8 \mathrm{mmol})$ in $\mathrm{EtOH}(20 \mathrm{~mL})$ was added acetate acid (2 mL). The reaction was refluxed for 2 hours at room temperature. After cooling, the solvent was removed and the residue was dissolved with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ and washed with water and Brine. The organic layer was dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$. Removal of the solvent gave the amine product used for the next step reaction without further purification. 1b $(0.41 \mathrm{~g}, 2.2 \mathrm{mmol})$ was dissolved in $\mathrm{SOCl}_{2}(2 \mathrm{~mL})$ at room temperature. The reaction mixture was reflux for 2 hours at room temperature, then the excess SOCl_{2} was removed in vacuo to produce the chloride compound. A solution of amine $(0.64 \mathrm{~g}, 2 \mathrm{mmol})$ and pyridine $(0.4 \mathrm{~mL}$, $5 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(20 \mathrm{~mL})$ was added. The reaction mixture was allowed to stir continuously overnight at room temperature. The reaction mixture was washed with $1 \mathrm{M} \mathrm{HCl}(10 \mathrm{~mL})$, followed by saturated $\mathrm{NaCl}(20 \mathrm{~mL})$. Drying over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and removal of solvent in vacuo gave the crude product, which was recrystallized from methanol to give the pure product 1d as a white solid. Yield: $0.65 \mathrm{~g}, 67 \% .{ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 9.20(\mathrm{~d}, 1 \mathrm{H}, J=13.1 \mathrm{~Hz}$), 8.73 (dd, $1 \mathrm{H}, J=8.1,1.1 \mathrm{~Hz}), 8.69(\mathrm{~d}, 1 \mathrm{H}, J=12.6 \mathrm{~Hz}), 8.58(\mathrm{t}, 1 \mathrm{H}, J=7.3 \mathrm{~Hz}), 8.50-8.40$ $(\mathrm{m}, 1 \mathrm{H}), 8.31-8.20(\mathrm{~m}, 1 \mathrm{H}), 7.93(\mathrm{td}, 1 \mathrm{H}, J=7.8,1.4 \mathrm{~Hz}), 7.62(\mathrm{dd}, 1 \mathrm{H}, J=7.9,1.5 \mathrm{~Hz})$, $7.51(\mathrm{t}, 1 \mathrm{H}, J=8.0 \mathrm{~Hz}), 7.38(\mathrm{t}, 1 \mathrm{H}, J=8.0 \mathrm{~Hz}), 7.21(\mathrm{t}, 1 \mathrm{H}, J=8.0 \mathrm{~Hz}), 3.95(\mathrm{~s}, 3 \mathrm{H}), 3.94(\mathrm{~s}$, $3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($126 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 165.88,160.64,159.47$, 154.22, 152.10, 149.16, 137.49,
$132.43,129.82,127.46,126.59,126.39,126.12,125.35,125.31,125.23,125.17,124.62$, 124.36, $123.79,123.47,62.55,52.35$. MS-ESI: calculated for $[\mathrm{M}]^{-}\left(\mathrm{C}_{23} \mathrm{H}_{16} \mathrm{~F}_{2} \mathrm{~N}_{3} \mathrm{O}_{7}\right): \mathrm{m} / \mathrm{z}$ 484.0950, found: m/z 484.0958 .

Methyl 3-(2-fluoro-3-(2-fluoro-3-(2-methoxy-3-nitrobenzamido)benzamido)benz amido)-

 2-methoxybenzoate (5d)

To a solution of $\mathbf{1 d}(0.97 \mathrm{~g}, 2 \mathrm{mmol})$ and iron $(0.45 \mathrm{~g}$, 8 mmol) in $\mathrm{EtOH} / \mathrm{THF}(20 \mathrm{~mL} / 10 \mathrm{~mL})$ was added acetate acid (2 mL). The reaction was refluxed for 2 hours at room temperature. After cooling, the solvent was removed and the residue was dissolved with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ and washed with water and Brine. The organic layer was dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$. Removal of the solvent gave the amine product used for the next step reaction without further purification. Compound $\mathbf{1 e}(0.43 \mathrm{~g}, 2.2 \mathrm{mmol})$ was dissolved in $\mathrm{SOCl}_{2}(2 \mathrm{~mL})$ at room temperature. The reaction mixture was reflux for 2 hours at room temperature, then the excess SOCl_{2} was removed in vacuo to produce the chloride compound. A solution of amine $(0.91 \mathrm{~g}, 2 \mathrm{mmol})$ and DIEA ($0.81 \mathrm{~mL}, 5 \mathrm{mmol}$) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(20 \mathrm{~mL})$ was added. The reaction mixture was allowed to stir continuously overnight at room temperature. The reaction mixture was washed with $1 \mathrm{M} \mathrm{HCl}(10 \mathrm{~mL})$, followed by saturated $\mathrm{NaCl}(20$ $\mathrm{mL})$. Drying over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and removal of solvent in vacuo gave the crude product, which was recrystallized from methanol to give the pure product $\mathbf{5 d}$ as a white solid. Yield: $0.89 \mathrm{~g}, 70 \%$. ${ }^{1} \mathrm{H} \operatorname{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 9.97(\mathrm{~s}, 1 \mathrm{H}), 9.17(\mathrm{~d}, 1 \mathrm{H}, J=12.8 \mathrm{~Hz}), 8.74(\mathrm{~d}, 1 \mathrm{H}, J=8.1$ $\mathrm{Hz}), 8.71-8.67(\mathrm{~m}, 1 \mathrm{H}), 8.67-8.62(\mathrm{~m}, 2 \mathrm{H}), 8.44(\mathrm{dd}, 1 \mathrm{H}, J=7.9,1.7 \mathrm{~Hz}), 8.03(\mathrm{dd}, 1 \mathrm{H}, J$ $=8.0,1.7 \mathrm{~Hz}), 7.89(\mathrm{t}, 2 \mathrm{H}, J=7.4 \mathrm{~Hz}), 7.62(\mathrm{dd}, 1 \mathrm{H}, J=7.9,1.5 \mathrm{~Hz}), 7.44(\mathrm{t}, 1 \mathrm{H}, J=8.0 \mathrm{~Hz})$, $7.38(\mathrm{dt}, 2 \mathrm{H}, J=10.9,8.1 \mathrm{~Hz}), 7.22(\mathrm{t}, 1 \mathrm{H}, J=8.0 \mathrm{~Hz}), 4.14(\mathrm{~s}, 3 \mathrm{H}), 3.94(\mathrm{~s}, 6 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (126 MHz, CDCl_{3}): $\delta 165.81,161.54,161.06,160.85,151.41,149.27,144.31,136.58,132.59$, $129.24,128.51,126.82,126.74,126.68,126.60,126.51,126.24,125.51,125.48,125.33$, $125.29,125.13,124.74,124.41,123.52,121.71,121.62,121.24,121.15,64.49,62.50$, 52.37.MS-ESI: calculated for [M] ${ }^{-}\left(\mathrm{C}_{31} \mathrm{H}_{23} \mathrm{~F}_{2} \mathrm{~N}_{3} \mathrm{O}_{9}\right)$: $\mathrm{m} / \mathrm{z} 633.1439$, found: $\mathrm{m} / \mathrm{z} 633.1446$.

Methyl 3-(2-(benzyloxy)-3-(2-(benzyloxy)-3-(3-(2-fluoro-3-nitrobenzamido)-2-methoxy benzamido)benzamido)benzamido)-2-methoxybenzoate (5e)

To a solution of $\mathbf{1 f}(1.62 \mathrm{~g}, 2 \mathrm{mmol})$ and iron $(0.45 \mathrm{~g}, 8$ mmol) in EtOH/THF ($20 \mathrm{~mL} / 10 \mathrm{~mL}$) was added acetate acid $(2 \mathrm{~mL})$. The reaction was refluxed for 2 hours at room temperature. After cooling, the solvent was removed and the residue was dissolved in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ and washed with water and Brine. The organic layer was dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$. Removal of the solvent gave the amine product used for the next step reaction without further purification. $\mathbf{1 b}(0.41 \mathrm{~g}$, $2.2 \mathrm{mmol})$ was dissolved in $\mathrm{SOCl}_{2}(2 \mathrm{~mL})$ at room temperature. The reaction mixture was reflux for 2 hours at room temperature, then the excess SOCl_{2} was removed in vacuo to produce the chloride compound. A solution of amine $(0.64 \mathrm{~g}, 2 \mathrm{mmol})$ and pyridine $(0.4 \mathrm{~mL}$, $5 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(20 \mathrm{~mL})$ was added. The reaction mixture was allowed to stir continuously overnight at room temperature. The reaction mixture was washed with $1 \mathrm{M} \mathrm{HCl}(10 \mathrm{~mL})$, followed by saturated $\mathrm{NaCl}(20 \mathrm{~mL})$. Drying over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and removal of solvent in vacuo gave the crude product, which was recrystallized from methanol to give the pure product $\mathbf{5 e}$ as a white solid. Yield: $1.0 \mathrm{~g}, 54 \% .{ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 9.85(\mathrm{~s}, 1 \mathrm{H}), 9.68(\mathrm{~s}, 1 \mathrm{H})$, $9.33(\mathrm{~s}, 1 \mathrm{H}), 8.93(\mathrm{~d}, 1 \mathrm{H}, J=12.9 \mathrm{~Hz}), 8.78(\mathrm{~d}, 1 \mathrm{H}, J=8.1 \mathrm{~Hz}), 8.74(\mathrm{~d}, 1 \mathrm{H}, J=8.1 \mathrm{~Hz}), 8.67$ $(\mathrm{t}, 2 \mathrm{H}, J=7.2 \mathrm{~Hz}), 8.50(\mathrm{t}, 1 \mathrm{H}, J=7.1 \mathrm{~Hz}), 8.25(\mathrm{t}, 1 \mathrm{H}, J=7.5 \mathrm{~Hz}), 7.82(\mathrm{t}, 2 \mathrm{H}, J=6.8 \mathrm{~Hz})$, $7.63(\mathrm{~d}, 1 \mathrm{H}, J=7.8 \mathrm{~Hz}), 7.58(\mathrm{~d}, 1 \mathrm{H}, J=7.8 \mathrm{~Hz}), 7.54(\mathrm{t}, 1 \mathrm{H}, J=8.0 \mathrm{~Hz}), 7.41-7.29(\mathrm{~m}$, $3 \mathrm{H}), 7.21-7.18(\mathrm{~m}, 3 \mathrm{H}), 7.12-7.06(\mathrm{~m}, 5 \mathrm{H}), 6.99-6.93(\mathrm{~m}, 3 \mathrm{H}), 4.92(\mathrm{~s}, 2 \mathrm{H}), 4.88(\mathrm{~s}, 2 \mathrm{H})$, $3.87(\mathrm{~s}, 3 \mathrm{H}), 3.74(\mathrm{~s}, 3 \mathrm{H}), 3.66(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($126 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 165.93,163.56$, $163.49,162.96,159.35,154.15,152.07,149.38,147.32,146.06,145.83,138.25,137.69$, $134.80,134.59,132.80,132.50,132.45,131.29,129.71,128.99,128.94,128.91,128.67$, $128.56,128.41,127.79,127.57,127.16,126.72,126.26,125.94,125.71,125.68,125.59$, $125.36,125.32,125.11,124.73,124.61,124.48,124.20,124.05,123.38,78.85,78.79,62.79$, 62.19, 52.20. HRMS-ESI: calculated for $[\mathrm{M}]^{-}\left(\mathrm{C}_{52} \mathrm{H}_{42} \mathrm{FN}_{5} \mathrm{O}_{12}\right): \mathrm{m} / \mathrm{z} 946.2741$, found: m / z 946.2711.

Compound $\mathbf{1 g}(1.35 \mathrm{~g}, 2.3 \mathrm{mmol})$ was dissolved in dioxane and $\mathrm{H}_{2} \mathrm{O}(100 \mathrm{~mL}, \mathrm{v} / \mathrm{v} 1 / 1)$ mixed solution to which $1 \mathrm{M} \mathrm{KOH}(4.6 \mathrm{~mL})$ and $\mathrm{KCl}(3.4 \mathrm{~g}, 46$ mmol) were added. The reaction was stirred at room temperature for 12 hours at room temperature, then 1 M HCl was added to neutralize the mixture to pH 3 . The mixture was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ three times ($3 \times 100 \mathrm{~mL}$). The organic extracts were dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated under reduced pressure to produce the acid product $\mathbf{1 h}$. The acid ($131 \mathrm{mg}, 0.23 \mathrm{mmol}$) was dissolved in $\mathrm{SOCl}_{2}(2 \mathrm{~mL})$ and stirred for 2 hours at room temperature, under reflux. Then the excess SOCl_{2} was removed in vacuo to produce the chloride product. To the solution of chloride product in dry $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ were added $\mathbf{1 i}$ and DIEA ($0.16 \mathrm{~mL}, 0.93 \mathrm{mmol}$). The reaction was allowed to proceed for 12 hours at room temperature. After washing with HCl solution, aqueous sat. NaHCO_{3} and Brine, the organic layer was dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$. The residue was recrystallized from methanol to give the pure product $\mathbf{1} \mathbf{j}$ as a white solid. Yield: $162 \mathrm{mg}, 67 \%$. ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 12.70(\mathrm{~s}, 1 \mathrm{H}), 10.88(\mathrm{~s}, 1 \mathrm{H}), 10.11(\mathrm{~s}, 1 \mathrm{H}), 9.45(\mathrm{~s}, 1 \mathrm{H}), 9.08$ (s, 1H), $8.95(\mathrm{~s}, 1 \mathrm{H}), 8.74(\mathrm{~d}, 1 \mathrm{H}, J=7.8 \mathrm{~Hz}), 8.69(\mathrm{~d}, 1 \mathrm{H}, J=7.8 \mathrm{~Hz}), 8.43(\mathrm{~s}, 1 \mathrm{H}), 8.28(\mathrm{~d}$, $1 \mathrm{H}, J=7.6 \mathrm{~Hz}), 8.18(\mathrm{~s}, 1 \mathrm{H}), 7.93(\mathrm{~d}, 1 \mathrm{H}, J=8.0 \mathrm{~Hz}), 7.79(\mathrm{~d}, 1 \mathrm{H}, J=7.8 \mathrm{~Hz}), 7.73(\mathrm{~d}, J=$ $7.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.45-6.98(\mathrm{~m}, 18 \mathrm{H}), 5.12(\mathrm{~s}, 2 \mathrm{H}), 5.07(\mathrm{~s}, 2 \mathrm{H}), 5.02(\mathrm{~s}, 2 \mathrm{H}), 4.23(\mathrm{q}, 2 \mathrm{H}, \mathrm{J}=$ $6.8 \mathrm{~Hz}), 4.01(\mathrm{~s}, 3 \mathrm{H}), 3.80(\mathrm{~s}, 3 \mathrm{H}), 1.25(\mathrm{t}, 1 \mathrm{H}, J=6.9 \mathrm{~Hz}) .{ }^{13} \mathrm{C}$ NMR ($126 \mathrm{MHz}, \mathrm{CDCl}_{3}$): δ 168.83, 167.81, 164.94, 164.22, 163.43, 162.97, 161.61, 151.59, 148.05, 145.96, 144.21, $142.63,141.23,135.99,134.52,134.24,133.96,133.54,132.65,132.46,132.35,129.51$, 129.40, 129.34, 129.13, 129.05, 128.58, 128.55, 128.43, 127.75, 127.51, 127.17, 127.04, $126.00,125.80,125.58,125.35,125.25,125.16,124.33,115.78,115.08,79.10,64.53,62.90$, 62.36, 61.77, 60.85, 14.34.HRMS-ESI: calculated for $[\mathrm{M}]^{+}\left(\mathrm{C}_{58} \mathrm{H}_{50} \mathrm{~N}_{7} \mathrm{O}_{13}\right)^{+}: m / z$ 1052.3461, found: $m / z 1052.3507$.

Pentamer 6a

To a solution of $\mathbf{1 j}$ ($523 \mathrm{mg}, 0.50 \mathrm{mmol}$) and iron (112 $\mathrm{mg}, 2.0 \mathrm{mmol}$) in EtOH/THF ($5 \mathrm{~mL} / 2 \mathrm{~mL}$) was added acetate acid (1.0 mL). The reaction was refluxed for 3 hours. After cooling, the solvent was removed and the residue was dissolved with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ and washed with water and Brine. The organic layer was dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$. After removal of the solvent, the residue was not purified, but used directly in the next step. To the solution of resiude in hot dioxane (1.5 mL) was added $1 \mathrm{M} \mathrm{KOH}(1.0 \mathrm{~mL})$. The reaction was heated under reflux for 4 hours. After quenching with water (15 ml), the aqueous layer was neutralized by addition of of 1 M HCl (1.5 mL). The mixture was extracted with $\mathrm{CHCl}_{3}(3 \times 15 \mathrm{~mL})$. The organic extracts were dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated under reduced pressure. To the solution of the residue in dry $\mathrm{CH}_{2} \mathrm{Cl}_{2}(10 \mathrm{~mL})$ was added BOP $(0.55 \mathrm{~g}, 2.5 \mathrm{mmol})$ and DIEA $(0.25 \mathrm{~mL})$. The reaction was stirred in room temperature for 6 hours. The reaction was washed with HCl solution, aqueous sat. NaHCO_{3} and Brine. After removal of the solvent, the residue was purified by flash column chromatography on silica gel using $\mathrm{CH}_{2} \mathrm{Cl}_{2} /$ ethyl acetate ($20 / 1 \mathrm{v} / \mathrm{v}$) as the eluent to give the product 6a, three-step total yield: $170 \mathrm{mg}, 35 \% .{ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 13.59$ (s, 1H), $13.47(\mathrm{~s}, 1 \mathrm{H}), 11.46(\mathrm{~s}, 1 \mathrm{H}), 11.15(\mathrm{~s}, 1 \mathrm{H}), 10.88(\mathrm{~s}, 1 \mathrm{H}), 9.12(\mathrm{~d}, 1 \mathrm{H}, J=1.9 \mathrm{~Hz})$, $9.09(\mathrm{~d}, 1 \mathrm{H}, J=1.7 \mathrm{~Hz}), 8.98(\mathrm{~d}, 1 \mathrm{H}, J=8.1 \mathrm{~Hz}), 8.88(\mathrm{~d}, 1 \mathrm{H}, J=8.0 \mathrm{~Hz}), 8.84(\mathrm{~d}, 1 \mathrm{H}, J=$ $8.1 \mathrm{~Hz}), 8.62(\mathrm{~d}, 1 \mathrm{H}, J=2.1 \mathrm{~Hz}), 8.51(\mathrm{~d}, 1 \mathrm{H}, J=2.1 \mathrm{~Hz}), 7.94(\mathrm{~d}, 1 \mathrm{H}, J=7.9 \mathrm{~Hz}), 7.92(\mathrm{~d}$, $1 \mathrm{H}, J=7.9 \mathrm{~Hz}), 7.85(\mathrm{~d}, 1 \mathrm{H}, J=7.8 \mathrm{~Hz}), 7.49-7.28(\mathrm{~m}, 15 \mathrm{H}), 7.02(\mathrm{t}, 2 \mathrm{H}, J=7.4 \mathrm{~Hz}), 6.92$ (t, 1H, $J=7.3 \mathrm{~Hz}), 5.30(\mathrm{~d}, 1 \mathrm{H}, J=11.0 \mathrm{~Hz}), 5.19(\mathrm{~s}, 2 \mathrm{H}), 5.18(\mathrm{~s}, 2 \mathrm{H}), 5.11(\mathrm{~d}, 1 \mathrm{H}, J=11.0$ Hz), $4.14(\mathrm{~s}, 3 \mathrm{H}), 3.96(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($126 \mathrm{MHz}, \mathrm{CDCl}_{3}$): δ 169.86, 169.23, 163.16, $163.00,162.79,162.76,162.68,147.64,147.43,145.80,141.16,140.98,134.06,133.83$, $133.68,133.51,133.15,132.99,132.64,129.85,129.61,129.54,129.49,129.37,128.82$, 128.67, 127.81, 127.70, 127.30, 126.96, 126.70, 125.95, 125.63, 125.55, 125.29, 124.55, 124.45, 124.24, 123.87, 116.47, 115.53, 805, 62.54, 62.45, 62.24, 62.23. HRMS-ESI: calculated for $[\mathrm{M}+\mathrm{Na}]^{+}\left(\mathrm{C}_{56} \mathrm{H}_{45} \mathrm{O}_{10} \mathrm{~N}_{7} \mathrm{Na}\right)^{+}: m / z$ 998.3120, found: m / z 998.3163.

Methyl

fluorobenzamido)-2-fluorobenzamido)-2-methoxybenzoate (5 g)

To a solution of $\mathbf{5 d}(1.27 \mathrm{~g}, 2 \mathrm{mmol})$ and iron $(0.45 \mathrm{~g}$, 8 mmol) in EtOH/THF ($20 \mathrm{~mL} / 10 \mathrm{~mL}$) was added acetate acid (2 mL). The reaction was refluxed for 2 hours at room temperature. After cooling, the solvent was removed and the residue was dissolved with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ and washed with water and Brine. The organic layer was dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$. Removal of the solvent gave the amine product used for the next step reaction without further purification. Compound $\mathbf{1 k}(0.6 \mathrm{~g}, 2.2 \mathrm{mmol})$ was dissolved in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(15 \mathrm{~mL})$ to which DMF ($40 \mu \mathrm{~L}$), $(\mathrm{COCl})_{2}(0.4 \mathrm{~mL}, 3.3 \mathrm{mmol})$ was added at room temperature. The reaction mixture was stirred for 5 hours then the excess $(\mathrm{COCl})_{2}$ was removed in vacuo to produce the chloride compound. A solution of amine ($1.21 \mathrm{~g}, 2 \mathrm{mmol}$) and TEA ($0.4 \mathrm{~mL}, 5 \mathrm{mmol}$) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(20 \mathrm{~mL})$ was added. The reaction mixture was allowed to stir continuously overnight at room temperature. The reaction mixture was washed with $1 \mathrm{M} \mathrm{HCl}(10 \mathrm{~mL})$, followed by saturated $\mathrm{NaCl}(20$ mL). Drying over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and removal of solvent in vacuo gave the crude product, which was recrystallized from methanol to give the pure product $\mathbf{5 g}$ as a white solid. Yield: 0.93 g , $54 \% .{ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 9.76(\mathrm{~s}, 1 \mathrm{H}), 9.67(\mathrm{~s}, 1 \mathrm{H}), 9.14(\mathrm{~d}, 1 \mathrm{H}, J=11.7 \mathrm{~Hz}), 8.79$ - 8.63 (m, 4H), 8.56 (d, 1H, $J=10.1 \mathrm{~Hz}$), 8.38 (dd, $1 \mathrm{H}, J=7.9,1.8 \mathrm{~Hz}$), $8.05(\mathrm{dd}, 1 \mathrm{H}, J=8.1$, $1.8 \mathrm{~Hz}), 7.95-7.85(\mathrm{~m}, 3 \mathrm{H}), 7.64(\mathrm{dd}, 1 \mathrm{H}, J=7.9,1.6 \mathrm{~Hz}), 7.46$ (t, 1H, $J=10.4 \mathrm{~Hz}$), 7.42-7.36 (m, 3H), 7.33-7.29 (m, 2H), 7.23 (m, 2H), $7.20-7.17$ (m, 2H), $5.18(\mathrm{~s}, 2 \mathrm{H}), 3.90$ (s, 3 H), 3.89 (s, 3H), 3.63 ($\mathrm{s}, 3 \mathrm{H})$. MS-ESI: calculated for $[\mathrm{M}]^{-}\left(\mathrm{C}_{45} \mathrm{H}_{34} \mathrm{~F}_{2} \mathrm{~N}_{5} \mathrm{O}_{11}\right): \mathrm{m} / \mathrm{z}$ 858.2228, found: m/z 858.2211.

Pentamer 6b

To a solution of $\mathbf{5 g}(430 \mathrm{mg}, 0.50 \mathrm{mmol})$ and iron $(112 \mathrm{mg}$, 2.0 mmol) in $\mathrm{EtOH} / \mathrm{THF}(5 \mathrm{~mL} / 2 \mathrm{~mL})$ was added acetate acid $(1.0 \mathrm{~mL})$. The reaction was refluxed for 3 hours. After cooling, the solvent was removed and the residue was dissolved with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ and washed with water and Brine. The organic layer was dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$. After removal of the solvent, the residue was not purified, but used directly in the next step. To the solution of resiude in hot dioxane $(1.5 \mathrm{~mL})$ was added $1 \mathrm{M} \mathrm{KOH}(1.0$ $\mathrm{mL})$. The reaction was heated under reflux for 4 hours. After quenching with water (15 ml), the aqueous layer was neutralized by addition $1 \mathrm{M} \mathrm{HCl}(1.5 \mathrm{~mL})$. The mixture was extracted with $\mathrm{CHCl}_{3}(3 \times 15 \mathrm{~mL})$. The organic extracts were dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated under reduced pressure. To the solution of the residue in dry $\mathrm{CH}_{2} \mathrm{Cl}_{2}(10 \mathrm{~mL})$ was added $\mathrm{BOP}(0.55$ $\mathrm{g}, 2.5 \mathrm{mmol})$ and DIEA $(0.25 \mathrm{~mL})$. The reaction was stirred in room temperature for 6 hours. The reaction was washed with HCl solution, aqueous sat. NaHCO_{3} and Brine. After removal of the solvent, the residue was purified by flash column chromatography on silica gel using $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ /ethyl acetate ($20 / 1 \mathrm{v} / \mathrm{v}$) as the eluent to give the product $\mathbf{6 b}$, three-step total yield: 187 $\mathrm{mg}, 47 \% .{ }^{1} \mathrm{H} \operatorname{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 10.91(\mathrm{~s}, 1 \mathrm{H}), 10.87(\mathrm{~s}, 1 \mathrm{H}), 10.35(\mathrm{~d}, 1 \mathrm{H}, J=4.0$ $\mathrm{Hz}), 9.46(\mathrm{~d}, 1 \mathrm{H}, J=20 \mathrm{~Hz}), 9.28(\mathrm{dd}, 1 \mathrm{H}, J=21.3,4.7 \mathrm{~Hz}), 9.05(\mathrm{dd}, 2 \mathrm{H}, J=13.2,8.1 \mathrm{~Hz})$, $9.00(\mathrm{dd}, 2 \mathrm{H}, J=14.4,6.8 \mathrm{~Hz}), 8.87(\mathrm{~d}, 1 \mathrm{H}, J=8.1 \mathrm{~Hz}), 8.11(\mathrm{t}, 1 \mathrm{H}, J=7.4 \mathrm{~Hz}), 8.06-8.03$ $(\mathrm{m}, 3 \mathrm{H}), 7.99(\mathrm{dd}, 1 \mathrm{H}, J=7.9,1.3 \mathrm{~Hz}), 7.55-7.39(\mathrm{~m}, 7 \mathrm{H}), 7.17(\mathrm{t}, 2 \mathrm{H}, J=7.4 \mathrm{~Hz}), 7.10(\mathrm{t}$, $1 \mathrm{H}, J=7.3 \mathrm{~Hz}), 5.05(\mathrm{~d}, 2 \mathrm{H}, J=2.3 \mathrm{~Hz}), 3.97(\mathrm{~s}, 3 \mathrm{H}), 3.87(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (126 MHz , $\left.\mathrm{CDCl}_{3}\right): \delta 162.60,162.44,162.23,160.29,1607,151.42,149.49,146.66,146.38,145.84$, $134.37,133.29,132.62,132.03,1305,128.98,128.53,127.75,127.65,127.30,127.27,127.21$, $127.20,126.71,126.63,126.48,126.46,126.38,126.13,126.03,125.69,125.65,125.37$, $125.15,124.77,124.49,124.07,120.27,120.23,119.82,119.79,80.14,62.35$, 62.11.HRMS-ESI: calculated for $[\mathrm{M}]^{-}\left(\mathrm{C}_{44} \mathrm{H}_{32} \mathrm{~F}_{2} \mathrm{O}_{8} \mathrm{~N}_{5}\right)^{-}: m / z 796.2236$, found: $m / z 796.2216$.

Ethyl
dihydropyridine-3-carboxamido)-1-octyl-4-oxo-1,4-dihydropyridine-3-carboxamido)-

1-octyl-4-oxo-1,4-dihydropyridine-3-carboxamido)-1-octyl-4-oxo-1,4-

dihydropyridine-3-carboxylate (7c)

A solution of $7 \mathbf{a}(0.68 \mathrm{~g}, 2.00 \mathrm{mmol})$ in SOCl_{2} (4.00 mL) was heated under reflux for 2 hours at room temperature. After removal of SOCl_{2}, the 7b $(1.00 \mathrm{mmol})$ and DIEA $(0.68 \mathrm{~mL}, 4.00 \mathrm{mmol})$ in dry $\mathrm{CH}_{2} \mathrm{Cl}_{2}(60 \mathrm{~mL})$ were added to the residue. The solution was allowed to proceed for 12 hours at room temperature. After washing with 1 M HCl solution, the organic layer was dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$. The residue was purified by column chromatography on silica gel using $\mathrm{MeOH} / \mathrm{CH}_{2} \mathrm{Cl}_{2}$ as the eluent to give 7c as a white solid. Yield: $0.97 \mathrm{~g}, 72 \% .{ }^{1} \mathrm{H}$ NMR (500 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3} / \mathrm{DMSO}-d_{6}=1 / 9,330 \mathrm{~K}\right) \delta 12.66(\mathrm{~s}, 1 \mathrm{H}), 12.50(\mathrm{~s}, 1 \mathrm{H}), 12.23(\mathrm{~s}, 1 \mathrm{H}), 10.62(\mathrm{~s}$, $1 \mathrm{H}), 8.91(\mathrm{~s}, 1 \mathrm{H}), 8.83(\mathrm{~s}, 2 \mathrm{H}), 8.67(\mathrm{~s}, 1 \mathrm{H}), 8.34(\mathrm{~s}, 2 \mathrm{H}), 7.99(\mathrm{~s}, 1 \mathrm{H}), 7.52(\mathrm{~s}, 1 \mathrm{H}), 7.4(\mathrm{~s}$, $1 \mathrm{H}), 7.2(\mathrm{~s}, 1 \mathrm{H}), 4.20-3.89(\mathrm{~m}, 15 \mathrm{H}), 1.92-1.69(\mathrm{~m}, 10 \mathrm{H}), 1.36-1.28(\mathrm{~m}, 53 \mathrm{H}), 0.85-$ $0.82(\mathrm{~s}, 15 \mathrm{H}) .{ }^{13} \mathrm{C} \mathrm{NMR}\left(125 \mathrm{MHz}, \mathrm{CDCl}_{3} / \mathrm{DMSO}-d_{6}=1 / 9,330 \mathrm{~K}\right) \delta 168.4,168.4,168.2$, $168.0,162.1,162.0,162.0,154.3,153.8,145.2,145.1,144.0,141.9,141.8,141.2,141.2$, $141.1,140.6,140.4,140.3,132.7,132.1,131.4,129.2,127.5,127.1,126.4,121.0,120.8$, $115.4,115.3,115.3,115.2,114.0,111.8,111.8,68.9,63.3,58.9,31.4,31.3,30.4,30.3,30.2$, 28.9, 28.8, 28.7, 28.6, 28.6, 25.9, 25.8, 25.6, 25.5, 22.1, 22.1, 13.6. HRMS-ESI: calculated for $[\mathrm{M}+\mathrm{H}]^{+}\left(\mathrm{C}_{74} \mathrm{H}_{108} \mathrm{~N}_{9} \mathrm{O}_{14}\right): m / z 1346.8010$, found: $m / z 1346.7756$.

Compound 7

To a solution of $7 \mathbf{c}(0.67 \mathrm{~g}, 0.50 \mathrm{mmol})$ and iron $(0.14 \mathrm{~g}$, $2.50 \mathrm{mmol})$ in $\mathrm{EtOH}(50 \mathrm{~mL})$ and THF (50 mL) was added acetate acid (1.00 mL). The solution was refluxed for 5 hours. After cooling, the solvent was filtered and removed then the residue was dissolved in
$\mathrm{CH}_{2} \mathrm{Cl}_{2}(50 \mathrm{~mL})$ and washed with water $(3 \times 100 \mathrm{~mL})$. The organic layer was dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$. The solvent was removed and the residue was dissolve into dioxane (50 mL). 1 M of $\mathrm{KOH}(1.00 \mathrm{mmol}, 1.00 \mathrm{~mL})$ was added to the solution and refluxed for 5 hours. After quenching with water (30 ml), the aqueous layer was neutralized by addition of 1 M HCl $(1.00 \mathrm{~mL})$. The mixture was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. The organic extract was dried over NaSO_{4} and concentrated under reduced pressure. To the solution of the residue in dry $\mathrm{CH}_{2} \mathrm{Cl}_{2}(20 \mathrm{~mL})$ was added $\operatorname{BOP}(0.66 \mathrm{~g}, 1.50 \mathrm{mmol})$ and DIEA $(0.26 \mathrm{~mL}, 2.00 \mathrm{mmol})$. The solution was stirred at room temperature for 12 hours at room temperature. The organic layer was washed with 1 M HCl solution. After removal of the solvent, the residue was purified by flash column chromatography on silica gel using $\mathrm{MeOH} / \mathrm{CH}_{2} \mathrm{Cl}_{2}$ as the eluent to give the product 7, three-step total yield: $220 \mathrm{mg}, 35 \% .{ }^{1} \mathrm{H}$ NMR (500 MHz , DMSO- $\left.d_{6} / \mathrm{CDCl}_{3}=9 / 1,370 \mathrm{~K}\right) \delta 12.42(\mathrm{~m}, 4 \mathrm{H}), 10.89(\mathrm{~s}, 1 \mathrm{H}), 8.38-8.22(\mathrm{~m}, 3 \mathrm{H}), 8.09(\mathrm{~s}$, $1 \mathrm{H}), 7.84(\mathrm{~s}, 1 \mathrm{H}), 7.78(\mathrm{~s}, 2 \mathrm{H}), 7.70(\mathrm{~s}, 1 \mathrm{H}), 7.58(\mathrm{~s}, 1 \mathrm{H}), 6.54(\mathrm{~s}, 1 \mathrm{H}), 3.93-3.89(\mathrm{~m}, 9 \mathrm{H})$, $3.23(\mathrm{~s}, 4 \mathrm{H}), 1.95-1.72(\mathrm{~m}, 10 \mathrm{H}), 1.56-1.33(\mathrm{~m}, 50 \mathrm{H}), 0.98-0.91(\mathrm{~m}, 15 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR $\left(125 \mathrm{MHz}, \mathrm{DMSO}-d_{6} / \mathrm{CDCl}_{3}=9 / 1,370 \mathrm{~K}\right) \delta 167.8,167.5,167.3,167.2,161.3,161.2$, $161.0,160.9,160.7,160.7,160.5,154.4,141.9,139.5,139.4,139.3,139.3,133.2,131.5$, $131.4,131.3,131.1,125.7,125.5,125.4,125.3,125.0,124.9,124.9,124.9,122.9,122.9$, $114.5,114.3,114.1,113.8,110.3,107.6,107.6,67.6,63.0,58.1,48.6,31.3,31.2,29.9$, $29.8,29.2,29.0,28.8,28.7,28.7,28.6,28.6,28.5,25.9,25.8,25.8,22.0,21.9,13.6,13.5$. MS-APCI: calculated for $[\mathrm{M}+\mathrm{Na}]^{+}\left(\mathrm{C}_{72} \mathrm{H}_{103} \mathrm{~N}_{9} \mathrm{O}_{11} \mathrm{Na}\right): ~ \mathrm{~m} / \mathrm{z}$ 1292.7669, found: m / z 1292.7646.

Methyl 2-ethoxy-3-nitro-5-(octyloxy)benzoate (8b)

Compound 8a ($3.25 \mathrm{~g}, 10 \mathrm{mmol}$) was dissolved in anhydrous

8b DMF $(30 \mathrm{~mL})$, to which anhydrous $\mathrm{K}_{2} \mathrm{CO}_{3}(4.00 \mathrm{~g}, 25.0 \mathrm{mmol})$ and bromoethane ($0.89 \mathrm{~mL}, 12.0 \mathrm{mmol}$) was added. The mixture was heated under $60{ }^{\circ} \mathrm{C}$ for 4 hours. $\mathrm{CH}_{2} \mathrm{Cl}_{2}(100 \mathrm{~mL})$ was then added and the reaction mixture was filtered. The solvent was removed in vacuo and the concentrate was dissolved in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(100 \mathrm{~mL})$, washed with
water $(3 \times 50 \mathrm{~mL})$ and dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$. Removal of $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ gave the crude product, which was recrystallized from MeOH to give pure product $\mathbf{8 b}$ as a yellow solid. Yield: $2.44 \mathrm{~g}, 72 \%$. ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.49(\mathrm{~d}, J=3.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.37(\mathrm{~d}, J=3.2$ $\mathrm{Hz}, 1 \mathrm{H}), 4.07(\mathrm{q}, J=7.0 \mathrm{~Hz}, 2 \mathrm{H}), 3.95(\mathrm{t}, J=6.5 \mathrm{~Hz}, 2 \mathrm{H}), 3.90(\mathrm{~s}, 3 \mathrm{H}), 1.78-1.72(\mathrm{~m}$, $2 \mathrm{H}), 1.45-1.38(\mathrm{~m}, 2 \mathrm{H}), 1.30(\mathrm{~m}, 11 \mathrm{H}), 0.85(\mathrm{t}, J=6.9 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (125 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 164.76,154.10,145.73,145.28,128.03,121.27,113.78,72.95,69.06,52.58$, $31.67,29.14,29.09,28.85,25.79,22.53,15.18,13.96$. HRMS-ESI: calculated for $[M]^{+}$ $\left(\mathrm{C}_{18} \mathrm{H}_{27} \mathrm{O}_{6} \mathrm{~N}_{1}\right): m / z 353.1838$, found: $m / z 353.1839$.

2-ethoxy-3-nitro-5-(octyloxy)benzoic acid (8c)

8c

Compound $8 \mathbf{b}$ ($2.81 \mathrm{~g}, 8.30 \mathrm{mmol}$) was dissolved in hot MeOH (30 mL), to which $1 \mathrm{M} \mathrm{NaOH}(17.0 \mathrm{~mL}, 17.0 \mathrm{mmol})$ was added. The mixture was heated under reflux for 1 hour and then quenched with water (100 mL). The aqueous layer was neutralized by addition of $1 \mathrm{M} \mathrm{HCl}(17.0 \mathrm{~mL})$. The solution was removed under reduced pressure and the mixture was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. The organic extracts were dried over NaSO_{4} and concentrated under reduced pressure to give a pure white solid $\mathbf{8 c}$. Yield: $2.30 \mathrm{~g}, 85 \% .^{1} \mathrm{H}$ NMR ($\left.500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.80(\mathrm{~d}, J=3.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.55(\mathrm{~d}, J=3.2$ $\mathrm{Hz}, 1 \mathrm{H}), 4.19(\mathrm{dd}, J=14.0,7.0 \mathrm{~Hz}, 2 \mathrm{H}), 4.01(\mathrm{t}, J=6.4 \mathrm{~Hz}, 2 \mathrm{H}), 1.84-1.75(\mathrm{~m}, 2 \mathrm{H}), 1.51$ $-1.39(\mathrm{~m}, 5 \mathrm{H}), 1.30(\mathrm{~m}, 8 \mathrm{H}), 0.89(\mathrm{t}, J=6.7 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($\left.125 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$ $166.69,154.70,145.39,145.07,125.99,122.01,116.00,74.09,69.34,31.73,29.19,29.14$, $28.87,25.84,22.60,15.27,14.04$. HRMS-ESI: calculated for $[\mathrm{M}]^{+}\left(\mathrm{C}_{17} \mathrm{H}_{24} \mathrm{NO}_{6}\right): \mathrm{m} / \mathrm{z}$ 338.1609, found: $m / z 338.1595$.

Ethyl 5-(5-(5-(5-(2-ethoxy-3-nitro-5-(octyloxy)benzamido)-1-octyl-4-oxo-1,4-dihydropyridine-3-carboxamido)-1-octyl-4-oxo-1,4-dihydropyridine-3-carboxamido)-1-octyl-4-oxo-1,4-dihydropyridine-3-carboxamido)-1-octyl-4-oxo-1,4-dihydropyridine -3-carboxylate (8d)

A solution of $8 \mathrm{c}(0.68 \mathrm{~g}, 2.00 \mathrm{mmol})$ in $\mathrm{SOCl}_{2}(4.00 \mathrm{~mL})$ was heated under reflux for 2 hours at room temperature. After removal of the $\mathrm{SOCl}_{2}, 7 \mathbf{b}(1.04 \mathrm{~g}, 1.0$ mmol) and DIEA ($0.68 \mathrm{~mL}, 4.00 \mathrm{mmol}$) in dry $\mathrm{CH}_{2} \mathrm{Cl}_{2}(60 \mathrm{~mL})$ were added to the residue. The solution was allowed to proceed for 12 hours at room temperature. After washing with 1 M HCl solution, the organic layer was dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$. The residue was purified by column chromatography on silica gel using $\mathrm{MeOH} / \mathrm{CH}_{2} \mathrm{Cl}_{2}$ as the eluent to give $\mathbf{8 d}$ as a white solid. Yield: 0.91 g , 67%. ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3} / \mathrm{DMSO}-d_{6}=1: 9,370 \mathrm{~K}$) $\delta 12.73(\mathrm{~s}, 1 \mathrm{H}), 12.65(\mathrm{~s}, 1 \mathrm{H})$, $12.56(\mathrm{~s}, 1 \mathrm{H}), 10.87(\mathrm{~s}, 1 \mathrm{H}), 9.13(\mathrm{~s}, 2 \mathrm{H}), 9.04(\mathrm{~s}, 1 \mathrm{H}), 8.94(\mathrm{~s}, 1 \mathrm{H}), 8.62(\mathrm{~s}, 1 \mathrm{H}), 8.58(\mathrm{~s}$, $1 \mathrm{H}), 8.54(\mathrm{~s}, 1 \mathrm{H}), 8.31(\mathrm{~s}, 1 \mathrm{H}), 7.56(\mathrm{~d}, J=3.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.50(\mathrm{~d}, J=3.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.29-$ $4.00(\mathrm{~m}, 15 \mathrm{H}), 1.84-1.66(\mathrm{~m}, 10 \mathrm{H}), 1.40-1.13(\mathrm{~m}, 53 \mathrm{H}), 0.87-0.79(\mathrm{~m}, 15 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($\left.125 \mathrm{MHz}, \mathrm{CDCl}_{3} / \mathrm{DMSO}-d_{6}=1: 9,330 \mathrm{~K}\right) \delta 168.56,168.54,168.52,168.46,168.23$, $168.21,168.20,167.19,167.17,166.94,164.50,162.85,162.81,162.76,162.53,162.29$, $154.15,144.59,144.55,143.99,143.31,141.71,141.69,141.11,140.49,140.43,140.41$, 132.94, 132.30, 131.54, 130.39, 128.40, 127.15, 126.36, 120.59, 115.47, 114.19, 74.07, 69.18, 58.80, 58.66, 58.28, 53.64, 41.86, 31.28, 31.21, 30.17, 29.14, 28.80, 28.70, 28.65, $28.58,28.52,25.85,25.51,22.06,22.02,13.45,13.43,13.41$. HRMS-ESI: calculated for $[\mathrm{M}+\mathrm{Na}]^{+}\left(\mathrm{C}_{75} \mathrm{H}_{109} \mathrm{~N}_{9} \mathrm{NaO}_{14}\right): m / z$ 1382.7986, found: m / z 1382.7949.

Compound 8

To a solution of $\mathbf{8 d}(0.68 \mathrm{~g}, 0.50 \mathrm{mmol})$ and iron ($0.14 \mathrm{~g}, 2.50 \mathrm{mmol}$) in EtOH (50 mL) and THF (50 mL) was added acetate acid (1.00 mL). The solution was refluxed for 5 hours. After cooling, the solvent was filtered and removed then the residue was dissolved in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(50 \mathrm{~mL})$ and
washed with water $(3 \times 100 \mathrm{~mL})$. The organic layer was dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$. The solvent was removed and the residue was dissolve into dioxane $(50 \mathrm{~mL}) .1 \mathrm{M}$ of $\mathrm{KOH}(1.00 \mathrm{mmol}$, 1.00 mL) was added to the solution and refluxed for 5 hours. After quenching with water $(30 \mathrm{ml})$, the aqueous layer was neutralized by addition of $1 \mathrm{M} \mathrm{HCl}(1.00 \mathrm{~mL})$. The mixture was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. The organic extract was dried over NaSO_{4} and concentrated under reduced pressure. To the solution of the residue in dry $\mathrm{CH}_{2} \mathrm{Cl}_{2}(20 \mathrm{~mL})$ was added BOP ($0.66 \mathrm{~g}, 1.50 \mathrm{mmol}$) and DIEA $(0.26 \mathrm{~mL}, 2.00 \mathrm{mmol})$. The solution was stirred at room temperature for 12 hours at room temperature. The organic layer was washed with 1 M HCl solution. After removal of the solvent, the residue was purified by flash column chromatography on silica gel using $\mathrm{MeOH} / \mathrm{CH}_{2} \mathrm{Cl}_{2}$ as the eluent to give the product $\mathbf{8}$, three-step total yield: $269 \mathrm{mg}, 42 \%$. ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{DMSO}-d_{6} / \mathrm{CDCl}_{3}=9 / 1,370 \mathrm{~K}$) δ $13.11(\mathrm{~s}, 1 \mathrm{H}), 13.08(\mathrm{~s}, 1 \mathrm{H}), 13.06(\mathrm{~s}, 1 \mathrm{H}), 13.03(\mathrm{~s}, 1 \mathrm{H}), 11.24(\mathrm{~s}, 1 \mathrm{H}), 8.82-8.57(\mathrm{~m}$, $4 \mathrm{H}), 8.23-8.16(\mathrm{~m}, 5 \mathrm{H}), 7.03(\mathrm{~s}, 1 \mathrm{H}), 4.14-4.10(\mathrm{~m}, 10 \mathrm{H}), 3.80(\mathrm{~s}, 2 \mathrm{H}), 1.98-1.85(\mathrm{~m}$, $8 \mathrm{H}), 1.62-1.56(\mathrm{~m}, 4 \mathrm{H}), 1.47-1.25(\mathrm{~m}, 51 \mathrm{H}), 0.93-0.88(\mathrm{~m}, 15 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (125 MHz , DMSO- $\left.d_{6} / \mathrm{CDCl}_{3}=9 / 1,370 \mathrm{~K}\right) \delta 168.3,168.2,168.1,167.8,161.7,161.6,161.5,161.4$, $155.3,140.6,140.2,134.0,131.9,131.8,131.4,131.0,128.5,126.2,126.1,124.7,124.6$, $115.0,114.6,114.5,114.4,111.0,108.9,104.6,72.4,68.2,67.7,64.8,58.5,58.4,54.3$, $31.3,31.2,31.2,30.3,30.2,30.1,30,29.9,29.1,29.0,28.9,28.7,28.6,28.5,25.9,25.8$, 22.1, 22.0, 14.5, 13.7, 13.6.

Ethyl

5-(5-(5-(5-(2-fluoro-3-nitrobenzamido)-1-octyl-4-oxo-1,4-dihydropyridine-3-carboxam ido)-1-octyl-4-oxo-1,4-dihydropyridine-3-carboxamido)-1-octyl-4-oxo-1,4-dihydropyri dine-3-carboxamido)-1-octyl-4-oxo-1,4-dihydropyridine-3-carboxylate (9b)

A solution of $9 \mathbf{a}(0.27 \mathrm{~g}, 2.00 \mathrm{mmol})$ in $\mathrm{SOCl}_{2}(4.00$ mL) was heated under reflux for 2 hours at room temperature. After removal of the $\mathrm{SOCl}_{2}, \mathbf{7 b}(1.04 \mathrm{~g}$, $1.0 \mathrm{mmol})$ and DIEA ($0.68 \mathrm{~mL}, 4.00 \mathrm{mmol}$) in dry $\mathrm{CH}_{2} \mathrm{Cl}_{2}(60 \mathrm{~mL})$ were added to the residue. The
solution was allowed to proceed for 12 hours at room temperature. After washing with 1 M HCl solution, the organic layer was dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$. The residue was purified by column chromatography on silica gel using $\mathrm{MeOH} / \mathrm{CH}_{2} \mathrm{Cl}_{2}$ as the eluent to give $\mathbf{9 b}$ as a white solid. Yield: $0.84 \mathrm{~g}, 71 \% .{ }^{1} \mathrm{H}$ NMR ($\left.500 \mathrm{MHz}, \mathrm{CDCl}_{3} / \mathrm{DMSO}-d_{6}=1: 9,370 \mathrm{~K}\right) \delta 12.60(\mathrm{~s}, 1 \mathrm{H})$, $12.49(\mathrm{~s}, 1 \mathrm{H}), 12.41(\mathrm{~s}, 1 \mathrm{H}), 10.50(\mathrm{~s}, 1 \mathrm{H}), 9.07(\mathrm{~s}, 2 \mathrm{H}), 8.97(\mathrm{~s}, 1 \mathrm{H}), 8.91(\mathrm{~s}, 1 \mathrm{H}), 8.52(\mathrm{~s}$, $1 \mathrm{H}), 8.46(\mathrm{~s}, 1 \mathrm{H}), 8.44(\mathrm{~s}, 1 \mathrm{H}), 8.21-8.19(\mathrm{~m}, 2 \mathrm{H}), 8.07(\mathrm{~s}, 1 \mathrm{H}), 7.54(\mathrm{t}, J=7.3 \mathrm{~Hz}, 1 \mathrm{H})$, $4.22-4.17(\mathrm{~m}, 4 \mathrm{H}), 4.12-4.11(\mathrm{~m}, 4 \mathrm{H}), 4.01(\mathrm{t}, J=6.4 \mathrm{~Hz}, 2 \mathrm{H}), 1.94-1.76(\mathrm{~m}, 8 \mathrm{H}), 1.35-$ $1.27(\mathrm{~m}, 43 \mathrm{H}), 0.87-0.85(\mathrm{~m}, 12 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($\left.500 \mathrm{MHz}, \mathrm{CDCl}_{3} / \mathrm{DMSO}-d_{6}=1: 9,370 \mathrm{~K}\right) \delta$ $168.3,168.2,166.8,166.7,164.8,164.3,162.7,162.5,162.4,161.3,159.1,153.5,151.4$, $142.0,141.9,141.2,141.1,137.6,137.5,135.4,135.3,132.5,132.4,131.9,131.1,131.0$, $130.9,129.6,129.5,129.4,128.5,128.4,127.6,127.5,127.4,126.7,126.6,126.5,124.6$, $124.5,115.4,115.2,115.0,114.2,104.5,59.7,58.2,58.1,58.0,57.5,31.1,30.1,30,29.9,28.9$, 28.9, 28.4, 25.6, 21.9, 14.0, 13.6. HRMS-APCI: calculated for $[\mathrm{M}+\mathrm{H}]^{+}\left(\mathrm{C}_{65} \mathrm{H}_{89} \mathrm{O}_{12} \mathrm{~N}_{9} \mathrm{~F}\right): \mathrm{m} / \mathrm{z}$ 1206.6609, found: m/z 1206.6567.

Compound 9

To a solution of $9 \mathbf{b}(0.60 \mathrm{~g}, 0.50 \mathrm{mmol})$ and iron $(0.14 \mathrm{~g}, 2.50 \mathrm{mmol})$ in $\mathrm{EtOH}(50 \mathrm{~mL})$ and THF (50 $\mathrm{mL})$ was added acetate acid $(1.00 \mathrm{~mL})$. The solution was refluxed for 5 hours. After cooling, the solvent was filtered and removed then the residue was dissolved in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(50 \mathrm{~mL})$ and washed with water $(3 \times 100 \mathrm{~mL})$. The organic layer was dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$. The solvent was removed and the residue was dissolve into dioxane (50 mL). 1 M of $\mathrm{KOH}(1.00 \mathrm{mmol}, 1.00 \mathrm{~mL})$ was added to the solution and refluxed for 5 hours. After quenching with water (30 ml), the aqueous layer was neutralized by addition of 1 M HCl $(1.00 \mathrm{~mL})$. The mixture was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. The organic extract was dried over NaSO_{4} and concentrated under reduced pressure. To the solution of the residue in dry $\mathrm{CH}_{2} \mathrm{Cl}_{2}(20 \mathrm{~mL})$ was added BOP $(0.66 \mathrm{~g}, 1.50 \mathrm{mmol})$ and DIEA $(0.26 \mathrm{~mL}, 2.00 \mathrm{mmol})$.

The solution was stirred at room temperature for 12 hours at room temperature. The organic layer was washed with 1 M HCl solution. After removal of the solvent, the residue was purified by flash column chromatography on silica gel using $\mathrm{MeOH} / \mathrm{CH}_{2} \mathrm{Cl}_{2}$ as the eluent to give the product 9 , three-step total yield: $242 \mathrm{mg}, 43 \%$. HRMS-APCI: calculated for $[\mathrm{M}+\mathrm{H}]^{+} \quad\left(\mathrm{C}_{63} \mathrm{H}_{85} \mathrm{O}_{9} \mathrm{~N}_{9} \mathrm{~F}\right)$: m/z 1130.6449, found: m / z 1130.6451.HRMS-APCI: calculated for $[\mathrm{M}+\mathrm{H}]^{+}\left(\mathrm{C}_{63} \mathrm{H}_{85} \mathrm{O}_{9} \mathrm{~N}_{9} \mathrm{~F}\right): \mathrm{m} / \mathrm{z}$ 1130.6449, found: m/z 1130.6451.

Methyl 2-methoxy-3-(2-methoxy-3-nitro-5-(octyloxy)benzamido)-5-(octyloxy)benzoate

 (10b)

To a solution of $\mathbf{1 0 a}(0.56 \mathrm{~g}, 1.65 \mathrm{mmol})$ and iron $(0.37 \mathrm{~g}, 6.60 \mathrm{mmol})$ in $\mathrm{EtOH}(20 \mathrm{~mL})$ was added acetate acid (1.65 mL). The solution was refluxed for 2 hours at room temperature. After cooling, the solvent was removed and the residue was dissolved with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ and washed with water and Brine. The organic layer was dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$. Removal of the solvent gave the amine product, which was used for the next step reaction without further purification. A solution of $7 \mathbf{a}(0.58 \mathrm{~g}, 1.80 \mathrm{mmol})$ in $\mathrm{SOCl}_{2}(3.00 \mathrm{~mL})$ was heated under reflux for 2 hours at room temperature. After removal of the SOCl_{2}, the amine product (1.65 mmol) and DIEA $(0.61 \mathrm{~mL}, 3.60 \mathrm{mmol})$ in dry $\mathrm{CH}_{2} \mathrm{Cl}_{2}(20 \mathrm{~mL})$ were added to the residue. The solution was allowed to proceed for 12 hours at room temperature. After washing with 1 M HCl solution, the organic layer was dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$. After removal of the solvent, the residue was purified by flash column chromatography on silica gel using hexane/ethyl acetate as the eluent to give the product $\mathbf{1 0 b}$. Yield: $0.88 \mathrm{~g}, 87 \% .{ }^{1} \mathrm{H}$ NMR $\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 10.48(\mathrm{~s}, 1 \mathrm{H}), 8.46(\mathrm{~d}, J=3.1 \mathrm{~Hz}, 1 \mathrm{H}), 7.94(\mathrm{~d}, J=3.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.49$ $(\mathrm{d}, J=3.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.13(\mathrm{~d}, J=3.1 \mathrm{~Hz}, 1 \mathrm{H}), 4.01(\mathrm{~m}, 7 \mathrm{H}), 3.93(\mathrm{~s}, 3 \mathrm{H}), 3.88(\mathrm{~s}, 3 \mathrm{H}), 1.85$ $-1.74(\mathrm{~m}, 4 \mathrm{H}), 1.51-1.40(\mathrm{~m}, 4 \mathrm{H}), 1.30(\mathrm{~m}, 16 \mathrm{H}), 0.89(\mathrm{~m}, 6 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (125 MHz, $\left.\mathrm{CDCl}_{3}\right) \delta 158.7,154.2,148.2,148.1,137.7,137.6,136.1,126.3,122.5,116.7,114.1,108.1$, $104.7,104.1,62.2,61.6,57.6,55.6,45.3,24.8,24.7,22.3,22.2,22.2,22.1,22.1,21.9,19.0$, 18.8, 15.7, 15.6, 7.1, 7.0. HRMS-ESI: calculated for $[\mathrm{M}+\mathrm{Na}]^{+}\left(\mathrm{C}_{33} \mathrm{H}_{48} \mathrm{~N}_{2} \mathrm{O}_{9} \mathrm{Na}\right): \mathrm{m} / \mathrm{z}$

2-methoxy-3-(2-methoxy-3-nitro-5-(octyloxy)benzamido)-5-(octyloxy)benzoic acid (10c)

Compound 10b (3.08 g, 5.0 mmol) was dissolved in hot 1,4-dioxane (20 mL) to which 1 M KOH $(10 \mathrm{~mL}, 10 \mathrm{mmol})$ and $\mathrm{KCl}(3.70 \mathrm{~g}, 50 \mathrm{mmol})$ were added. The mixture was heated at $60^{\circ} \mathrm{C}$ for 24 hours and then quenched with water (10 mL). The aqueous layer was neutralized by addition of $1 \mathrm{M} \mathrm{HCl}(10 \mathrm{~mL})$. The solvent was removed at reduced pressure and the mixture was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. The organic extract was dried over NaSO_{4} and concentrated under reduced pressure to give a pure white solid 10c. Yield: $2.20 \mathrm{~g}, 73.0 \%,{ }^{1} \mathrm{H}$ NMR $\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 10.41(\mathrm{~s}, 1 \mathrm{H}), 8.50(\mathrm{~d}, J=$ $3.1 \mathrm{~Hz}, 1 \mathrm{H}), 7.95(\mathrm{~d}, J=3.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.51(\mathrm{~d}, J=3.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.32(\mathrm{~d}, J=3.2 \mathrm{~Hz}, 1 \mathrm{H})$, $4.08-3.98(\mathrm{~m}, 7 \mathrm{H}), 3.94(\mathrm{~s}, 3 \mathrm{H}), 1.87-1.74(\mathrm{~m}, 4 \mathrm{H}), 1.53-1.40(\mathrm{~m}, 5 \mathrm{H}), 1.29(\mathrm{dd}, J=$ $12.2,8.5 \mathrm{~Hz}, 18 \mathrm{H}), 0.89(\mathrm{t}, J=6.8 \mathrm{~Hz}, 6 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (125 MHz, $\left.\mathrm{CDCl}_{3}\right) \delta$ 168.5, 161.3, $155.6,155.2,144.7,144.6,143.4,133.2,129.3,122.3,121.2,115.2,112.7,112.1,69.3$, 68.7, 64.6, 63.1, 31.8, 31.7, 29.3, 29.2, 29.2, 29.1, 28.9, 25.9, 25.8, 22.7, 22.6, 14.1, 14.0. HRMS-ESI: calculated for $[\mathrm{M}-\mathrm{H}]^{-}\left(\mathrm{C}_{32} \mathrm{H}_{45} \mathrm{~N}_{2} \mathrm{O}_{9}\right): m / \mathrm{z} 601.3131$, found: $\mathrm{m} / \mathrm{z} 601.3147$.

Ethyl 5-(5-(5-(2-methoxy-3-(2-methoxy-3-nitro-5-(octyloxy)benzamido)-5-(octyloxy)

 benzamido)-1-octyl-4-oxo-1,4-dihydropyridine-3-carboxamido)-1-octyl-4-oxo-1,4-dihy dropyridine-3-carboxamido)-1-octyl-4-oxo-1,4-dihydropyridine-3-carboxylate (10e) A solution of $\mathbf{1 0 c}(1.20 \mathrm{~g}, 2.00 \mathrm{mmol})$ in SOCl_{2} $(2.00 \mathrm{~mL})$ was heated under reflux for 2 hours at room temperature. After removal of the $\mathrm{SOCl}_{2}, 10 \mathrm{~d}(0.79 \mathrm{~g}, 1.00 \mathrm{mmol})$ and DIEA ($0.68 \mathrm{~mL}, 4.00 \mathrm{mmol}$) in dry $\mathrm{CH}_{2} \mathrm{Cl}_{2}(60 \mathrm{~mL})$ were added to the residue. The solution was
allowed to proceed for 12 hours at room temperature. After washing with HCl solution, the organic layer was dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$. The residue was purified by column chromatography on silica gel using $\mathrm{MeOH} / \mathrm{CH}_{2} \mathrm{Cl}_{2}$ as the eluent to give 10 e as a white solid. Yield: 1.04 g , $76 \% .{ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3} / \mathrm{DMSO}_{-} d_{6}=1 / 4$) $\delta 12.48(\mathrm{~s}, 1 \mathrm{H}), 12.42(\mathrm{~s}, 1 \mathrm{H}), 10.81(\mathrm{~s}$, $1 \mathrm{H}), 10.58(\mathrm{~s}, 1 \mathrm{H}), 9.04(\mathrm{~s}, 2 \mathrm{H}), 8.89(\mathrm{~s}, 1 \mathrm{H}), 8.40(\mathrm{~s}, 1 \mathrm{H}), 8.36(\mathrm{~s}, 1 \mathrm{H}), 8.11(\mathrm{~s}, 1 \mathrm{H}), 8.09$ $(\mathrm{s}, 1 \mathrm{H}), 7.49(\mathrm{~s}, 1 \mathrm{H}), 7.36(\mathrm{~s}, 1 \mathrm{H}), 7.26(\mathrm{~s}, 1 \mathrm{H}), 4.16(\mathrm{~s}, 2 \mathrm{H}), 4.05-3.89(\mathrm{~m}, 16 \mathrm{H}), 1.85-$ $1.76(\mathrm{~m}, 10 \mathrm{H}), 1.43-1.24(\mathrm{~m}, 53 \mathrm{H}), 0.83(\mathrm{~s}, 15 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3} / \mathrm{DMSO}-d_{6}$ $=1 / 4) \delta 168.4,168.3,167.0,164.3,163.3,162.8,162.8,155.3,154.3,144.4,144.0,142.8$, $142.0,141.3,140.8,133.0,132.9,132.3,131.9,127.5,126.8,126.5,126.0,120.3,115.4$, $115.1,114.3,113.3,113.2,112.6,112.6,111.0,110.9,69.1,68.4,64.0,62.7,59.9,58.7$, $58.5,58.0,31.4,31.3,31.2,30.3,30.2,30.2,28.9,28.8,28.8,28.7,28.7,28.6,28.6,25.8$, $25.7,25.5,22.2,22.1,22.1,14.1,13.7$, 13.6. MS-ESI: calculated for $[\mathrm{M}+\mathrm{H}]^{+}$ $\left(\mathrm{C}_{76} \mathrm{H}_{111} \mathrm{~N}_{8} \mathrm{NaO}_{15}\right): m / z$ 1376.7312, found: m / z 1376.8.

Compound 10

To a solution of $\mathbf{1 0 e}(0.69 \mathrm{~g}, 0.50 \mathrm{mmol})$ and iron ($0.14 \mathrm{~g}, 2.50 \mathrm{mmol})$ in EtOH (50 mL) and THF (50 mL) was added acetate acid (1.00 mL). The solution was refluxed for 5 hours. After cooling, the solvent was filtered and removed then the residue was dissolved in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(50 \mathrm{~mL})$ and washed with water $(3 \times 100 \mathrm{~mL})$. The organic layer was dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$. The solvent was removed and the amine product was dissolved into dioxane $(50 \mathrm{~mL}) .1 \mathrm{M}$ of $\mathrm{KOH}(1.00 \mathrm{mmol}, 1.00 \mathrm{~mL})$ was added to the solution and refluxed for 5 hours. After quenching with water (30 ml), the aqueous layer was neutralized by addition $1 \mathrm{M} \mathrm{HCl}(1.00 \mathrm{~mL})$. The mixture was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. The organic extract was dried over NaSO_{4} and concentrated under reduced pressure. To the solution of the residue in dry $\mathrm{CH}_{2} \mathrm{Cl}_{2}(20 \mathrm{~mL})$ was added $\mathrm{BOP}(0.66 \mathrm{~g}, 1.50 \mathrm{mmol})$ and DIEA (0.26 $\mathrm{mL}, 2.00 \mathrm{mmol}$). The solution was stirred at room temperature for 12 hours at room
temperature. The solution was washed with HCl solution. After removal of the solvent, the residue was purified by flash column chromatography on silica gel using $\mathrm{MeOH} / \mathrm{CH}_{2} \mathrm{Cl}_{2}$ as the eluent to give the product 10, three-step total yield: $292 \mathrm{mg}, 45 \% .{ }^{1} \mathrm{H}$ NMR (500 MHz , $\left.\mathrm{CDCl}_{3} / \mathrm{DMSO}-d_{6}=1 / 4\right) \delta 13.10(\mathrm{~s}, 1 \mathrm{H}), 13.02(\mathrm{~s}, 1 \mathrm{H}), 12.96(\mathrm{~s}, 1 \mathrm{H}), 11.42(\mathrm{~s}, 1 \mathrm{H}), 11.13$ $(\mathrm{s}, 1 \mathrm{H}), 8.77(\mathrm{~s}, 1 \mathrm{H}), 8.75(\mathrm{~s}, 1 \mathrm{H}), 8.62(\mathrm{~s}, 1 \mathrm{H}), 8.24(\mathrm{~s}, 1 \mathrm{H}), 8.20(\mathrm{~s}, 1 \mathrm{H}), 8.14(\mathrm{~s}, 1 \mathrm{H})$, $8.10(\mathrm{~s}, 1 \mathrm{H}), 8.08(\mathrm{~s}, 1 \mathrm{H}), 7.14(\mathrm{~s}, 1 \mathrm{H}), 7.01(\mathrm{~s}, 1 \mathrm{H}), 4.12-4.00(\mathrm{~m}, 16 \mathrm{H}), 2.02-1.89(\mathrm{~m}$, $6 H), 1.87-1.80(\mathrm{~m}, 4 \mathrm{H}), 1.56-1.51(\mathrm{~m}, 4 \mathrm{H}), 1.48-1.23(\mathrm{~m}, 46 \mathrm{H}), 0.90-0.83(\mathrm{~m}, 15 \mathrm{H})$ ${ }^{13} \mathrm{C}^{\mathrm{NMR}}\left(125 \mathrm{MHz}, \mathrm{CDCl}_{3} / \mathrm{DMSO}_{6}=1 / 4\right) \delta 168.6,168.2,162.6,162.2,162.1,161.6$, $161.4,155.0,154.9,141.8,141.7,140.1,139.9,139.8,133.6,133.6,132.3,132.2,131.7$, $126.1,126.0,125.5,124.4,123.7,115.2,114.8,114.6,111.0,110.4,108.3,67.9,67.8,63.9$, $63.4,58.8,58.7,58.7,31.5,31.5,31.4,31.3,30.3,30.2,29.4,29.3,29.2,29.0,28.9,28.8$, 28.7, 28.7, 28.7, 28.6, 26.1, 26.0, 22.3, 22.2, 13.7, 13.6. HRMS-ESI: calculated for $[\mathrm{M}+\mathrm{Na}]^{+}\left(\mathrm{C}_{74} \mathrm{H}_{106} \mathrm{O}_{12} \mathrm{~N}_{8} \mathrm{Na}\right): m / z$ 1321.7822, found: m / z 1321.7762.

Ethyl
 5-(2-methoxy-3-nitro-5-(octyloxy)benzamido)-1-octyl-4-oxo-1,4-dihydropyridine-3-carboxylate (11b)

A solution of $7 \mathbf{a}(3.25 \mathrm{~g}, 10 \mathrm{mmol})$ in $\mathrm{SOCl}_{2}(5.00$ mL) was heated under reflux for 2 hours at room temperature. After removal of the $\mathrm{SOCl}_{2}, \mathbf{1 1 a}$ (2.94 $\mathrm{g}, 10 \mathrm{mmol})$ and DIEA ($3.40 \mathrm{~mL}, 20 \mathrm{mmol}$) in dry $\mathrm{CH}_{2} \mathrm{Cl}_{2}(30 \mathrm{~mL})$ were added to the residue. The solution was allowed to proceed for 12 hours at room temperature. After washing with 1 M HCl solution, aqueous sat. NaHCO_{3} and Brine, the organic layer was dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$. The residue was purified by column chromatography on silica gel using hexane/ethyl acetate as the eluent to give 11b as a white solid. Yield: $5.23 \mathrm{~g}, 87 \% .{ }^{1} \mathrm{H} \mathrm{NMR}(500 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}\right) \delta 11.02(\mathrm{~s}, 1 \mathrm{H}), 8.93(\mathrm{~d}, J=2.3 \mathrm{~Hz}, 1 \mathrm{H}), 8.17(\mathrm{~d}, J=2.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.86(\mathrm{~d}, J=3.3$ $\mathrm{Hz}, 1 \mathrm{H}), 7.47(\mathrm{~d}, J=3.3 \mathrm{~Hz}, 1 \mathrm{H}), 4.40(\mathrm{q}, J=7.1 \mathrm{~Hz}, 2 \mathrm{H}), 4.06(\mathrm{~s}, 3 \mathrm{H}), 4.01(\mathrm{t}, J=6.5 \mathrm{~Hz}$, $3 \mathrm{H}), 3.91(\mathrm{t}, J=7.4 \mathrm{~Hz}, 2 \mathrm{H}), 1.93-1.84(\mathrm{~m}, 2 \mathrm{H}), 1.83-1.75(\mathrm{~m}, 2 \mathrm{H}), 1.49-1.22(\mathrm{~m}$, $22 \mathrm{H}), 0.91-0.85(\mathrm{~m}, 6 \mathrm{H}) .{ }^{13} \mathrm{C} \operatorname{NMR}\left(125 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 167.7,165.8,161.8,154.8$,
$145.4,144.8,143.1,133.0,128.7,126.6,121.1,115.1,114.3,105.0,69.2,64.4,59.0,52.4$, $31.7,31.6,30.7,29.2,29.1,29.0,28.9,28.9,26.2,25.9,22.6,22.5,14.1,14.0$. HRMS-ESI: calculated for $[\mathrm{M}+\mathrm{Na}]^{+}\left(\mathrm{C}_{32} \mathrm{H}_{47} \mathrm{O}_{8} \mathrm{~N}_{3} \mathrm{Na}\right): m / z$ 624.3255, found: $m / z 627.3265$.

Methyl 2-methoxy-3-(5-(2-methoxy-3-nitro-5-(octyloxy)benzamido)-1-octyl-4-oxo-1,4-dihydropyridine-3-carboxamido)-5-(octyloxy)benzoate (11d)

To a solution of $\mathbf{1 0 a}(2.03 \mathrm{~g}, 6.00 \mathrm{mmol})$ and iron $(1.68 \mathrm{~g}, 30 \mathrm{mmol})$ in $\mathrm{EtOH}(30 \mathrm{~mL})$ was added acetate acid $(6.00 \mathrm{~mL})$. The solution was refluxed for 5 hours. After cooling, the reaction solvent was filtered and removed
then the residue was dissolved in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(50 \mathrm{~mL})$ and washed with water $(3 \times 100 \mathrm{~mL})$. The organic layer was dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$. Removal of the solvent gave the amine product, which was used for the next step reaction without further purification. Compound 11b $(6.01 \mathrm{~g}, 10 \mathrm{mmol})$ was dissolved in hot 1,4 -dioxane $(30 \mathrm{~mL})$ to which $1 \mathrm{M} \mathrm{KOH}(20 \mathrm{~mL}$, $20 \mathrm{mmol})$ and $\mathrm{KCl}(3.70 \mathrm{~g}, 50 \mathrm{mmol})$ were added. The mixture was heated at $60{ }^{\circ} \mathrm{C}$ for 24 hours and then quenched with water $(100 \mathrm{~mL})$. The aqueous layer was neutralized by addition of $1 \mathrm{M} \mathrm{HCl}(20 \mathrm{~mL})$. The solvent was removed at reduced pressure and the mixture was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. The organic extracts were dried over NaSO_{4} and concentrated under reduced pressure to give a pure white solid 11c. Yield: $5.16 \mathrm{~g}, 89.0 \%$. Acid 11c $(2.86 \mathrm{~g}, 5.0 \mathrm{mmol})$ was dissolved in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(20 \mathrm{~mL})$ to which ethyl chloroformate $(0.60 \mathrm{~mL}, 6.00 \mathrm{mmol})$ was added at $0{ }^{\circ} \mathrm{C}$. The reaction mixture was stirred for at least 15 minutes after which a solution of amine and $\mathrm{NMM}(0.60 \mathrm{~mL}, 6.00 \mathrm{mmol})$ dissolved in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(20 \mathrm{~mL})$ were added. The reaction mixture was allowed to stir continuously for 12 hours at room temperature. The reaction mixture was washed with 1 M HCl and Brine. Drying over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and removal of solvent in vacuo to gave the crude product. It was purified by flash column chromatography on silica gel using hexane/ethyl acetate as the eluent to give the product 11d. Yield: $2.72 \mathrm{~g}, 63 \% .{ }^{1} \mathrm{H}$ NMR (500 MHz ,
$\left.\mathrm{CDCl}_{3}\right) \delta 12.72(\mathrm{~s}, 1 \mathrm{H}), 11.04(\mathrm{~s}, 1 \mathrm{H}), 8.96(\mathrm{~d}, J=2.2 \mathrm{~Hz}, 1 \mathrm{H}), 8.44(\mathrm{~d}, J=2.3 \mathrm{~Hz}, 1 \mathrm{H})$, $8.43(\mathrm{~d}, J=3.1 \mathrm{~Hz}, 1 \mathrm{H}), 7.86(\mathrm{~d}, J=3.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.47(\mathrm{~d}, J=3.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.05(\mathrm{~d}, J=3.1$ $\mathrm{Hz}, 1 \mathrm{H}), 4.08(\mathrm{~s}, 3 \mathrm{H}), 4.02-3.95(\mathrm{~m}, 6 \mathrm{H}), 3.94(\mathrm{~s}, 3 \mathrm{H}), 3.92(\mathrm{~s}, 3 \mathrm{H}), 1.93-1.85(\mathrm{~m}, 2 \mathrm{H})$, $1.82-1.72(\mathrm{~m}, 4 \mathrm{H}), 1.47-1.39(\mathrm{~m}, 4 \mathrm{H}), 1.28-1.32(\mathrm{~m}, 26 \mathrm{H}), 0.89-0.84(\mathrm{~m}, 9 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (125 MHz, $\left.\mathrm{CDCl}_{3}\right) \delta 169.0,166.1,162.4,161.5,154.9,154.8,145.2,144.7,143.6$, $141.2,134.2,131.6,128.4,127.3,124.1,121.0,116.2,115.1,111.3,110.8,69.2,68.4,64.2$, $62.3,59.3,52.2,31.8,31.7,31.6,30.7,29.3,29.2,29.2,29.1,28.9,28.8,26.2,25.9,25.8$, 22.6, 22.6, 22.5, 14.0, 13.9. HRMS-ESI: calculated for $[\mathrm{M}+\mathrm{Na}]^{+}\left(\mathrm{C}_{47} \mathrm{H}_{68} \mathrm{O}_{11} \mathrm{~N}_{4} \mathrm{Na}\right): \mathrm{m} / \mathrm{z}$ 887.4777, found: $m / z 887.4736$.

2-methoxy-3-(5-(2-methoxy-3-nitro-5-(octyloxy)benzamido)-1-octyl-4-oxo-1,4-dihydro pyridine-3-carboxamido)-5-(octyloxy)benzoic acid (11e)

Compound 11d ($3.46 \mathrm{~g}, 4.00 \mathrm{mmol}$) was dissolved in hot 1,4 -dioxane (10 mL) to which $1 \mathrm{M} \mathrm{KOH}(8.00 \mathrm{~mL}, 8.00 \mathrm{mmol})$ and $\mathrm{KCl}(1.48 \mathrm{~g}, 20 \mathrm{mmol})$ were added. The mixture was heated at $60{ }^{\circ} \mathrm{C}$ for 24 hours and then quenched with water $(50 \mathrm{~mL})$. The aqueous layer was neutralized by addition of $1 \mathrm{M} \mathrm{HCl}(8.00 \mathrm{~mL})$. The solution was removed under reduced pressure and the mixture was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. The organic extracts were dried over NaSO_{4} and concentrated under reduced pressure, and the residure was purified by flash column chromatography on silica gel using hexane/ethyl acetate as the eluent to give the product $11 \mathbf{e}$. Yield: $2.45 \mathrm{~g}, 72.0 \%$. ${ }^{1} \mathrm{H} \operatorname{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 12.74(\mathrm{~s}, 1 \mathrm{H}), 11.07(\mathrm{~s}, 1 \mathrm{H}), 9.01(\mathrm{~d}, J=2.2 \mathrm{~Hz}, 1 \mathrm{H}), 8.49$ $(\mathrm{d}, J=2.2 \mathrm{~Hz}, 1 \mathrm{H}), 8.45(\mathrm{~d}, J=3.1 \mathrm{~Hz}, 1 \mathrm{H}), 7.89(\mathrm{~d}, J=3.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.50(\mathrm{~d}, J=3.3 \mathrm{~Hz}$, $1 \mathrm{H}), 7.08(\mathrm{~d}, J=3.1 \mathrm{~Hz}, 1 \mathrm{H}), 4.10(\mathrm{~s}, 3 \mathrm{H}), 4.05-3.97(\mathrm{~m}, 5 \mathrm{H}), 3.96(\mathrm{~s}, 3 \mathrm{H}), 3.94(\mathrm{~s}, 3 \mathrm{H})$, $1.97-1.87(\mathrm{~m}, 2 \mathrm{H}), 1.85-1.73(\mathrm{~m}, 4 \mathrm{H}), 1.51-1.41(\mathrm{~m}, 4 \mathrm{H}), 1.36-1.25(\mathrm{~m}, 24 \mathrm{H}), 0.91-$ $0.86(\mathrm{~m}, 9 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (125 MHz, $\left.\mathrm{CDCl}_{3}\right) \delta 169.1,166.2,162.5,161.7,155.0,154.9$, $145.2,144.8,143.7,141.3,134.3,131.8,128.6,127.4,124.2,121.1,116.4,115.2,111.5$, $111.1,69.3,68.5,64.3,62.4,59.4,52.3,31.8,31.7,31.6,30.8,29.7,29.4,29.3,29.2,29.0$,
28.9, 26.2, 26.0, 25.9, 22.7, 22.6, 22.5, 14.1, 14.1, 14.0. HRMS-ESI: calculated for $[\mathrm{M}+\mathrm{H}]^{+}$ $\left(\mathrm{C}_{46} \mathrm{H}_{67} \mathrm{O}_{11} \mathrm{~N}_{4}\right): m / z 851.4801$, found: $m / z 851.4815$

Ethyl 5-(5-(2-methoxy-3-(5-(2-methoxy-3-nitro-5-(octyloxy)benzamido)-1-octyl-4-oxo-

1,4-dihydropyridine-3-carboxamido)-5-(octyloxy)benzamido)-1-octyl-4-oxo-1,4-dihyd ropyridine-3-carboxamido)-1-octyl-4-oxo-1,4-dihydropyridine-3-carboxylate (11g)

To a solution of 11e $(1.70 \mathrm{~g}, 2.0 \mathrm{mmol})$ and $11 \mathrm{f}(1.08 \mathrm{~g}, 2.0 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(200 \mathrm{~mL})$ was added $\mathrm{POCl}_{3}(380 \mathrm{uL}, 4.0 \mathrm{mmol})$ at 40 ${ }^{\circ} \mathrm{C}$. The solution was vigorously stirred. After 10 minutes, $\mathrm{Et}_{3} \mathrm{~N}$ ($840 \mathrm{uL}, 6.0 \mathrm{mmol}$) was added into the reaction mixture. The solution was stirred for another 12 hours at room temperature, which was then concentrated in vacuo. The residue was purified by flash column chromatography $(\mathrm{MeOH} /$ dichloromethane $=1 / 50)$ to produce $\mathbf{1 1 g}$ as white solid. Yield: $1.74 \mathrm{~g}, 63 \%$. ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3} / \mathrm{DMSO}-d_{6}=4 / 1$) $\delta 12.67(\mathrm{~s}, 1 \mathrm{H})$, $12.52(\mathrm{~s}, 1 \mathrm{H}), 10.92(\mathrm{~s}, 1 \mathrm{H}), 10.89(\mathrm{~s}, 1 \mathrm{H}), 8.91(\mathrm{~s}, 1 \mathrm{H}), 8.89(\mathrm{~s}, 1 \mathrm{H}), 8.82(\mathrm{~s}, 1 \mathrm{H}), 8.43(\mathrm{~s}$, $1 \mathrm{H}), 8.32(\mathrm{~s}, 1 \mathrm{H}), 8.23(\mathrm{~d}, J=2.5 \mathrm{~Hz}, 1 \mathrm{H}), 8.07(\mathrm{~s}, 1 \mathrm{H}), 7.73(\mathrm{~d}, J=2.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.37(\mathrm{~d}, J$ $=3.1 \mathrm{~Hz}, 1 \mathrm{H}), 7.12(\mathrm{~d}, J=2.5 \mathrm{~Hz}, 1 \mathrm{H}), 4.12-3.86(\mathrm{~m}, 14 \mathrm{H}), 1.90-1.69(\mathrm{~m}, 10 \mathrm{H}), 1.42-$ $1.10(\mathrm{~m}, 53 \mathrm{H}), 0.84-0.78(\mathrm{~m}, 15 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($\left.125 \mathrm{MHz}, \mathrm{CDCl}_{3} / \mathrm{DMSO}_{-} d_{6}=4 / 1\right) \delta$ 168.7, 168.3, 167.5, 164.1, 164.0, 162.9, 162.7, 162.4, 161.3, 155.4, 154.3, 145.4, 144.0, 142.2, 142.0, 141.5, 141.1, 133.7, 133.0, 131.9, 131.4, 131.0, 129.5, 128.7, 128.7, 128.2, $127.6,126.8,126.4,125.4,121.0,115.7,115.1,114.5,113.6,111.7,109.2,69.0,68.2,64.4$, 62.6, 59.9, 59.0, 58.9, 58.4, 31.7, 31.6, 31.5, 30.7, 30.5, 29.4, 29.2, 29.1, 29.1, 29.0, 28.9, 28.8, 26.0, 25.9, 25.7, 22.5, 22.4, 22.4, 14.2, 14.1, 14.0. HRMS-ESI: calculated for $[\mathrm{M}+\mathrm{Na}]^{+}\left(\mathrm{C}_{76} \mathrm{H}_{110} \mathrm{O}_{15} \mathrm{~N}_{8} \mathrm{Na}\right): m / z$ 1397.7983, found: $m / z 1397.7931$.

Compound 11

To a solution of $\mathbf{1 1 g}(0.69 \mathrm{~g}, 0.50 \mathrm{mmol})$ and iron $(0.14 \mathrm{~g}, 2.50 \mathrm{mmol})$ in $\mathrm{EtOH}(50 \mathrm{~mL})$ and THF (50 mL) was added acetate acid (1.00 mL). The solution was refluxed for 5 hours. After cooling, the solvent was filtered and removed then the residue was dissolved in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(50 \mathrm{~mL})$ and washed with water ($3 \times$ 100 mL). The organic layer was dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$. The solvent was removed and the amine product was dissolved into dioxane (50 mL). 1 M of $\mathrm{KOH}(1.00 \mathrm{mmol}, 1.00 \mathrm{~mL})$ was added to the solution and refluxed for 5 hours. After quenching with water (30 ml), the aqueous layer was neutralized by addition $1 \mathrm{M} \mathrm{HCl}(1.00 \mathrm{~mL})$. The mixture was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. The organic extract was dried over NaSO_{4} and concentrated under reduced pressure. To the solution of the residue in dry $\mathrm{CH}_{2} \mathrm{Cl}_{2}(20 \mathrm{~mL})$ was added $\mathrm{BOP}(0.66 \mathrm{~g}$, $1.50 \mathrm{mmol})$ and DIEA $(0.26 \mathrm{~mL}, 2.00 \mathrm{mmol})$. The solution was stirred at room temperature for 12 hours at room temperature. The solution was washed with HCl solution. After removal of the solvent, the residue was purified by flash column chromatography on silica gel using $\mathrm{MeOH} / \mathrm{CH}_{2} \mathrm{Cl}_{2}$ as the eluent to give the product 11 , three-step total yield: 253 mg , $39 \% .{ }^{1} \mathrm{H}$ NMR ($\left.500 \mathrm{MHz}, \mathrm{CDCl}_{3} / \mathrm{DMSO}_{6}=1 / 9,350 \mathrm{~K}\right) \delta 13.21(\mathrm{~s}, 1 \mathrm{H}), 13.10(\mathrm{~s}, 1 \mathrm{H})$, $12.99(\mathrm{~s}, 1 \mathrm{H}), 11.47(\mathrm{~s}, 1 \mathrm{H}), 11.41(\mathrm{~s}, 1 \mathrm{H}), 8.85(\mathrm{~s}, 1 \mathrm{H}), 8.73(\mathrm{~s}, 1 \mathrm{H}), 8.71(\mathrm{~s}, 1 \mathrm{H}), 8.39(\mathrm{~s}$, $1 \mathrm{H}), 8.32(\mathrm{~s}, 2 \mathrm{H}), 8.26(\mathrm{~s}, 1 \mathrm{H}), 8.22(\mathrm{~s}, 1 \mathrm{H}), 7.11(\mathrm{~s}, 2 \mathrm{H}), 4.15-4.14(\mathrm{~m}, 6 \mathrm{H}), 4.01-4.05$ $(\mathrm{m}, 10 \mathrm{H}), 1.82-1.93(\mathrm{~m}, 10 \mathrm{H}), 1.54-1.50(\mathrm{~m}, 4 \mathrm{H}), 1.49-1.23(\mathrm{~m}, 46 \mathrm{H}), 0.94-0.81(\mathrm{~m}$, $15 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (125 MHz, $\left.\mathrm{CDCl}_{3} / \mathrm{DMSO}_{6}=1 / 9,350 \mathrm{~K}\right) \delta 168.6,168.2,162.6,162.2$, $162.1,161.6,161.4,155.0,154.9,141.8,141.7,140.1,139.9,139.8,133.6,133.6,132.3$, $132.2,131.7,126.1,126.0,125.5,124.4,123.7,115.2,114.8,114.6,111.0,110.4,108.3$, $67.9,67.8,63.9,63.4,58.8,58.7,58.7,31.5,31.5,31.4,31.3,30.3,30.2,29.4,29.3,29.2$, 29.0, 28.9, 28.8, 28.7, 28.7, 28.7, 28.6, 26.1, 26.0, 22.3, 22.2, 13.7, 13.6. HRMS-ESI: calculated for $[\mathrm{M}+\mathrm{Na}]^{+}\left(\mathrm{C}_{74} \mathrm{H}_{106} \mathrm{O}_{12} \mathrm{~N}_{8} \mathrm{Na}\right): m / z$ 1321.7822, found: m / z 1321.7886. dropyridine-3-carboxylate (12a)

A solution of $\mathbf{1 0 c}(1.80 \mathrm{~g}, 3.00 \mathrm{mmol})$ in $\mathrm{SOCl}_{2}(6.00 \mathrm{~mL})$ was heated under reflux for 2 hours at room temperature. After removal of SOCl_{2}, 11f $(1.63 \mathrm{~g}, 3.00 \mathrm{mmol})$ and DIEA ($1.02 \mathrm{~mL}, 6.00 \mathrm{mmol})$ in dry $\mathrm{CH}_{2} \mathrm{Cl}_{2}(30 \mathrm{~mL})$ were added to the residue. The solution was allowed to proceed for 12 hours at room temperature. After washing with 1 M HCl solution, the organic layer was dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$. The organic solvent was removed and the residue was purified by column chromatography on silica gel using $\mathrm{MeOH} / \mathrm{CH}_{2} \mathrm{Cl}_{2}$ as the eluent to give 12a as a white solid. Yield: $2.91 \mathrm{~g}, 86 \% .{ }^{1} \mathrm{H} \operatorname{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 12.81(\mathrm{~s}, 1 \mathrm{H})$, $10.85(\mathrm{~s}, 1 \mathrm{H}), 10.29(\mathrm{~s}, 1 \mathrm{H}), 9.06(\mathrm{~d}, J=2.0 \mathrm{~Hz}, 1 \mathrm{H}), 8.93(\mathrm{~d}, J=2.1 \mathrm{~Hz}, 1 \mathrm{H}), 8.43(\mathrm{~d}, J=$ $3.0 \mathrm{~Hz}, 1 \mathrm{H}), 8.38(\mathrm{~d}, J=2.2 \mathrm{~Hz}, 1 \mathrm{H}), 8.13(\mathrm{~d}, J=2.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.91(\mathrm{~d}, J=3.3 \mathrm{~Hz}, 1 \mathrm{H})$, $7.50(\mathrm{~d}, J=3.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.33(\mathrm{~d}, J=3.1 \mathrm{~Hz}, 1 \mathrm{H}), 4.41(\mathrm{q}, J=7.1 \mathrm{~Hz}, 2 \mathrm{H}), 4.13(\mathrm{~s}, 3 \mathrm{H})$, $4.04(\mathrm{q}, J=6.5 \mathrm{~Hz}, 4 \mathrm{H}), 4.01-3.95(\mathrm{~m}, 5 \mathrm{H}), 3.88(\mathrm{t}, J=7.3 \mathrm{~Hz}, 2 \mathrm{H}), 1.97-1.75(\mathrm{~m}, 8 \mathrm{H})$, $1.52-1.19(\mathrm{~m}, 43 \mathrm{H}), 0.90-0.85(\mathrm{~m}, 12 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (125 MHz, $\left.\mathrm{CDCl}_{3}\right) \delta 168.7,167.8$, $165.8,163.5,163.2,161.7,155.9,155.0,144.8,144.7,142.5,141.7,133.6,132.9,132.3$, $129.7,126.9,126.6,125.8,120.9,115.6,115.1,114.9,111.9,110.8,69.2,68.6,64.8,63.4$, $61.2,59.3,58.7,31.8,31.7,31.6,30.7,30.6,29.3,29.2,29.2,29.0,28.9,28.9,26.2,26.1$, $25.9,25.9,22.6,22.6,22.6,14.4,14.1,14.0,14.0$. HRMS-ESI: calculated for $[\mathrm{M}+\mathrm{Na}]^{+}$ $\left(\mathrm{C}_{62} \mathrm{H}_{90} \mathrm{~N}_{6} \mathrm{O}_{13} \mathrm{Na}\right): m / z 1149.6458$, found: $m / z 1149.6496$.

Ethyl-5-(5-(3-(3-(2-fluoro-3-nitrobenzamido)-2-methoxy-5-(octyloxy)benzamido)-2-m ethoxy-5-(octyloxy)benzamido)-1-octyl-4-oxo-1,4-dihydropyridine-3-carboxamido)-1-octyl-4-oxo-1,4-dihydropyridine-3-carboxylate (12b)

To a solution of $\mathbf{1 2 a}(1.13 \mathrm{~g}, 1.00 \mathrm{mmol})$ and iron $(0.37 \mathrm{~g}, 5.00 \mathrm{mmol})$ in $\mathrm{EtOH}(20 \mathrm{~mL})$ was added acetate acid (1.00 mL). The solution was refluxed for 2 hours at room temperature. After cooling, the solvent was removed and the residue was dissolved with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ and washed with water and Brine. The organic layer was dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$. Removal of the solvent gave the amine product which was used for the next step reaction without further purification. A solution of $\mathbf{1 b}$ $(0.37 \mathrm{~g}, 2.00 \mathrm{mmol})$ in $\mathrm{SOCl}_{2}(4.00 \mathrm{~mL})$ was heated under reflux for 2 hours at room temperature. After removal of SOCl_{2}, the amine product and DIEA $(0.68 \mathrm{~mL}, 4.00 \mathrm{mmol})$ in dry $\mathrm{CH}_{2} \mathrm{Cl}_{2}(20 \mathrm{~mL})$ were added to the residue. The solution was allowed to proceed for 12 hours at room temperature. After washing with 1 M HCl solution, the organic layer was dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$. After removal of the solvent, the residue was purified by flash column chromatography on silica gel using $\mathrm{MeOH} / \mathrm{CH}_{2} \mathrm{Cl}_{2}$ as the eluent to give the product $\mathbf{1 2 b}$. Yield: $1.12 \mathrm{~g}, 89 \% .{ }^{1} \mathrm{H} \operatorname{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 12.76(\mathrm{~s}, 1 \mathrm{H}), 11.01(\mathrm{~s}, 1 \mathrm{H}), 10.13(\mathrm{~s}$, $1 \mathrm{H}), 9.18(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 9.06(\mathrm{~d}, J=2.1 \mathrm{~Hz}, 1 \mathrm{H}), 8.93(\mathrm{~d}, J=2.2 \mathrm{~Hz}, 1 \mathrm{H}), 8.48(\mathrm{~d}, J$ $=3.1 \mathrm{~Hz}, 1 \mathrm{H}), 8.35(\mathrm{dd}, J=9.0,2.6 \mathrm{~Hz}, 3 \mathrm{H}), 8.19(\mathrm{t}, J=8.3 \mathrm{~Hz}, 1 \mathrm{H}), 8.08(\mathrm{~d}, J=2.3 \mathrm{~Hz}$, $1 \mathrm{H}), 7.47(\mathrm{t}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.42(\mathrm{~d}, J=3.1 \mathrm{~Hz}, 1 \mathrm{H}), 7.35(\mathrm{~d}, J=3.1 \mathrm{~Hz}, 1 \mathrm{H}), 4.24(\mathrm{q}, J=$ $7.1 \mathrm{~Hz}, 2 \mathrm{H}), 4.04(\mathrm{dd}, J=12.4,6.3 \mathrm{~Hz}, 4 \mathrm{H}), 4.00(\mathrm{~s}, 3 \mathrm{H}), 3.96(\mathrm{~s}, 3 \mathrm{H}), 3.87(\mathrm{t}, J=7.3 \mathrm{~Hz}$, $2 \mathrm{H}), 2.03(\mathrm{~s}, 4 \mathrm{H}), 1.94-1.76(\mathrm{~m}, 8 \mathrm{H}), 1.52-1.25(\mathrm{~m}, 41 \mathrm{H}), 0.90-0.85(\mathrm{~m}, 12 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (125 MHz, CDCl_{3}) $\delta 168.8,167.8,165.0,163.4,163.3,163.0,160.1,156.2,156.0$, $152.1,142.3,141.6,141.3,140.8,138.1,138.0,136.9,133.5,133.2,132.3,132.1,129.0$, $126.8,126.7,126.6,125.6,125.5,125.4,124.9,124.8,115.5,114.6,112.2,111.8,111.2$, $110.6,68.7,68.6,63.4,63.3,60.7,59.3,58.8,31.8,31.6,30.7,30.6,29.3,29.2,29.19,29.2$, 28.9, 28.9, 26.2 26.1, $25.9,22.6,22.5,14.3,14.1,14.0$. HRMS-ESI: calculated for $[\mathrm{M}+\mathrm{Na}]^{+}\left(\mathrm{C}_{69} \mathrm{H}_{94} \mathrm{FN}_{7} \mathrm{NaO}_{14}\right): m / z$ 1286.6735, found: $m / z 1286.6750$.

Compound 12

To a solution of $\mathbf{1 2 b}(0.63 \mathrm{~g}, 0.50 \mathrm{mmol})$

and iron ($0.14 \mathrm{~g}, 2.50 \mathrm{mmol}$) in EtOH (50 $\mathrm{mL})$ and THF (50 mL) was added acetate acid $(1.00 \mathrm{~mL})$. The solution was refluxed for 5 hours. After cooling, the solvent was filtered and removed then the residue was dissolved in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(50 \mathrm{~mL})$ and washed with water $(3 \times 100 \mathrm{~mL})$. The organic layer was dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$. Removal of the solvent gave the amine product, which was used for the next step reaction without further purification. To a solution of amine in 1,4-dioxane $(50 \mathrm{~mL}), 1 \mathrm{M}$ of $\mathrm{KOH}(1.00 \mathrm{mmol}, 1.00 \mathrm{~mL})$ was added and refluxed for 5 hours. After quenching with water (30 ml), the aqueous layer was neutralized by addition $1 \mathrm{M} \mathrm{HCl}(1.00$ $\mathrm{mL})$. The mixture was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \times 50 \mathrm{~mL})$. The organic extracts were dried over NaSO_{4} and concentrated under reduced pressure. To the solution of the residue in dry $\mathrm{CH}_{2} \mathrm{Cl}_{2}(20 \mathrm{~mL})$, BOP $(0.66 \mathrm{~g}, 1.50 \mathrm{mmol})$ and DIEA $(0.26 \mathrm{~mL}, 2.00 \mathrm{mmol})$ were added. The solution was stirred at room temperature for 12 hours at room temperature. The solution was washed with 1 M HCl solution. After removal of the solvent, the residue was purified by flash column chromatography on silica gel using $\mathrm{MeOH} / \mathrm{CH}_{2} \mathrm{Cl}_{2}$ as the eluent to give the product 12, three-step total yield: $0.28 \mathrm{~g}, 42 \% .{ }^{1} \mathrm{H}$ NMR $(500 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3} / \mathrm{DMSO}-d_{6}=4 / 1\right) \delta 13.01(\mathrm{~s}, 1 \mathrm{H}), 12.80(\mathrm{~s}, 1 \mathrm{H}), 11.23(\mathrm{~s}, 1 \mathrm{H}), 10.77(\mathrm{~s}, 1 \mathrm{H}), 9.10(\mathrm{~d}$, $J=19.9 \mathrm{~Hz}, 1 \mathrm{H}), 8.77(\mathrm{~s}, 1 \mathrm{H}), 8.61(\mathrm{~s}, 1 \mathrm{H}), 8.49(\mathrm{~s}, 1 \mathrm{H}), 8.22(\mathrm{~s}, 1 \mathrm{H}), 8.02(\mathrm{~s}, 1 \mathrm{H}), 7.93(\mathrm{~s}$, $1 \mathrm{H}), 7.62(\mathrm{~s}, 1 \mathrm{H}), 7.09(\mathrm{~d}, J=21.6 \mathrm{~Hz}, 2 \mathrm{H}), 6.86(\mathrm{~s}, 1 \mathrm{H}), 4.08-3.93(\mathrm{~m}, 14), 1.93(\mathrm{~s}, 4 \mathrm{H})$, $1.86-1.77(\mathrm{~m}, 4 \mathrm{H}), 1.53-1.51(\mathrm{~m}, 4 \mathrm{H}), 1.44-1.20(\mathrm{~m}, 37 \mathrm{H}), 0.89-0.82(\mathrm{~m}, 12 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (125 MHz, $\left.\mathrm{CDCl}_{3} / \mathrm{DMSO}-d_{6}=4 / 1\right) \delta 168.6,168.0,162.5,162.4,161.4,160.9,159.6$, $155.3,155.2,151.3,149.3,141.1,140.6,140.2,134.0,139.9,133.2,132.4,132.2,131.6$, $128.2,128.1,126.6,125.9,124.5,124.4,124.3,124.2,123.8,123.7,121.1,119.4,119.4$, $115.2,114.4,110.8,110.5,109.3,109.3,109.2,108.7,108.6,68.1,67.9,64.04,63.4,63.4$, $59.2,59.1,37.5,37.4,31.8,31.8,31.6,31.6,30.5,30.4,29.5,29.3,29.3,29.0,26.3,26.2$,
26.1, 22.6, 22.5, 22.4, 14.1, 13.9. HRMS-ESI: calculated for $[\mathrm{M}+\mathrm{Na}]^{+}\left(\mathrm{C}_{67} \mathrm{H}_{90} \mathrm{FN}_{7} \mathrm{NaO}_{11}\right)$: $m / z 1210.6575$, found: $m / z 1210.6573$.

Ethyl 5-(2-methoxy-3-(5-(2-methoxy-3-nitro-5-(octyloxy)benzamido)-1-octyl-4-oxo-1,4-dihydropyridine-3-carboxamido)-5-(octyloxy)benzamido)-1-octyl-4-oxo-1,4-dihyd
ropyridine-3-carboxylate (13b)

Compound 11e ($2.55 \mathrm{~g}, 3.00 \mathrm{mmol}$) was dissolved in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(20 \mathrm{~mL})$ to which ethyl chloroformate (0.33 mL , 3.30 mmol) was added at $0{ }^{\circ} \mathrm{C}$. The reaction mixture was stirred for at least 15 mins after which a solution of 13a $(1.18 \mathrm{~g}, 4.00 \mathrm{mmol})$ and $\mathrm{NMM}(0.33 \mathrm{~mL}, 3.30 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(20 \mathrm{~mL})$ were added. The reaction mixture was allowed to stir continuously for 12 hours at room temperature. The reaction mixture was washed with 1 M HCl and Brine. Drying over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and removal of solvent in vacuo gave the crude product and it was purified by flash column chromatography on silica gel using $\mathrm{MeOH} / \mathrm{CH}_{2} \mathrm{Cl}_{2}$ as the eluent to give the product $\mathbf{1 3 b}$. Yield: $2.20 \mathrm{~g}, 65.0 \% .{ }^{1} \mathrm{H}$ NMR $\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 12.58(\mathrm{~s}, 1 \mathrm{H}), 11.16(\mathrm{~s}, 1 \mathrm{H}), 10.91(\mathrm{~s}$, $1 \mathrm{H}), 9.06(\mathrm{~d}, J=2.1 \mathrm{~Hz}, 1 \mathrm{H}), 9.01(\mathrm{~d}, J=2.2 \mathrm{~Hz}, 1 \mathrm{H}), 8.50(\mathrm{~d}, J=2.2 \mathrm{~Hz}, 1 \mathrm{H}), 8.39(\mathrm{~d}, J$ $=3.1 \mathrm{~Hz}, 1 \mathrm{H}), 8.17(\mathrm{~d}, J=2.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.85(\mathrm{~d}, J=3.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.49(\mathrm{~d}, J=3.3 \mathrm{~Hz}, 1 \mathrm{H})$, $7.35(\mathrm{~d}, J=3.1 \mathrm{~Hz}, 1 \mathrm{H}), 4.42(\mathrm{q}, J=7.1 \mathrm{~Hz}, 2 \mathrm{H}), 4.13(\mathrm{~s}, 3 \mathrm{H}), 4.06-3.98(\mathrm{~m}, 9 \mathrm{H}), 3.90(\mathrm{t}$, $J=7.3 \mathrm{~Hz}, 2 \mathrm{H}), 1.83(\mathrm{~m}, 10 \mathrm{H}), 1.50-1.16(\mathrm{~m}, 41 \mathrm{H}), 0.91-0.86(\mathrm{~m}, 12 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR $(125$ $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 169.0,167.9,165.4,163.7,162.6,162.0,155.6,154.8,145.2,144.9,142.7$, $142.6,141.4,133.6,133.4,131.7,128.8,127.4,126.2,125.5,120.9,116.2,115.0,114.4$, $112.5,110.2,69.2,68.6,64.6,62.7,62.6,61.2,59.3,58.9,31.8,31.7,31.6,30.8,30.7,29.7$, 29.3, 29.2, 29.1, 29.0, 28.9, 28.9, 26.2, 25.9, 25.8, 22.6, 22.6, 22.5, 14.4, 14.1, 14.0, 14.0.

Ethyl 5-(3-(5-(3-(2-fluoro-3-nitrobenzamido)-2-methoxy-5-(octyloxy)benzamido)-1-octyl-4-oxo-1,4-dihydropyridine-3-carboxamido)-2-methoxy-5-(octyloxy)benzamido)-

1-octyl-4-oxo-1,4-dihydropyridine-3-carboxylate (13c)

To a solution of $\mathbf{1 3 b}(2.25 \mathrm{~g}, 2.00 \mathrm{mmol})$ and iron ($0.56 \mathrm{~g}, 10 \mathrm{mmol}$) in EtOH (100 mL) was added acetate acid $(2.00 \mathrm{~mL})$. The solution was refluxed for 2 hours at room temperature. After cooling, the solvent was removed and the residue was dissolved with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ and washed with water and Brine. The organic layer was dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$. Removal of the solvent gave the amine product, which was used for the next step reaction without further purification. A solution of $\mathbf{1 b}(0.55 \mathrm{~g}, 3.00 \mathrm{mmol})$ in $\mathrm{SOCl}_{2}(3.00 \mathrm{~mL})$ was heated under reflux for 2 hours at room temperature. After removal of SOCl_{2}, the amine product and DIEA $(1.00 \mathrm{~mL}, 6.00 \mathrm{mmol})$ in dry $\mathrm{CH}_{2} \mathrm{Cl}_{2}(20$ mL) were added into the residue. The solution was allowed to proceed for 12 hours at room temperature. After washing with 1 M HCl solution, the organic layer was dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$. After removal of the solvent, the residue was purified by flash column chromatography on silica gel using $\mathrm{MeOH} / \mathrm{CH}_{2} \mathrm{Cl}_{2}$ as the eluent to give the product 13 c . Yield: $2.07 \mathrm{~g}, 82 \% .{ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 12.62(\mathrm{~s}, 1 \mathrm{H}), 10.99(\mathrm{~s}, 1 \mathrm{H}), 10.92(\mathrm{~s}, 1 \mathrm{H}), 9.58(\mathrm{~s}, 1 \mathrm{H}), 8.99-$ $8.91(\mathrm{~m}, 2 \mathrm{H}), 8.39(\mathrm{~s}, 1 \mathrm{H}), 8.34(\mathrm{~d}, J=3.2 \mathrm{~Hz}, 1 \mathrm{H}), 8.21(\mathrm{t}, J=6.7 \mathrm{~Hz}, 1 \mathrm{H}), 8.13-7.97$ (m, 3H), $7.40(\mathrm{t}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.30(\mathrm{~d}, J=2.9 \mathrm{~Hz}, 2 \mathrm{H}), 4.17(\mathrm{q}, J=7.2 \mathrm{~Hz}, 2 \mathrm{H}), 4.04-$ $3.85(\mathrm{~m}, 14 \mathrm{H}), 1.93-1.71(\mathrm{~m}, 8 \mathrm{H}), 1.46-1.22(\mathrm{~m}, 43 \mathrm{H}), 0.89-0.82(\mathrm{~m}, 12 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 168.8,168.7,167.6,163.7,163.6,163.0,162.9,162.8,162.7,162.5$, $160.8,143.1,143.0,142.4,142.3,142.1,140.7,137.5,137.4,137.4,136.4,133.6,132.8$, 132.7, 132.1, 131.8, 128.0, 126.8, 126.3, 126.2, 126.1, 125.3, 125.2, 124.8, 124.7, 124.6, 124.5, 115.6, 115.5, 113.7, 113.4, 113.3, 112.2, 111.4, 109.6, 109.6, 68.4, 68.3, 62.7, 62.7, $62.4,60.3,59.2,58.8,31.7,31.5,30.6,30.5,29.2,29.1,29.1,28.8,26.1,26.0,25.9,25.8$, 22.0, 22.4, 14.1, 13.9, 13.8. HRMS-ESI: calculated for $[\mathrm{M}+\mathrm{Na}]^{+}\left(\mathrm{C}_{69} \mathrm{H}_{94} \mathrm{FN}_{7} \mathrm{NaO}_{14}\right): \mathrm{m} / \mathrm{z}$ 1286.6735, found: $\mathrm{m} / \mathrm{z} 1286.6728$.

Compound 13

To a solution of $\mathbf{1 3 c}(0.63 \mathrm{~g}, 0.50 \mathrm{mmol})$ and iron ($0.14 \mathrm{~g}, 2.50 \mathrm{mmol}$) in $\mathrm{EtOH}(50 \mathrm{~mL})$ and THF (50 mL) was added acetate acid (1.00 mL). The solution was refluxed for 5 hours. After cooling, the solvent was filtered and removed then the residue was dissolved in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ (50 $\mathrm{mL})$ and washed with water $(3 \times 100 \mathrm{~mL})$. The organic layer was dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$. Removal of the solvent gave the amine product, which was used for the next step reaction without further purification. To a solution of amine in dioxane (50 mL), 1 M of $\mathrm{KOH}(1.00 \mathrm{mmol}$, 1.00 mL) was added and refluxed for 5 hours. After quenching with water (30 ml), the aqueous layer was neutralized by addition of $1 \mathrm{M} \mathrm{HCl}(1.00 \mathrm{~mL})$. The mixture was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. The organic extracts were dried over NaSO_{4} and concentrated under reduced pressure. To the solution of the residue in dry $\mathrm{CH}_{2} \mathrm{Cl}_{2}(20 \mathrm{~mL}), \mathrm{BOP}(0.66 \mathrm{~g}, 1.50$ $\mathrm{mmol})$ and DIEA $(0.26 \mathrm{~mL}, 2.00 \mathrm{mmol})$ were added. The solution was stirred at room temperature for 12 hours at room temperature. The solution was washed with 1 M HCl solution. After removal of the solvent, the residue was purified by flash column chromatography on silica gel using $\mathrm{MeOH} / \mathrm{CH}_{2} \mathrm{Cl}_{2}$ as the eluent to give the product $\mathbf{1 3}$, three-step total yield: $243 \mathrm{mg}, 41 \% .^{1} \mathrm{H}$ NMR $\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 13.15(\mathrm{~s}, 1 \mathrm{H}), 13.10(\mathrm{~s}$, $1 \mathrm{H}), 11.40(\mathrm{~s}, 1 \mathrm{H}), 11.31(\mathrm{~s}, 1 \mathrm{H}), 9.37(\mathrm{~d}, J=21.6 \mathrm{~Hz}, 1 \mathrm{H}), 8.69(\mathrm{~s}, 2 \mathrm{H}), 8.54(\mathrm{~s}, 1 \mathrm{H}), 8.19$ $(\mathrm{s}, 1 \mathrm{H}), 8.15(\mathrm{~s}, 1 \mathrm{H}), 8.10(\mathrm{~s}, 1 \mathrm{H}), 8.08(\mathrm{~s}, 1 \mathrm{H}), 7.74(\mathrm{t}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.21-7.16(\mathrm{~m}$, $2 \mathrm{H}), 7.13(\mathrm{~s}, 1 \mathrm{H}), 4.12(\mathrm{~s}, 6 \mathrm{H}), 4.03-3.96(\mathrm{~m}, 4 \mathrm{H}), 3.96-3.86(\mathrm{~m}, 4 \mathrm{H}), 1.92-1.91(\mathrm{~m}$, $4 \mathrm{H}), 1.88-1.82(\mathrm{~m}, 4 \mathrm{H}), 1.47-1.24(\mathrm{~m}, 40 \mathrm{H}), 0.96-0.89(\mathrm{~m}, 12 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (125 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 168.6,168.5,162.3,162.1,161.9,161.5,159.7,155.4,155.2,151.4,149.4,142.0$, $141.3,139.8,139.7,134.0,132.8,131.9,131.4,131.4,128.3,128.2,126.1,126.0,126.0$, $124.5,124.2,124.1,123.9,123.8,119.4,119.3,114.9,110.9,110.7,108.9,108.3,68.0$, $62.7,62.4,59.2,59.1,31.8,31.6,31.6,30.6,30.1,29.5,29.4,29.3,29.2,29.2,29.1,29.0$, $26.4,26.3,26.1,26.0422 .6,22.5,22.5,22.4,14.0,13.9$. HRMS-ESI: calculated for
$[\mathrm{M}+\mathrm{Na}]^{+}\left(\mathrm{C}_{67} \mathrm{H}_{90} \mathrm{FN}_{7} \mathrm{NaO}_{11}\right): m / z$ 1210.6575, found: $m / z 1210.6573$.

Pentamer 14

Pentamer $6 \mathbf{a}(293 \mathrm{mg}, 0.3 \mathrm{mmol})$ was reduced by
catalytic hydrogenation in THF $(90 \mathrm{~mL})$ at $60^{\circ} \mathrm{C}$, using
$10 \% \mathrm{Pd} / \mathrm{C}(30 \mathrm{mg}, 10 \%)$ as the catalyst for 4 hours. The
reaction mixture was then filtered and the solvent
removed in vacuo and washed with ether to give the
green solid pentamer 14. Yield: $159 \mathrm{mg}, 60 \%$.
HRMS-ESI: calculated for $\left[\mathrm{M}^{-}\left(\mathrm{C}_{49} \mathrm{H}_{39} \mathrm{~N}_{7} \mathrm{O}_{10}\right)^{-}: m / z\right.$
884.2686 , found: $m / z 884.2691$.

Pentamer 15

15

Pentamer 6b ($80 \mathrm{mg}, 0.1 \mathrm{mmol}$) was reduced by catalytic hydrogenation in THF (30 mL) at $60^{\circ} \mathrm{C}$, using $10 \% \mathrm{Pd} / \mathrm{C}(8$ $\mathrm{mg}, 10 \%)$ as the catalyst for 48 hours. The reaction mixture was then filtered and the solvent removed in vacuo and washed with ether to give the green solid pentamer 15. Yield: $42 \mathrm{mg}, 60 \%$. HRMS-ESI: calculated for $[\mathrm{M}]^{-}$ $\left(\mathrm{C}_{37} \mathrm{H}_{26} \mathrm{~F}_{2} \mathrm{~N}_{5} \mathrm{O}_{8}\right)^{-}: m / z 706.1755$, found: $\mathrm{m} / \mathrm{z} 706.1765$.

Pentamer 16e

To a solution of $\mathbf{5 e}(473 \mathrm{mg}, 0.50 \mathrm{mmol})$ and iron $(112 \mathrm{mg}$, 2.0 mmol) in $\mathrm{EtOH} / \mathrm{THF}(5 \mathrm{~mL} / 2 \mathrm{~mL})$ was added acetate acid $(1.0 \mathrm{~mL})$. The reaction was refluxed for 3 hours. After cooling, the solvent was removed and the residue was dissolved with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ and washed with water and Brine. The organic layer was dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$. After removal of the solvent, the residue was not purified, but used directly in the next step. To the solution of resiude in hot dioxane $(1.5 \mathrm{~mL})$ was added $1 \mathrm{M} \mathrm{KOH}(1.0$
$\mathrm{mL})$. The reaction was heated under reflux for 4 hours. After quenching with water (15 ml), the aqueous layer was neutralized by addition $1 \mathrm{M} \mathrm{HCl}(1.5 \mathrm{~mL})$. The mixture was extracted with $\mathrm{CHCl}_{3}(3 \times 15 \mathrm{~mL})$. The organic extracts were dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated under reduced pressure. To the solution of the residue in dry $\mathrm{CH}_{2} \mathrm{Cl}_{2}(10 \mathrm{~mL})$ was added $\mathrm{BOP}(0.55$ $\mathrm{g}, 2.5 \mathrm{mmol})$ and DIEA $(0.25 \mathrm{~mL})$. The reaction was stirred in room temperature for 6 hours. The reaction was washed with HCl solution, aqueous sat. NaHCO_{3} and Brine. After removal of the solvent, the residue was purified by flash column chromatography on silica gel using $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ ethyl acetate ($20 / 1 \mathrm{v} / \mathrm{v}$) as the eluent to give the product $\mathbf{1 6 e}$, three-step total yield: $230 \mathrm{mg}, 52 \% .{ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 10.53(\mathrm{~d}, 1 \mathrm{H}, J=4.1 \mathrm{~Hz}), 10.42(\mathrm{~s}, 1 \mathrm{H}), 10.36$ $(\mathrm{s}, 1 \mathrm{H}), 10.20(\mathrm{~s}, 1 \mathrm{H}), 9.52(\mathrm{~d}, 1 \mathrm{H}, J=19.3 \mathrm{~Hz}), 8.98(\mathrm{td}, 1 \mathrm{H}, J=8.0,1.5 \mathrm{~Hz}), 8.91$ (ddd, 2H, $J=11.2,8.1,1.6 \mathrm{~Hz}), 8.84(\mathrm{dd}, 1 \mathrm{H}, J=8.1,1.5 \mathrm{~Hz}), 8.82(\mathrm{dd}, 1 \mathrm{H}, J=8.1,1.6 \mathrm{~Hz}), 8.05(\mathrm{td}$, $1 \mathrm{H}, J=7.9,1.6 \mathrm{~Hz}), 7.95(\mathrm{ddd}, 2 \mathrm{H}, J=10.9,7.9,1.6 \mathrm{~Hz}), 7.89(\mathrm{dd}, 1 \mathrm{H}, J=7.9,1.6 \mathrm{~Hz}), 7.82$ $(\mathrm{dd}, 1 \mathrm{H}, J=7.9,1.6 \mathrm{~Hz}), 7.48(\mathrm{t}, 1 \mathrm{H}, J=8.0 \mathrm{~Hz}), 7.45-7.37(\mathrm{~m}, 4 \mathrm{H}), 7.18-7.07(\mathrm{~m}, 4 \mathrm{H})$, $7.06-6.90(\mathrm{~m}, 6 \mathrm{H}), 5.08(\mathrm{~d}, 1 \mathrm{H}, J=11.2 \mathrm{~Hz}), 5.02(\mathrm{q}, 2 \mathrm{H}, J=11.2 \mathrm{~Hz}), 4.91(\mathrm{~d}, 1 \mathrm{H}, J=11.2$ $\mathrm{Hz}), 3.86(\mathrm{~s}, 3 \mathrm{H}), 3.80(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($126 \mathrm{MHz}, \mathrm{CDCl}_{3}$): δ 162.82, 162.58, 162.41, $162.09,160.24,151.58,149.74,146.54,146.44,145.21,145.19,133.74,133.71,133.16$, 133.14, 132.56, 132.13, 129.51, 129.43, 129.36, 129.21, 128.49, 127.74, 127.64, 127.19, $126.90,126.46,126.36,126.33,126.22,126.16,126.01,125.95,125.90,125.47,125.09$, 124.42, 124.28, 123.79, 123.69, 120.37, 79.94, 79.90, 62.75, 62.64. HRMS-ESI: calculated for $[\mathrm{M}]^{-}\left(\mathrm{C}_{51} \mathrm{H}_{40} \mathrm{FO}_{9} \mathrm{~N}_{5}\right)^{-}: m / z$ 884.2737, found: m / z 884.2698.

Pentamer 16

Pentamer 16e (265 mg, 0.3mmol) was reduced by catalytic hydrogenation in THF (90 mL) at $60^{\circ} \mathrm{C}$, using $10 \% \mathrm{Pd} / \mathrm{C}(53 \mathrm{mg}, 20 \%)$ as the catalyst for 12 hours at room temperature. The reaction mixture was then filtered and the solvent removed in vacuo and washed with ether to give the green solid pentamer 16. Yield: $90 \mathrm{mg}, 42 \%$. ${ }^{1} \mathrm{H}$ NMR (500 MHz, DMSO- $\left.d_{6}: \mathrm{CDCl}_{3}\right): \delta 11.71(\mathrm{~s}, 1 \mathrm{H}), 11.01$
$(\mathrm{s}, 1 \mathrm{H}), 10.92(\mathrm{~s}, 1 \mathrm{H}), 10.74(\mathrm{~s}, 1 \mathrm{H}), 10.31(\mathrm{bs}, 1 \mathrm{H}), 9.63(\mathrm{~d}, 1 \mathrm{H}, J=17.9 \mathrm{~Hz}), 8.81(\mathrm{~d}, 1 \mathrm{H}, J$ $=7.9 \mathrm{~Hz}), 8.73(\mathrm{t}, 1 \mathrm{H}, J=7.2 \mathrm{~Hz}), 8.66-8.57(\mathrm{~m}, 2 \mathrm{H}), 8.55(\mathrm{~d}, 1 \mathrm{H}, J=7.3 \mathrm{~Hz}), 8.02-7.69$ $(\mathrm{m}, 5 \mathrm{H}), 7.67(\mathrm{~d}, 1 \mathrm{H}, J=7.5 \mathrm{~Hz}), 7.33-7.26(\mathrm{~m}, 3 \mathrm{H}), 7.11(\mathrm{q}, 2 \mathrm{H}, J=8.0 \mathrm{~Hz}), 4.07(\mathrm{~s}, 6 \mathrm{H})$. ${ }^{13} \mathrm{C}$ NMR (126 MHz, DMSO- $d_{6}: \mathrm{CDCl}_{3}$): $\delta 163.72,163.42,162.42,161.99,160.30,151.93$, $149.99,147.56,147.15,144.52,143.81,133.45,132.33,132.30,132.01,127.84,127.74$, $126.39,126.34,125.83,125.64,125.61,125.52,125.48,125.28,125.18,125.13,124.94$, $124.80,124.53,124.32,124.19,123.19,122.65,122.61,63.30,63.14$. HRMS-ESI: calculated for $[\mathrm{M}]^{-}\left(\mathrm{C}_{51} \mathrm{H}_{27} \mathrm{FN}_{5} \mathrm{O}_{9}\right)^{-}: m / z 704.1798$, found: $m / z 704.1803$.

Methyl 3-(2-(benzyloxy)-3-(2-(benzyloxy)-3-(2-(methoxy)-3(2-(benzyloxy)-3nitrobenzamido)benzamido) benzamido)benzamido)-2- methoxybenzoate (17d)

To a solution of $\mathbf{1 f}(1.5 \mathrm{~g}, 1.9 \mathrm{mmol})$ and iron $(410 \mathrm{mg}$, $7.4 \mathrm{mmol})$ in $\mathrm{EtOH}(20 \mathrm{~mL})$ was added acetate acid (2 $\mathrm{mL})$. The reaction was refluxed for 2 hours at room temperature. After cooling, the solvent was removed and the residue was dissolved with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ and washed with water and Brine. The organic layer was dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$. Removal of the solvent gave the amine product used for the next step reaction without further purification. Acid $\mathbf{1 k}(628 \mathrm{mg}, 2.3 \mathrm{mmol})$ was dissolved in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(20 \mathrm{~mL})$ to which DMF $(0.06 \mathrm{~mL}),(\mathrm{COCl})_{2}(0.6 \mathrm{~mL}, 4.6 \mathrm{mmol})$ was added at room temperature. The reaction mixture was stirred for 5 hours then the excess $(\mathrm{COCl})_{2}$ was removed in vacuo to produce the chloride compound. The amine product $(1.53 \mathrm{~g}$, $1.9 \mathrm{mmol})$ and TEA $(0.4 \mathrm{~mL}, 6.9 \mathrm{mmol})$ in dry $\mathrm{CH}_{2} \mathrm{Cl}_{2}(60 \mathrm{~mL})$ were added to the residue. The reaction was allowed to proceed for 4 h . After washing with HCl solution, aqueous sat. NaHCO_{3} and Brine, the organic layer was dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$. The residue was recrystallized from methanol to give the pure product 17 d as a white solid. Yield: $1.05 \mathrm{~g}, 55 \% .{ }^{1} \mathrm{H}$ NMR ($\left.500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 9.81(\mathrm{~s}, 1 \mathrm{H}), 9.67(\mathrm{~s}, 1 \mathrm{H}), 9.33(\mathrm{~s}, 1 \mathrm{H}), 9.20(\mathrm{~s}, 1 \mathrm{H}), 8.79-8.76(\mathrm{~m}, 2 \mathrm{H})$, $8.70(\mathrm{~d}, 2 \mathrm{H}, J=8.2 \mathrm{~Hz}), 8.35(\mathrm{dd}, 1 \mathrm{H}, J=8.2,1.9 \mathrm{~Hz}), 8.06(\mathrm{dd}, 1 \mathrm{H}, J=8.2,1.9 \mathrm{~Hz}), 7.86-$ $7.82(\mathrm{~m}, 2 \mathrm{H}), 7.62-7.58(\mathrm{~m}, 2 \mathrm{H}), 7.5(\mathrm{t}, 1 \mathrm{H}, J=8.2 \mathrm{~Hz}), 7.39-7.32(\mathrm{~m}, 3 \mathrm{H}), 7.21-7.13(\mathrm{~m}$,
$6 \mathrm{H}), 7.12-7.01(\mathrm{~m}, 7 \mathrm{H}), 6.95-6.89(\mathrm{~m}, 3 \mathrm{H}), 5.11(\mathrm{~s}, 2 \mathrm{H}), 4.83(\mathrm{~s}, 2 \mathrm{H}), 4.79(\mathrm{~s}, 2 \mathrm{H}), 3.90(\mathrm{~s}$, $3 \mathrm{H}), 3.60(\mathrm{~s}, 3 \mathrm{H}), 3.27(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 165.8,163.5,163.3,162.9$, $161.9,149.4,149.2,147.2,146.0,145.6,144.9,136.0,134.5,133.9,132.8,132.4,131.4$, 131.1, 130.8, 129.5, 129.3, 128.9, 128.9, 128.8, 128.8, 128.6, 128.5, 128.4, 128.4, 128.0, $127.5,126.8,126.4,126.2,126.1,125.8,125.6,125.5,125.4,125.4,124.8,124.6,124.5$, 124.4, 124.1, 123.4, 80.3, 78.8, 78.6, 65.8, 62.4, 62.0; MS-ESI: calculated for $[\mathrm{M}]\left(\mathrm{C}_{59} \mathrm{H}_{48} \mathrm{~N}_{5} \mathrm{O}_{13}\right): \mathrm{m} / \mathrm{z} 1034.3254$, found: $\mathrm{m} / \mathrm{z} 1034.3219$.

Pentamer 17e

To a solution of $\mathbf{1 7 d}(600 \mathrm{mg}, 0.58 \mathrm{mmol})$ and iron (130 $\mathrm{mg}, 2.32 \mathrm{mmol})$ in $\mathrm{EtOH}(6 \mathrm{~mL})$ was added acetate acid $(0.6 \mathrm{~mL})$. The reaction was refluxed for 2 hours at room temperature. The reaction was dissolved with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ and washed with water and Brine. The organic layer was dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$. After removal of the solvent, the residue was not purified, but used directly in the next step. To the solution of resiude in hot methanol (10 mL) was added $1 \mathrm{M} \mathrm{NaOH}(1.2 \mathrm{~mL})$. The reaction was heated under reflux for 2 hours at room temperature. After quenching with water $(10 \mathrm{~mL})$, the aqueous layer was neutralized by addition $1 \mathrm{M} \mathrm{HCl}(1.2 \mathrm{~mL})$. The mixture was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. The organic extracts were dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated under reduced pressure. To the solution of the residue in dry $\mathrm{CH}_{2} \mathrm{Cl}_{2}(25 \mathrm{~mL})$ was added BOP (774 $\mathrm{mg}, 1.8 \mathrm{mmol})$ and DIEA ($0.41 \mathrm{~mL}, 2.4 \mathrm{mmol}$). The reaction was stirred in room temperature for 6 hours. The reaction was washed with HCl solution, aqueous sat. NaHCO_{3} and brine. After removal of the solvent, the residue was purified by flash column chromatography on silica gel using ethyl acetate $/ \mathrm{CH}_{2} \mathrm{Cl}_{2}(1 / 10 \mathrm{v} / \mathrm{v})$ as the eluent to give the product 17e, three-step total yield: $104 \mathrm{mg}, 18 \% .{ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 163.3,162.9,162.8$, $162.6,162.5,162.4,162.4,162.3,162.2,162.2,146.5,146.3,146.2,146.1,145.1,144.9$, $144.9,144.5,144.5,144.3,134.1,133.7,133.6,133.4,133.4,133.3,133.1,133.1,133.1$, $133.0,132.8,132.8,132.7,132.7,132.4,132.4,130.1,129.7,129.6,129.4,129.3,129.2$,
$129.2,129.1,128.6,128.5,128.5,128.2,127.9,127.9,127.6,127.5,126.7,126.4,126.2$, $126.2,126.2,126.1,126.1,126.1,126.0,125.9,125.9,125.8,125.8,125.7,125.6,124.1$, $124.0,123.8,123.6,123.5,123.4,79.9,79.7,79.7,79.7,79.7,79.4,63.6,63.4,62.5,62.4 ;$ MS-ESI: calculated for $[\mathrm{M}]^{-}\left(\mathrm{C}_{58} \mathrm{H}_{46} \mathrm{~N}_{5} \mathrm{O}_{10}{ }^{-}\right): \mathrm{m} / \mathrm{z} 972.3250$, found: $\mathrm{m} / \mathrm{z} 972.3217$.

Pentamer 17

Compound 17e ($130 \mathrm{mg}, 0.13 \mathrm{mmol}$) was reduced by catalytic hydrogenation in THF (25 mL) at $60^{\circ} \mathrm{C}$, using 10% Pd-C (39 mg, 30\%) as the catalyst for 48 hours. The reaction mixture was then filtered and the solvent removed in vacuo and washed with ether to give the green solid pentamer 17. Yield: 66%. ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, d_{6}$-DMSO: $\mathrm{CDCl}_{3}=10: 1$): $\delta 11.86(\mathrm{~b}, 1 \mathrm{H}), 11.23(\mathrm{~b}, 1 \mathrm{H}), 11.07(\mathrm{~s}, 3 \mathrm{H}), 8.86-8.84(\mathrm{~m}$, $2 \mathrm{H}), 8.70-8.66(\mathrm{~m}, 3 \mathrm{H}), 7.88-7.75(\mathrm{~m}, 5 \mathrm{H}), 7.42(\mathrm{t}, 2 \mathrm{H}, J$ $=7.6 \mathrm{~Hz}), 7.22-7.21(\mathrm{~m}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, d_{6}-\mathrm{DMSO}: \mathrm{CDCl}_{3}=10: 1$): $\delta 163.1$, $162.9,161.6,161.5,147.0,146.8,133.2,132.4,132.2,132.0,126.0,125.9,125.5,125.5$, $124.8,124.8,124.7,124.6,124.5,124.3,123.7,123.3,123.2,123.1,122.8,122.3,122.1,63.1$, 63.0; HRMS-ESI: calculated for $[\mathrm{M}+\mathrm{Na}]^{+}\left(\mathrm{C}_{37} \mathrm{H}_{29} \mathrm{~N}_{5} \mathrm{O}_{10}+\mathrm{Na}^{+}\right): 726.1812 \mathrm{~m} / \mathrm{z}$, found: $726.1839 \mathrm{~m} / \mathrm{z}$.

5-(5-(2-methoxy-3-(2-methoxy-3-(2-methoxy-3-nitro-5-(octyloxy)benzamido)-5-(octyloxy)benzamido)-5-(octyloxy)benzamido)-1-octyl-4-oxo-1,4-dihydropyridine-3-carboxamido) -1-octyl-4-oxo-1,4-dihydropyridine-3-carboxylate (18a)

To a solution of $\mathbf{1 2 a}(1.27 \mathrm{~g}, 1.00 \mathrm{mmol})$ and iron $(0.28 \mathrm{~g}, 5.00 \mathrm{mmol})$ in $\mathrm{EtOH}(20 \mathrm{~mL})$ was added acetate acid (1.00 mL). The solution was refluxed for 2 hours at room temperature. After cooling, the solvent was removed and the residue was dissolved with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ and washed with water and Brine.

The organic layer was dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$. Removal of the solvent gave the amine product, which was used for the next step reaction without further purification. Acid $7 \mathbf{a}(0.65 \mathrm{~g}, 2.00$ $\mathrm{mmol})$ in $\mathrm{SOCl}_{2}(2.00 \mathrm{~mL})$ was heated under reflux for 2 hours at room temperature. After removal of SOCl_{2}, the amine product and DIEA $(0.68 \mathrm{~mL}, 4.00 \mathrm{mmol})$ in dry $\mathrm{CH}_{2} \mathrm{Cl}_{2}(60$ mL) were added to the residue. The solution was allowed to proceed for 12 hours at room temperature. After washing with 1 M HCl solution, the organic layer was dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$. The residue was purified by column chromatography on silica gel using $\mathrm{MeOH} / \mathrm{CH}_{2} \mathrm{Cl}_{2}$ as the eluent to give 18a as a white solid. Yield: $0.77 \mathrm{~g}, 74 \%$. ${ }^{1} \mathrm{H}$ NMR $\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$ $12.78(\mathrm{~s}, 1 \mathrm{H}), 10.93(\mathrm{~s}, 1 \mathrm{H}), 10.32(\mathrm{~s}, 1 \mathrm{H}), 10.11(\mathrm{~s}, 1 \mathrm{H}), 9.05(\mathrm{~d}, J=2.3 \mathrm{~Hz}, 1 \mathrm{H}), 8.92(\mathrm{~d}$, $J=2.2 \mathrm{~Hz}, 1 \mathrm{H}), 8.46(\mathrm{~d}, J=3.1 \mathrm{~Hz}, 1 \mathrm{H}), 8.43(\mathrm{~d}, J=3.1 \mathrm{~Hz}, 1 \mathrm{H}), 8.37(\mathrm{~d}, J=2.3 \mathrm{~Hz}, 1 \mathrm{H})$, $8.11(\mathrm{~d}, J=2.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.93(\mathrm{~d}, J=3.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.49(\mathrm{~d}, J=3.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.39(\mathrm{~d}, J=3.1$ $\mathrm{Hz}, 1 \mathrm{H}), 7.32(\mathrm{~d}, J=3.1 \mathrm{~Hz}, 1 \mathrm{H}), 4.24(\mathrm{q}, J=7.1 \mathrm{~Hz}, 2 \mathrm{H}), 4.16(\mathrm{~s}, 3 \mathrm{H}), 4.07-4.02(\mathrm{~m}$, $6 \mathrm{H}), 3.99(\mathrm{~s}, 3 \mathrm{H}), 3.96(\mathrm{~s}, 3 \mathrm{H}), 3.88-3.85(\mathrm{~m}, 2 \mathrm{H}), 1.95-1.77(\mathrm{~m}, 8 \mathrm{H}), 1.51-1.42(\mathrm{~m}$, $4 \mathrm{H}), 1.35-1.23(\mathrm{~m}, 53 \mathrm{H}), 0.91-0.84(\mathrm{~m}, 15 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR $\left(125 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 168.7$, $167.7,165.2,163.5,163.2,163.1,161.7,156.2,156.0,154.9,145.0,144.4,142.4,141.6$, $141.3,140.8,133.5,133.3,132.7,132.3,129.8,126.8,126.8,126.6,125.7,121.0,115.6$, $115.1,114.6,111.8,111.7,110.7,110.5,69.2,68.6,68.6,64.8,63.6,63.2,60.7,59.7,58.7$, $31.8,31.7,31.6,30.7,30.6,29.6,29.3,29.2,29.2,29.1,29.0,28.9,26.2,25.9,25.8,22.7$, 22.6, 22.5, 14.3, 14.1, 14.0, 13.9. HRMS-ESI: calculated for $[\mathrm{M}+\mathrm{Na}]^{+}\left(\mathrm{C}_{78} \mathrm{H}_{113} \mathrm{FN}_{7} \mathrm{NaO}_{16}\right)$: $m / z 1326.8136$, found: $m / z 1326.8073$.

Compound 18

To a solution of $\mathbf{1 8 a}(0.70 \mathrm{~g}, 0.50 \mathrm{mmol})$ and iron $(0.14 \mathrm{~g}, 2.50 \mathrm{mmol})$ in $\mathrm{EtOH}(50 \mathrm{~mL})$ and THF (50 mL) was added acetate acid $(1.00 \mathrm{~mL})$. The solution was refluxed for 5 hours. After cooling, the solvent was filtered and removed then the residue was dissolved with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(50 \mathrm{~mL})$ and washed with water $(3 \times 100 \mathrm{~mL})$. The organic layer was dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$. Removal of the solvent gave the
amine product, which was used for the next step reaction without further purification. To a solution of amine in dioxane $(50 \mathrm{~mL}), 1 \mathrm{M}$ of $\mathrm{KOH}(1.00 \mathrm{mmol}, 1.00 \mathrm{~mL})$ was added and refluxed for 5 hours. After quenching with water (30 ml), the aqueous layer was neutralized by addition of $1 \mathrm{M} \mathrm{HCl}(1.00 \mathrm{~mL})$. The mixture was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. The organic extract was dried over NaSO_{4} and concentrated under reduced pressure. To the solution of the residue in dry $\mathrm{CH}_{2} \mathrm{Cl}_{2}(20 \mathrm{~mL})$ was added $\mathrm{BOP}(0.66 \mathrm{~g}, 1.50 \mathrm{mmol})$ and DIEA (0.26 $\mathrm{mL}, 2.00 \mathrm{mmol})$. The solution was stirred at room temperature for 12 hours at room temperature. The solution was washed with 1 M HCl solution. After removal of the solvent, the residue was purified by flash column chromatography on silica gel using $\mathrm{MeOH} / \mathrm{CH}_{2} \mathrm{Cl}_{2}$ as eluent to give the product 18. Yield: $0.30 \mathrm{~g}, 45 \% .{ }^{1} \mathrm{H} \mathrm{NMR}(500 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}\right) \delta 13.14(\mathrm{~s}, 1 \mathrm{H}), 13.10(\mathrm{~s}, 1 \mathrm{H}), 11.39(\mathrm{~s}, 1 \mathrm{H}), 11.23(\mathrm{~s}, 1 \mathrm{H}), 11.14(\mathrm{~s}, 1 \mathrm{H}), 8.88(\mathrm{~d}, J$ $=1.4 \mathrm{~Hz}, 1 \mathrm{H}), 8.86(\mathrm{~d}, J=1.4 \mathrm{~Hz}, 1 \mathrm{H}), 8.36(\mathrm{~d}, J=1.8 \mathrm{~Hz}, 1 \mathrm{H}), 8.34(\mathrm{~d}, J=2.3 \mathrm{~Hz}, 1 \mathrm{H})$, $8.31(\mathrm{~s}, 1 \mathrm{H}), 8.29(\mathrm{~s}, 2 \mathrm{H}), 7.31(\mathrm{~d}, J=2.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.25(\mathrm{~d}, J=2.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.23(\mathrm{~d}, J=$ $2.6 \mathrm{~Hz}, 1 \mathrm{H}), 4.25(\mathrm{~s}, 3 \mathrm{H}), 4.16-4.05(\mathrm{~m}, 10 \mathrm{H}), 4.01(\mathrm{~s}, 3 \mathrm{H}), 3.92(\mathrm{~s}, 3 \mathrm{H}), 2.03-1.98(\mathrm{~m}$, $4 H), 1.92-1.83(\mathrm{~m}, 6 \mathrm{H}), 1.55-1.50(\mathrm{~m}, 6 \mathrm{H}), 1.48-1.25(\mathrm{~m}, 44 \mathrm{H}), 0.91(\mathrm{~m}, 15 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (125 MHz, $\left.\mathrm{CDCl}_{3}\right) \delta 168.9,168.6,162.7,162.4,162.1,161.8,161.4,155.9,155.8$, $155.6,141.1,140.8,140.6,140.6,140.5,133.5,133.4,132.2,131.9,127.0,126.7,124.6$, $124.3,124.2,115.7,115.0,111.3,110.7,109.6,109.2,68.4,68.3,63.9,62.9,62.7,59.4$, $59.2,31.8,31.7,30.7,30.6,29.6,29.5,29.5,29.4,29.3,29.1,29.1,29.0,26.4,26.3,26.2$, 26.1, 22.7, 22.6, 14.1, 14.0. HRMS-ESI: calculated for $[\mathrm{M}+\mathrm{H}]^{+}\left(\mathrm{C}_{76} \mathrm{H}_{110} \mathrm{~N}_{7} \mathrm{NaO}_{13}\right): m / z$ 1328.7178, found: $m / z 1328.8095$.

Ethyl 5-(2-methoxy-3-(5-(2-methoxy-3-(2-methoxy-3-nitro-5-(octyloxy)benzamido)-5-(octyloxy)benzamido)-1-octyl-4-oxo-1,4-dihydropyridine-3-carboxamido)-5-(octyloxy) benzamido)-1-octyl-4-oxo-1,4-dihydropyridine-3-carboxylate (19a)

To a solution of $\mathbf{1 3 b}(2.25 \mathrm{~g}, 2.00 \mathrm{mmol})$ and iron $(0.56 \mathrm{~g}, 10 \mathrm{mmol})$ in $\mathrm{EtOH}(100 \mathrm{~mL})$ was added acetate acid (2.00 mL). The solution was refluxed for 2 hours at room
temperature. After cooling, the solvent was removed and the residue was dissolved with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ and washed with water and Brine. The organic layer was dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$. Removal of the solvent gave the amine product, which was used for the next step reaction without further purification. A solution of $7 \mathbf{a}(0.97 \mathrm{~g}, 3.00 \mathrm{mmol})$ in $\mathrm{SOCl}_{2}(3.00 \mathrm{~mL})$ was heated under reflux for 2 hours at room temperature. After removal of SOCl_{2}, the amine product and DIEA ($1.00 \mathrm{~mL}, 6.00 \mathrm{mmol}$) in dry $\mathrm{CH}_{2} \mathrm{Cl}_{2}(20 \mathrm{~mL})$ were added to the residue The solution was allowed to proceed for 12 hours at room temperature. After washing with 1 M HCl solution, the organic layer was dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$. After removal of the solvent, the residue was purified by flash column chromatography on silica gel using $\mathrm{MeOH} / \mathrm{CH}_{2} \mathrm{Cl}_{2}$ as eluent to give the product 19a. Yield: $2.08 \mathrm{~g}, 74 \%$. ${ }^{1} \mathrm{H} \mathrm{NMR}(500 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}\right) \delta 12.73(\mathrm{~s}, 1 \mathrm{H}), 11.13(\mathrm{~s}, 1 \mathrm{H}), 10.90(\mathrm{~s}, 1 \mathrm{H}), 10.41(\mathrm{~s}, 1 \mathrm{H}), 9.07(\mathrm{~s}, 1 \mathrm{H}), 9.00(\mathrm{~d}, J$ $=2.1 \mathrm{~Hz}, 1 \mathrm{H}), 8.48(\mathrm{~d}, J=2.0 \mathrm{~Hz}, 1 \mathrm{H}), 8.41(\mathrm{~d}, J=2.9 \mathrm{~Hz}, 1 \mathrm{H}), 8.37(\mathrm{~d}, J=3.1 \mathrm{~Hz}, 1 \mathrm{H})$, $8.15(\mathrm{~d}, J=2.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.92(\mathrm{~d}, J=3.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.48(\mathrm{~d}, J=3.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.36-7.33(\mathrm{~m}$, 2 H), 4.23 (q, $J=7.1 \mathrm{~Hz}, 2 \mathrm{H}), 4.16(\mathrm{~s}, 3 \mathrm{H}), 4.05-4.00(\mathrm{~m}, 12 \mathrm{H}), 3.98(\mathrm{~s}, 3 \mathrm{H}), 3.90(\mathrm{t}, J=$ $7.3 \mathrm{~Hz}, 2 \mathrm{H}), 1.96-1.85(\mathrm{~m}, 4 \mathrm{H}), 1.85-1.74(\mathrm{~m}, ~ 8 \mathrm{H}), 1.50-1.41(\mathrm{~m}, 4 \mathrm{H}), 1.39-1.22(\mathrm{~m}$, $45 \mathrm{H}), 0.90-0.86(\mathrm{~m}, 15 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 168.9,167.6,164.6,163.4$, 163.2, 162.6, 161.5, 155. 9, 155.5, 154.6, 145.2, 144.0, 142.5, 142.4, 141.7, 140.9, 133.6, 133.1, 132.9, 131.9, 129.6, 128.9, 128.1, 128.0, 126.9, 126.0, 125.7, 125.4, 125.1, 120.9, $115.9,115.1,113.9,112.3,111.8,110.6,109.9,77.0,69.1,68.5,68.4,67.8,64.7,63.2,62.5$, $60.6,59.2,58.9,31.7,31.6,31.5,29.3,29.1,29.0,28.9,26.1,26.1,25.9,25.8,22.5,22.5$, 22.4, 14.2, 14.0, 13.9, 13.8. HRMS-ESI: calculated for $[\mathrm{M}+\mathrm{Na}]^{+}\left(\mathrm{C}_{78} \mathrm{H}_{113} \mathrm{~N}_{7} \mathrm{NaO}_{16}\right): \mathrm{m} / \mathrm{z}$ 1426.8136, found: $m / z 1426.8130$.

Compound 19

To a solution of $\mathbf{1 9 a}(0.70 \mathrm{~g}, 0.50 \mathrm{mmol})$ and iron ($0.14 \mathrm{~g}, 2.50 \mathrm{mmol}$) in $\mathrm{EtOH}(50 \mathrm{~mL})$ and THF (50 mL) was added acetate acid $(1.00 \mathrm{~mL})$. The solution was refluxed for 5 hours. After cooling, the solvent was filtered
and removed then the residue was dissolved in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(50 \mathrm{~mL})$ and washed with water (3 $\times 100 \mathrm{~mL})$. The organic layer was dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$. Removal of the solvent gave the amine product, which was used for the next step reaction without further purification. To a solution of amine in dioxane (50 mL), 1 M of $\mathrm{KOH}(1.00 \mathrm{mmol}, 1.00 \mathrm{~mL})$ was added and refluxed for 5 hours. After quenching with water (30 ml), the aqueous layer was neutralized by addition of $1 \mathrm{M} \mathrm{HCl}(1.00 \mathrm{~mL})$. The mixture was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. The organic extract was dried over NaSO_{4} and concentrated under reduced pressure. To the solution of the residue in dry $\mathrm{CH}_{2} \mathrm{Cl}_{2}(20 \mathrm{~mL})$, BOP $(0.66 \mathrm{~g}, 1.50 \mathrm{mmol})$ and DIEA $(0.26 \mathrm{~mL}, 2.00$ mmol) were added. The solution was stirred at room temperature for 12 hours at room temperature. The solution was washed with 1 M HCl solution. After removal of the solvent, the residue was purified by flash column chromatography on silica gel using $\mathrm{MeOH} / \mathrm{CH}_{2} \mathrm{Cl}_{2}$ as eluent to give the product 19 , three-step total yield: $0.21 \mathrm{mg}, 35 \% .{ }^{1} \mathrm{H}$ NMR (500 MHz, $\left.\mathrm{CDCl}_{3}\right) \delta 13.06(\mathrm{~s}, 1 \mathrm{H}), 13.02(\mathrm{~s}, 1 \mathrm{H}), 11.33(\mathrm{~s}, 1 \mathrm{H}), 11.23(\mathrm{~s}, 1 \mathrm{H}), 11.00$ $(\mathrm{s}, 1 \mathrm{H}), 8.71(\mathrm{~s}, 1 \mathrm{H}), 8.60(\mathrm{~s}, 1 \mathrm{H}), 8.32(\mathrm{~s}, 1 \mathrm{H}), 8.22(\mathrm{~s}, 1 \mathrm{H}), 8.15(\mathrm{~s}, 1 \mathrm{H}), 8.06(\mathrm{~s}, 1 \mathrm{H})$, $8.00(\mathrm{~s}, 1 \mathrm{H}), 7.21(\mathrm{~s}, 1 \mathrm{H}), 7.09(\mathrm{~s}, 1 \mathrm{H}), 6.96(\mathrm{~s}, 1 \mathrm{H}), 4.05-3.80(\mathrm{~m}, 19 \mathrm{H}), 1.89-1,80(\mathrm{~m}$ $10 \mathrm{H}), 1.51-1.16(\mathrm{~m}, 50 \mathrm{H}), 0.87-0.81(\mathrm{~m}, 15 \mathrm{H}) .{ }^{13} \mathrm{C} \operatorname{NMR}\left(125 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 168.9$, $168.8,162.4,162.2,162.1,161.9,161.8,155.6,155.5,141.9,141.6,141.3,140.3,134.2$, $133.6,133.6,131.9,131.8,126.4,126.2,124.8,124.3,124.2,115.5,115.2,111.3,111.2$, $110.3,109.3,108.8,108.4,108.3,68.3,68.1,68.0,63.9,63.2,63.1,62.0,59.2,31.8,31.7$, $31.6,30.7,30.6,29.5,29.4,29.3,29.3,29.2,29.2,28.9,28.8,26.2,26.2,26.1,26.0,22.6$, 22.5, 14.1, 13.9. MS-ESI: calculated for $[\mathrm{M}+\mathrm{H}]^{+}\left(\mathrm{C}_{76} \mathrm{H}_{110} \mathrm{~N}_{7} \mathrm{NaO}_{13}\right): m / z$ 1328.7178, found: $m / z 1328.7$.

Ethyl 5-(2-methoxy-3-(2-methoxy-3-(2-methoxy-3-nitro-5-(octyloxy)benzamido)-5-(octyloxy)benzamido)-5-(octyloxy)benzamido)-1-octyl-4-oxo-1,4-dihydropyridine-3-ca rboxylate (20a)

To a solution of $\mathbf{1 1 b}(1.20 \mathrm{~g}, 2.00 \mathrm{mmol})$ and iron $(0.56 \mathrm{~g}, 100 \mathrm{mmol})$ in $\mathrm{EtOH}(40 \mathrm{~mL})$ was added acetate acid $(2.00 \mathrm{~mL})$. The solution was refluxed for

2 hours at room temperature. After cooling, the solvent was removed and the residue was dissolved with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ and washed with water and Brine. The organic layer was dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$. Removal of the solvent gave the amine product, which was used for the next step reaction without further purification. A solution of $\mathbf{1 0 c}(1.32 \mathrm{~g}, 2.20 \mathrm{mmol})$ in $\mathrm{SOCl}_{2}(6.00$ mL) was heated under reflux for 2 hours at room temperature. After removal of the SOCl_{2}, the amine product $(2.00 \mathrm{mmol})$ and DIEA $(0.82 \mathrm{~mL}, 4.80 \mathrm{mmol})$ in dry $\mathrm{CH}_{2} \mathrm{Cl}_{2}(40 \mathrm{~mL})$ were added to the residue. The solution was allowed to proceed for 12 hours at room temperature. After washing with 1 M HCl solution, the organic layer was dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$. After removal of the solvent, the residue was purified by flash column chromatography on silica gel using hexane/ethyl acetate as the eluent to give the product 20a. Yield: 1.73 g , $75 \% .^{1} \mathrm{H} \operatorname{NMR}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 10.98(\mathrm{~s}, 1 \mathrm{H}), 10.18(\mathrm{~s}, 2 \mathrm{H}), 9.01(\mathrm{~d}, J=2.4 \mathrm{~Hz}, 1 \mathrm{H})$, $8.47(\mathrm{~d}, J=3.0 \mathrm{~Hz}, 1 \mathrm{H}), 8.43(\mathrm{~d}, J=3.0 \mathrm{~Hz}, 1 \mathrm{H}), 8.17(\mathrm{~d}, J=2.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.92(\mathrm{~d}, J=3.2$ $\mathrm{Hz}, 1 \mathrm{H}), 7.53(\mathrm{~d}, J=3.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.42(\mathrm{~d}, J=3.1 \mathrm{~Hz}, 1 \mathrm{H}), 7.35(\mathrm{~d}, J=3.1 \mathrm{~Hz}, 1 \mathrm{H}), 4.41$ $(\mathrm{q}, J=7.1 \mathrm{~Hz}, 2 \mathrm{H}), 4.09-4.03(\mathrm{~m}, 9 \mathrm{H}), 3.94-3.88(\mathrm{~m}, 8 \mathrm{H}), 1.89-1.78(\mathrm{~m}, 8 \mathrm{H}), 1.64-$ $1.29(\mathrm{~m}, 43 \mathrm{H}), 0.94-0.81(\mathrm{~m}, 12 \mathrm{H}) . \mathrm{MS}-\mathrm{ESI}:$ calculated for $[\mathrm{M}+\mathrm{Na}]^{+}\left(\mathrm{C}_{64} \mathrm{H}_{93} \mathrm{~N}_{5} \mathrm{O}_{14} \mathrm{Na}\right)$: $m / z 1178.67$ found: $m / z: 1178.66$

Ethyl 5-(3-(3-(3-(2-fluoro-3-nitro-5-octylbenzamido)-2-methoxy-5-(octyloxy) benzamido)-2-methoxy-5-(octyloxy)benzamido)-2-methoxy-5-(octyloxy)benzamido)-1-octyl-4-oxo-1,4-dihydropyridine-3-carboxylate (20c)

To a solution of $20 \mathbf{a}(1.73 \mathrm{~g}, 1.50 \mathrm{mmol})$ and iron ($0.42 \mathrm{~g}, 7.50 \mathrm{mmol}$) in $\mathrm{EtOH}(30 \mathrm{~mL})$ was added acetate acid (1.50 mL). The solution was refluxed for 2 hours at room temperature. After cooling, the solvent was removed and the residue was dissolved with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ and washed with water and Brine. The organic layer was dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$. Removal of the solvent gave the amine product, which was used for the next step reaction without further purification. A solution of $\mathbf{2 0 b}$ $(0.59 \mathrm{~g}, 2.00 \mathrm{mmol})$ in $\mathrm{SOCl}_{2}(6.00 \mathrm{~mL})$ was heated under reflux for 2 hours at room
temperature. After removal of the SOCl_{2}, the amine product (1.50 mmol) and DIEA $(0.82 \mathrm{~mL}, 4.80 \mathrm{mmol})$ in dry $\mathrm{CH}_{2} \mathrm{Cl}_{2}(40 \mathrm{~mL})$ were added to the residue. The solution was allowed to proceed for 12 hours at room temperature. After washing with 1 M HCl solution, the organic layer was dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$. After removal of the solvent, the residue was purified by flash column chromatography on silica gel using hexane/ethyl acetate as the eluent to give the product 20c. Yield: $1.58 \mathrm{~g}, 75 \%$. ${ }^{1} \mathrm{H}$ NMR $\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 10.98(\mathrm{~s}$, $1 \mathrm{H}), 10.35(\mathrm{~s}, 1 \mathrm{H}), 9.97(\mathrm{~s}, 1 \mathrm{H}), 9.10(\mathrm{~d}, J=10.8 \mathrm{~Hz}, 1 \mathrm{H}), 9.00(\mathrm{~d}, J=2.0 \mathrm{~Hz}, 1 \mathrm{H}), 8.47(\mathrm{~d}$, $J=3.1 \mathrm{~Hz}, 1 \mathrm{H}), 8.46(\mathrm{~d}, J=3.1 \mathrm{~Hz}, 1 \mathrm{H}), 8.37(\mathrm{~d}, J=3.0 \mathrm{~Hz}, 1 \mathrm{H}), 8.20(\mathrm{dd}, J=5.7,1.9 \mathrm{~Hz}$, $1 \mathrm{H}), 8.13(\mathrm{~d}, J=2.1 \mathrm{~Hz}, 1 \mathrm{H}), 7.98(\mathrm{dd}, J=5.7,1.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.42(\mathrm{~d}, J=3.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.41$ $(\mathrm{d}, J=3.1 \mathrm{~Hz}, 1 \mathrm{H}), 7.33(\mathrm{~d}, J=3.1 \mathrm{~Hz}, 1 \mathrm{H}), 4.27(\mathrm{q}, J=7.1 \mathrm{~Hz}, 2 \mathrm{H}), 4.06-4.01(\mathrm{~m}, 6 \mathrm{H})$, $3.97(\mathrm{~s}, 3 \mathrm{H}), 3.94(\mathrm{~s}, 3 \mathrm{H}), 3.92(\mathrm{~s}, 3 \mathrm{H}), 3.90-3.89(\mathrm{~m}, 2 \mathrm{H}), 2.72(\mathrm{t}, J=7.5,2 \mathrm{H}), 1.89$ $-1.85(\mathrm{~m}, 2 \mathrm{H}), 1.84-1.75(\mathrm{~m}, 6 \mathrm{H}), 1.66(\mathrm{dt}, J=15.4,7.6 \mathrm{~Hz}, 2 \mathrm{H}), 1.48-1.44(\mathrm{~m}, 6 \mathrm{H})$, $1.38-1.23(\mathrm{~m}, 47 \mathrm{H}), 0.90-0.85(\mathrm{~m}, 15 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR $\left(125 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 167.9,164.5$, $163.3,162.9,162.8,159.9,156.2,156.2,156.0,152.4,150.3,142.4,141.5,141.0,140.9$, $140.5,140.4,137.7,137.6,137.0,133.3,133.1,132.9,132.2,128.8,126.8,126.2,125.5$, $124.4,124.3,114.1,111.9,111.8,111.6,111.2,110.8,110.5,68.6,68.5,68.5,63.4,63.3$, $63.1,60.8,58.9,34.8,31.8,31.6,30.8,30.6,29.3,29.2,29.2,29.1,29.1,29.1,29.0,28.9$, $28.9,26.1,25.9,22.6,22.5,22.5,14.3,14.1,14.0,13.9 . \mathrm{MS}-\mathrm{ESI}:$ calculated for $[\mathrm{M}+\mathrm{Na}]^{+}$ $\left(\mathrm{C}_{79} \mathrm{H}_{113} \mathrm{FN}_{6} \mathrm{O}_{15} \mathrm{Na}\right): m / z 1427.81$ found: $m / z: 1427.81$.

Compound 20

To a solution of $\mathbf{2 0 c}(0.70 \mathrm{~g}, 0.50 \mathrm{mmol})$ and iron ($0.14 \mathrm{~g}, 2.50 \mathrm{mmol}$) in EtOH (50 mL) and THF (50 mL) was added acetate acid (1.00 mL). The solution was refluxed for 5 hours. After cooling, the solvent was filtered and removed then the residue was dissolved in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(50 \mathrm{~mL})$ and washed with water $(3 \times 100 \mathrm{~mL})$. The organic
layer was dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$. The solvent was removed and the residue was dissolve into
dioxane $(50 \mathrm{~mL}) .1 \mathrm{M}$ of $\mathrm{KOH}(1.00 \mathrm{mmol}, 1.00 \mathrm{~mL})$ was added to the solution and refluxed for 5 hours. After quenching with water (30 ml), the aqueous layer was neutralized by addition of $1 \mathrm{M} \mathrm{HCl}(1.00 \mathrm{~mL})$. The mixture was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. The organic extract was dried over NaSO_{4} and concentrated under reduced pressure. To the solution of the residue in dry $\mathrm{CH}_{2} \mathrm{Cl}_{2}(20 \mathrm{~mL})$ was added $\mathrm{BOP}(0.66 \mathrm{~g}, 1.50 \mathrm{mmol})$ and DIEA $(0.26$ $\mathrm{mL}, 2.00 \mathrm{mmol})$. The solution was stirred at room temperature for 12 hours at room temperature. The organic layer was washed with 1 M HCl solution. After removal of the solvent, the residue was purified by flash column chromatography on silica gel using $\mathrm{MeOH} / \mathrm{CH}_{2} \mathrm{Cl}_{2}$ as the eluent to give the product 20, three-step total yield: $260 \mathrm{mg}, 39 \% .{ }^{1} \mathrm{H}$ NMR (500 MHz, $\left.\mathrm{CDCl}_{3}\right) \delta 13.14(\mathrm{~s}, 1 \mathrm{H}), 11.44(\mathrm{~s}, 1 \mathrm{H}), 11.00(\mathrm{~s}, 2 \mathrm{H}), 9.49(\mathrm{~s}, 1 \mathrm{H}), 8.99(\mathrm{~s}$, $1 \mathrm{H}), 8.71(\mathrm{~s}, 1 \mathrm{H}), 8.43(\mathrm{~s}, 2 \mathrm{H}), 8.34(\mathrm{~s}, 2 \mathrm{H}), 7.70(\mathrm{~s}, 1 \mathrm{H}), 7.41(\mathrm{~s}, 1 \mathrm{H}), 7.33(\mathrm{~s}, 2 \mathrm{H}), 4.12-$ $3.95(\mathrm{~m}, 17 \mathrm{H}), 2.70-2.67(\mathrm{t}, J=7.5 \mathrm{~Hz}, 2 \mathrm{H}), 1.98-1.95(\mathrm{~m}, 2 \mathrm{H}), 1.85-1.81(\mathrm{~m}, 6 \mathrm{H})$, $1.69(\mathrm{dt}, J=15.3,7.7 \mathrm{~Hz}, 2 \mathrm{H}), 1.50-1.49(\mathrm{~m}, 6 \mathrm{H}), 1.38-1.24(\mathrm{~m}, 44 \mathrm{H}), 0.92-0.87(\mathrm{~m}$, $15 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (125MHz, $\left.\mathrm{CDCl}_{3}\right) \delta 169.1,162.5,161.8,161.6,160.6,156.4,156.4,150.1$, $148.2,140.7,140.6,140.5,140.4,140.3,133.6,133.3,132.7,132.1,127.9,127.8,126.9$, $125.3,125.2,125.1,125.0,124.9,124.9,124.7,124.4119 .2$ 119.1, 115.5, 111.6, 111.0, $110.7,110.4,110.2110,68.6$ 68.5, 63.7, 63.1, $62.9,59.5,35.831 .8,31.8,31.6,31.2,30.7$ 29.6, 29.4, 29.4 29.3, 29.2, 29.0, 26.2, 26.0, 22.7 22.6, 22.5, 14.1, 14.0.

X-ray Crystal Data Sheet for 2, 5, 6 and 14

Identification code	2b
Empirical formula	C50 H60 N10 O10
Formula weight	961.08
Temperature	153(2) K
Wavelength	1.54178 A
Crystal system	Monoclinic
Space group	P2(1)/n
Unit cell dimensions	$a=23.3719(6) \AA \quad \alpha=90^{\circ}$.
	$\mathrm{b}=10.7207(3) \AA \quad \beta=114.4100(10)^{\circ}$.
Volume	6076.8(3) \AA^{3}
Z	4
Density (calculated)	$1.050 \mathrm{Mg} / \mathrm{m}^{3}$
Absorption coefficient	$0.612 \mathrm{~mm}^{-1}$
$\mathrm{F}(000)$	2040
Crystal size	$0.20 \times 0.10 \times 0.08 \mathrm{~mm}^{3}$
Theta range for data collection	2.12 to 63.67°.
Index ranges	$-26<=\mathrm{h}<=27,-12<=\mathrm{k}<=12,-30<=1<=28$
Reflections collected	37443
Independent reflections	$9823[\mathrm{R}(\mathrm{int})=0.0676]$
Completeness to theta $=27.48^{\circ}$	98.2 \%
Absorption correction	Semi-empirical from equivalents
Max. and min. transmission	0.9526 and 0.8873
Refinement method	Full-matrix least-squares on F^{2}
Data / restraints / parameters	9823 / 265 / 581
Goodness-of-fit on F^{2}	1.087
Final R indices [$\mathrm{I}>2 \operatorname{sigma}(\mathrm{I})$]	$\mathrm{R} 1=0.1641, \mathrm{wR} 2=0.3507$
R indices (all data)	$\mathrm{R} 1=0.1793, \mathrm{wR} 2=0.3594$
Largest diff. peak and hole	1.459 and -1.137 e. \AA^{-3}

Identification code	5b
Empirical formula	C34 H46 N6 O9
Formula weight	682.77
Temperature	123(2) K
Wavelength	0.71073 A
Crystal system	Triclinic
Space group	P-1
Unit cell dimensions	$a=12.1129(9) \AA{ }^{\text {A }}$, $\alpha=69.583(2)^{\circ}$.
	$\mathrm{b}=12.7793(10) \AA$ 发 $\quad \beta=68.112(2)^{\circ}$.
	$\mathrm{c}=13.0678(10) \AA{ }^{\text {A }}$ (
Volume	1744.1(2) \AA^{3}
Z	2
Density (calculated)	$1.300 \mathrm{Mg} / \mathrm{m}^{3}$
Absorption coefficient	$0.095 \mathrm{~mm}^{-1}$
$F(000)$	728
Crystal size	$0.10 \times 0.08 \times 0.04 \mathrm{~mm}^{3}$
Theta range for data collection	1.71 to 26.37°.
Index ranges	$-15<=\mathrm{h}<=15,-15<=\mathrm{k}<=15,-16<=1<=16$
Reflections collected	53798
Independent reflections	$7139[\mathrm{R}(\mathrm{int})=0.0794]$
Completeness to theta $=27.48^{\circ}$	100.0\%
Absorption correction	Semi-empirical from equivalents
Max. and min. transmission	0.9962 and 0.9905
Refinement method	Full-matrix least-squares on F^{2}
Data / restraints / parameters	7139 / 130/538
Goodness-of-fit on F^{2}	1.016
Final R indices [$\mathrm{I}>2 \operatorname{sigma}(\mathrm{I})$]	$\mathrm{R} 1=0.0642, \mathrm{wR} 2=0.1561$
R indices (all data)	$\mathrm{R} 1=0.1344, \mathrm{wR} 2=0.1967$
Largest diff. peak and hole	0.255 and -0.222 e. \AA^{-3}

Identification code	5c
Empirical formula	C42 H30 F3 N7 O8
Formula weight	817.73
Temperature	100(2) K
Wavelength	0.71073 A
Crystal system	Triclinic
Space group	P-1
Unit cell dimensions	$a=12.6347(15) \AA$ 成 $\quad \alpha=94.470(3)^{\circ}$.
	$\mathrm{b}=12.8579(16) \AA$ A $\quad \beta=117.546(2)^{\circ}$.
	$\mathrm{c}=13.3997(17) \AA \quad \gamma=101.859(3)^{\circ}$.
Volume	1851.0(4) \AA^{3}
Z	2
Density (calculated)	$1.467 \mathrm{Mg} / \mathrm{m}^{3}$
Absorption coefficient	$0.114 \mathrm{~mm}^{-1}$
$F(000)$	844
Crystal size	$0.40 \times 0.24 \times 0.20 \mathrm{~mm}^{3}$
Theta range for data collection	1.84 to 27.48°.
Index ranges	$-16<=\mathrm{h}<=16,-16<=\mathrm{k}<=16,-17<=\mathrm{l}<=17$
Reflections collected	24267
Independent reflections	$8473[\mathrm{R}(\mathrm{int})=0.0270]$
Completeness to theta $=27.48^{\circ}$	99.6\%
Absorption correction	Semi-empirical from equivalents
Max. and min. transmission	0.9776 and 0.9559
Refinement method	Full-matrix least-squares on F^{2}
Data / restraints / parameters	8473 / 0 / 562
Goodness-of-fit on F^{2}	1.051
Final R indices [$\mathrm{I}>2 \operatorname{sigma}(\mathrm{I})$]	$\mathrm{R} 1=0.0411, \mathrm{wR} 2=0.1078$
R indices (all data)	$\mathrm{R} 1=0.0492, \mathrm{wR} 2=0.1129$
Largest diff. peak and hole	0.348 and -0.250 e. \AA^{-3}

Identification code	5d
Empirical formula	C31 H24 F2 N4 O9
Formula weight	634.54
Temperature	100(2) K
Wavelength	0.71073 Å
Crystal system	Triclinic
Space group	P-1
Unit cell dimensions	$\mathrm{a}=7.6353(8) \AA \quad \alpha=65.420(2)^{\circ}$.
	$\mathrm{b}=13.1566(13) \AA$ A $\quad \beta=79.934(2)^{\circ}$.
	$\mathrm{c}=15.6352(16) \AA$ A $\quad \gamma=74.621(2)^{\circ}$.
Volume	1373.4(2) \AA^{3}
Z	2
Density (calculated)	$1.534 \mathrm{Mg} / \mathrm{m}^{3}$
Absorption coefficient	$0.123 \mathrm{~mm}^{-1}$
$\mathrm{F}(000)$	656
Crystal size	$0.60 \times 0.44 \times 0.44 \mathrm{~mm}^{3}$
Theta range for data collection	1.74 to 27.50°.
Index ranges	$-9<=\mathrm{h}<=9,-17<=\mathrm{k}<=17,-20<=\mathrm{l}<=20$
Reflections collected	17991
Independent reflections	$6288[\mathrm{R}(\mathrm{int})=0.0317]$
Completeness to theta $=27.50^{\circ}$	99.8 \%
Absorption correction	Semi-empirical from equivalents
Max. and min. transmission	0.9478 and 0.9298
Refinement method	Full-matrix least-squares on F^{2}
Data / restraints / parameters	6288 / 0 / 430
Goodness-of-fit on F^{2}	1.031
Final R indices [$\mathrm{I}>2 \operatorname{sigma}(\mathrm{I})$]	$\mathrm{R} 1=0.0432, \mathrm{wR} 2=0.1064$
R indices (all data)	$\mathrm{R} 1=0.0483, \mathrm{wR} 2=0.1099$
Largest diff. peak and hole	0.316 and -0.400 e. \AA^{-3}

Identification code	5e
Empirical formula	C52 H42 F N5 O12
Formula weight	947.91
Temperature	100(2) K
Wavelength	0.71073 A
Crystal system	Monoclinic
Space group	P2(1)/c
Unit cell dimensions	
	$\mathrm{b}=19.8416(15) \AA$ ¢ $\quad \beta=111.9200(10)^{\circ}$.
	$\mathrm{c}=16.9153(13) \AA$.
Volume	4421.4(6) \AA^{3}
Z	4
Density (calculated)	$1.424 \mathrm{Mg} / \mathrm{m}^{3}$
Absorption coefficient	$0.105 \mathrm{~mm}^{-1}$
$\mathrm{F}(000)$	1976
Crystal size	$0.60 \times 0.20 \times 0.16 \mathrm{~mm}^{3}$
Theta range for data collection	2.05 to 27.50°.
Index ranges	$-18<=\mathrm{h}<=15,-25<=\mathrm{k}<=25,-13<=\mathrm{l}<=21$
Reflections collected	31302
Independent reflections	$10157[\mathrm{R}(\mathrm{int})=0.0352]$
Completeness to theta $=27.50^{\circ}$	99.9 \%
Absorption correction	Semi-empirical from equivalents
Max. and min. transmission	0.9834 and 0.9395
Refinement method	Full-matrix least-squares on F^{2}
Data / restraints / parameters	10157 / 4 / 646
Goodness-of-fit on F^{2}	1.052
Final R indices [$\mathrm{I}>2 \operatorname{sigma}(\mathrm{I})$]	$\mathrm{R} 1=0.0482, \mathrm{wR} 2=0.1078$
R indices (all data)	$\mathrm{R} 1=0.0586, \mathrm{wR} 2=0.1132$
Largest diff. peak and hole	0.331 and -0.301 e. \AA^{-3}

Identification code	5 f
Empirical formula	C38 H35 N3 O7
Formula weight	645.69
Temperature	100(2) K
Wavelength	0.71073 A
Crystal system	Monoclinic
Space group	P2(1)/c
Unit cell dimensions	$a=8.8451(8) \AA \quad \alpha=90^{\circ}$.
	$\mathrm{b}=23.553(2) \AA \quad \beta=99.906(2)^{\circ}$.
	$\mathrm{c}=15.8186(13) \AA$.
Volume	3246.4(5) \AA^{3}
Z	4
Density (calculated)	$1.321 \mathrm{Mg} / \mathrm{m}^{3}$
Absorption coefficient	$0.092 \mathrm{~mm}^{-1}$
$\mathrm{F}(000)$	1360
Crystal size	$0.40 \times 0.30 \times 0.26 \mathrm{~mm}^{3}$
Theta range for data collection	1.57 to 27.50°.
Index ranges	$-11<=\mathrm{h}<=11,-18<=\mathrm{k}<=30,-19<=\mathrm{l}<=20$
Reflections collected	22969
Independent reflections	$7453[\mathrm{R}(\mathrm{int})=0.0392]$
Completeness to theta $=27.50^{\circ}$	99.9 \%
Absorption correction	Semi-empirical from equivalents
Max. and min. transmission	0.8621 and 0.6748
Refinement method	Full-matrix least-squares on F^{2}
Data / restraints / parameters	7453 / 45 / 469
Goodness-of-fit on F^{2}	1.105
Final R indices [I>2sigma(I)]	$\mathrm{R} 1=0.0803, \mathrm{wR} 2=0.1846$
R indices (all data)	$\mathrm{R} 1=0.1024, \mathrm{wR} 2=0.1977$
Largest diff. peak and hole	0.961 and -0.526 e.\AA^{-3}

Identification code	6 a
Empirical formula	C57.50 H49 Cl2 N7 O10.50
Formula weight	1076.94
Temperature	100(2) K
Wavelength	0.71073 A
Crystal system	Monoclinic
Space group	P2(1)/n
Unit cell dimensions	$\mathrm{a}=18.507(2) \AA \quad \alpha=90^{\circ}$.
	$b=11.2044(13) \AA$ 成 $\quad \beta=93.092(3)^{\circ}$.
	$\mathrm{c}=24.538(3) \AA \AA^{\circ} \mathrm{A}$
Volume	5080.8(10) \AA^{3}
Z	4
Density (calculated)	$1.408 \mathrm{Mg} / \mathrm{m}^{3}$
Absorption coefficient	$0.199 \mathrm{~mm}^{-1}$
$F(000)$	2244
Crystal size	$0.48 \times 0.24 \times 0.06 \mathrm{~mm}^{3}$
Theta range for data collection	1.42 to 25.00°.
Index ranges	$-21<=\mathrm{h}<=22,-13<=\mathrm{k}<=13,-29<=1<=21$
Reflections collected	28869
Independent reflections	$8939[\mathrm{R}(\mathrm{int})=0.0783]$
Completeness to theta $=25.00^{\circ}$	99.9\%
Absorption correction	Semi-empirical from equivalents
Max. and min. transmission	0.7456 and 0.5630
Refinement method	Full-matrix least-squares on F^{2}
Data / restraints / parameters	8939 / 188 / 731
Goodness-of-fit on F^{2}	1.049
Final R indices [$\mathrm{I}>2 \operatorname{sigma}(\mathrm{I})$]	$\mathrm{R} 1=0.0850, \mathrm{wR} 2=0.2099$
R indices (all data)	$\mathrm{R} 1=0.1360, \mathrm{wR} 2=0.2371$
Largest diff. peak and hole	1.004 and -0.680 e.\AA^{-3}

Identification code	6b
Empirical formula	C44 H33 F2 N5 O8
Formula weight	797.75
Temperature	100(2) K
Wavelength	0.71073 A
Crystal system	Orthorhombic
Space group	Pbca
Unit cell dimensions	$a=13.3567(11) \AA$ A $\quad \alpha=90^{\circ}$.
	$b=22.8181(18) \AA$ A $\quad \beta=90^{\circ}$.
	$\mathrm{c}=23.430(2) \AA \AA^{\circ} \mathrm{A}$
Volume	7140.7(10) \AA^{3}
Z	8
Density (calculated)	$1.484 \mathrm{Mg} / \mathrm{m}^{3}$
Absorption coefficient	$0.111 \mathrm{~mm}^{-1}$
$\mathrm{F}(000)$	3312
Crystal size	$0.29 \times 0.28 \times 0.23 \mathrm{~mm}^{3}$
Theta range for data collection	1.99 to 25.00°.
Index ranges	$-15<=\mathrm{h}<=13,-25<=\mathrm{k}<=27,-24<=1<=27$
Reflections collected	40113
Independent reflections	$6272[\mathrm{R}(\mathrm{int})=0.0822]$
Completeness to theta $=25.00^{\circ}$	100.0\%
Absorption correction	Semi-empirical from equivalents
Max. and min. transmission	0.9750 and 0.9686
Refinement method	Full-matrix least-squares on F^{2}
Data / restraints / parameters	6272 / 0 / 534
Goodness-of-fit on F^{2}	1.037
Final R indices [I>2sigma(I)]	$\mathrm{R} 1=0.0983, w R 2=0.2467$
R indices (all data)	$\mathrm{R} 1=0.1307, \mathrm{wR} 2=0.2689$
Largest diff. peak and hole	1.366 and -0.581 e. \AA^{-3}

Identification code	14
Empirical formula	C100 H82 Cl4 K N14 O20
Formula weight	1980.70
Temperature	293(2) K
Wavelength	0.71073 A
Crystal system	Monoclinic
Space group	C2/c
Unit cell dimensions	$a=18.6302(16) \AA$ ¢ $\quad \alpha=90^{\circ}$.
	$\mathrm{c}=23.762(2) \AA \AA^{\circ} \mathrm{A}$
Volume	8800.3(14) \AA^{3}
Z	4
Density (calculated)	$1.495 \mathrm{Mg} / \mathrm{m}^{3}$
Absorption coefficient	$0.268 \mathrm{~mm}^{-1}$
F(000)	4108
Crystal size	$0.46 \times 0.37 \times 0.27 \mathrm{~mm}^{3}$
Theta range for data collection	1.81 to 25.00°.
Index ranges	$-14<=\mathrm{h}<=22,-23<=\mathrm{k}<=22,-28<=1<=28$
Reflections collected	25457
Independent reflections	$7741[\mathrm{R}(\mathrm{int})=0.0475]$
Completeness to theta $=25.00^{\circ}$	99.9 \%
Absorption correction	Semi-empirical from equivalents
Max. and min. transmission	0.7457 and 0.6085
Refinement method	Full-matrix least-squares on F^{2}
Data / restraints / parameters	7741 / 218 / 664
Goodness-of-fit on F^{2}	1.956
Final R indices [$\mathrm{I}>2 \operatorname{sigma}(\mathrm{I})$]	$\mathrm{R} 1=0.1587, \mathrm{wR} 2=0.4501$
R indices (all data)	$\mathrm{R} 1=0.1893, \mathrm{wR} 2=0.4789$
Largest diff. peak and hole	1.956 and -1.308 e. \AA^{-3}

a)

$\left(\theta=72.0^{\circ}, n=5.00\right)$
(A) 3
d)

$\left(\theta=72.1^{\circ}, \boldsymbol{n}=4.99\right)$
(D) 3
b)

$\left(\theta=67.6^{\circ}, n=5.33\right)$
$(B)_{3}$
e)

$\left(\theta=71.2^{\circ}, n=5.05\right)$
$(E)_{3}$

Figure S1. Computationly determined structures of trimers $(\mathbf{A})_{3}-(\mathbf{E})_{3}$ and the corresponding θ values and the number of residues (n) required for A-E to form a regular pentagon.
a)

(D) 5
b)

$(E)_{5}$

Figure S2. Computationally determined structures of circular pentamers $(\mathbf{D})_{5}$ and $(\mathbf{E})_{5}$. While the larger ethyl groups in \mathbf{D} significantly distorts the pentameric backbone of $(\mathbf{D})_{5}$, a roughly planar backbone is still maintained in $(\mathbf{E})_{5}$.
a)

b)

$\left(\theta=73.6^{\circ}, \boldsymbol{n}=4.89\right)$
$(F)_{3}$
c)

(F) ${ }_{5}$

($\theta=62.9^{\circ}, n=5.72$)
$(\mathbf{G})_{3}$

(G) ${ }_{5}$

$\left(\theta=54.9^{\circ}, n=6.56\right)$
$(1)_{3}$

(I) ${ }_{5}$

Figure S3. Possible functional groups for incorporation into the pentameric framework for augmenting ion-binding potential and selectivity.
a)

$2 \mathrm{~b} \bullet \mathrm{Ba}^{2+}$

b)

$(2 b))_{2} \bullet \mathrm{Cs}^{+}$

Figure S4. (a) Computationally determined structure of (a) the partially hydrated metal complex $\mathbf{2 b} \bullet \mathrm{Ba}^{2+}$ containing two water molecules and (b) sandwiched metal complex (2b) $)_{2} \bullet \mathrm{Cs}^{+}$. From (b), an inter-planar distance of $3.8 \AA$ between the two pentamers can be obtained.

Table S1. Extraction efficiencies (\%) of 20 metal ions in their nitrate salts by macrocyclic hosts $\mathbf{2 b}$ and $\mathbf{6 - 2 3}$ as determined by inductively coupled plasma mass spectrometry (ICP) with [total metal ions] $=0.60 \mathrm{mM}$ and that of host variable from $0.30,0.60$ and 1.20 mM . ${ }^{a}$

${ }^{a}$ The concentration of each metal ion is set at 0.03 mM with a total concentration for 20 metal ions being $0.60 \mathrm{mM}^{2} \mathrm{H}_{2} \mathrm{O}$ containing $1 \% \mathrm{HNO}_{3}$, and that of the organic macrocyclic hosts ranges from 0.30 mM to 0.6 mM and to 1.20 mM in CHCl_{3}. Extractions were carried out in a biphasic system using equal volumes of $\mathrm{H}_{2} \mathrm{O}$ containing metal ions and CHCl_{3} containing organic host at $25^{\circ} \mathrm{C}$. All the reported data are averaged values over six runs with relative errors within 3%, and only extraction efficiencies of $\geq 6 \%$ are listed. Except for additional extractions of Ba^{2+} and Cu^{2+} by $\mathbf{2 b}$ and $\mathbf{M g}^{2+}$ by $\mathbf{2 3}$ (please see Table S 2), extractions of other metal ions including $\mathrm{Li}^{+}, \mathrm{Mg}^{2}, \mathrm{Ba}^{2+}, \mathrm{Al}^{3+}, \mathrm{Cr}^{3+}, \mathrm{Mn}^{2+}, \mathrm{Fe}^{3+}, \mathrm{Co}^{2+}, \mathrm{Ni}^{2+}, \mathrm{Cu}^{2+}, \mathrm{Zn}^{2+}$ and Cd^{2+} by the macrocyclic hosts remain experimentally undetectable. The most extractable Ions and those ions whose extractability lies within 80% of the most extractable ions are highlighted in gray to illustrate the ion-binding selectivity by the varying hosts. The numbers highlighted in yellow were used to calculate the ion-binding selectivity by 10-16, 18-20 and $\mathbf{2 2}$ as presented in Figure $6 \mathrm{~b}-\mathrm{c}$, and for similar calculations for $\mathbf{2 b}, \mathbf{2 - 9}, \mathbf{2 1}$ and 23, see Table $\mathrm{S} 2 .{ }^{b}$ Total extraction is the sum of all the measurable extraction efficiencies for the ions, and extraction values for Ba^{2+} and Cu^{2+} by $\mathbf{2 b}$ and Mg^{2+} by $\mathbf{2 3}$ as shown in Table S 2 were also included in the calculation.

Table S2. Extraction efficiencies (\%) of 20 metal ions in their nitrate salts by macrocyclic hosts $\mathbf{2 b}$ and $\mathbf{7 - 9}$ as determined by inductively coupled plasma mass spectrometry (ICP) with [total metal ions] $=0.60 \mathrm{mM}$ and that of host variable from $0.10,0.15,0.30,0.60$ and 1.20 $\mathrm{mM} .{ }^{a}$

${ }^{a}$ The concentration of each metal ion is set at 0.03 mM with a total concentration for 20 metal ions being $0.60 \mathrm{mM}^{\mathrm{m}} \mathrm{H}_{2} \mathrm{O}$ containing $1 \% \mathrm{HNO}_{3}$, and that of the organic macrocyclic hosts ranges from 0.10 mM to 1.20 mM in CHCl_{3}. Extractions were carried out in a biphasic system using equal volumes of $\mathrm{H}_{2} \mathrm{O}$ containing metal ions and CHCl_{3} containing organic host at $25^{\circ} \mathrm{C}$. All the reported data are averaged values over six runs with relative errors within 3%, and only extraction efficiencies of $\geq 6 \%$ are listed. Except for additional extractions of Ba^{2+} and Cu^{2+} by $\mathbf{2 b}$ and $\mathbf{M g}^{2+}$ by $\mathbf{2 3}$, extractions of other metal ions including $\mathrm{Li}^{+}, \mathrm{Mg}^{2}, \mathrm{Ba}^{2+}, \mathrm{Al}^{3+}, \mathrm{Cr}^{3+}, \mathrm{Mn}^{2+}, \mathrm{Fe}^{3+}, \mathrm{Co}^{2+}, \mathrm{Ni}^{2+}, \mathrm{Cu}^{2+}, \mathrm{Zn}^{2+}$ and Cd^{2+} by the macrocyclic hosts remain experimentally undetectable. The most extractable Ions and those ions whose extractability lies within 80% of the most extractable ions are highlighted in gray to illustrate the ion-binding selectivity by the varying hosts. The numbers highlighted in yellow were used to calculate the ion-binding selectivity for 2b, 2-9, 21 and $\mathbf{2 3}$ as presented in Figure $6 \mathrm{~b}-\mathrm{c}$.

Picrate Extraction Experiment for Determination of Binding Constants

Preparation of Alkali metal Picrates: The alkali metal picrates $\left(\mathrm{Li}^{+}, \mathrm{Na}^{+}, \mathrm{K}^{+}, \mathrm{Rb}^{+}\right.$and Cs^{+}) were prepared by dissolving picric acid in a minimum amount of distilled boiling water to which a stoichiometric amount of the alkali metal hydroxide was slowly added. The alkali metal picrate solution was then cooled to room temperature and placed in an ice bath to facilitate crystallization. The precipitate was filtered and recrystallized from distilled water. After filtration and extensive air drying, the salt was carefully heated to dryness in a vacuum oven at $75^{\circ} \mathrm{C}$ for overnight and cooled to room temperature under N_{2} protection. The anhydrous metal picrates were stored in a desiccator.

Procedure for Picrate Extraction Experiment: Extractions of alkali metal picrates $\left(\mathrm{Li}^{+}, \mathrm{Na}^{+}, \mathrm{K}^{+}, \mathrm{Rb}^{+}\right.$and $\left.\mathrm{Cs}^{+}\right)$with hosts were performed by placing 1.0 mL of a 10 mM solution of the metal picrate in deionized water and 1.0 mL of a 10 mM solution of the hosts in chloroform into a $4-\mathrm{mL}$ sample vial and mixing the solutions on a vortex mixer for 60 seconds. The sample was then allowed to stand for overnight to ensure a complete separation of the layers and extraction of ions into chloroform layer. Aliquot was taken from the aqueous phase of the sample, and its concentration of metal picrate was determined by UV-Visible spectroscopy with a scanning from 250 nm to 500 nm to obtain the concentration of metal picrate (\mathbf{C}) in chloroform layer. The control extraction experiments using chloroform containing no ligands were carried out in the same way, and the concentration of metal picrate extracted into chloroform layer was deducted from concentration \mathbf{C} to derive the actual concentration of metal picrate extracted into chloroform layer by ligands. The extraction constants ($K_{e x}$) and association constants $\left(K_{a}\right)$ were calculated according to method previously described (Moore, S. S.; Tarnowski, T. L.; Newcomb, M.; Cram, D. J. J. Am. Chem. Soc. 1977, 99, 6398-6405). Three samples were prepared for each picrate extraction experiment. Standard deviations from the analysis of the three samples were less than 10% in terms of both $K_{e x}$ and K_{a} values.
${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra of $\mathbf{1 j}$

${ }^{1} \mathrm{H}$ spectrum of $\mathbf{5 g}$

${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra of 5 e

${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra of 6 a

${ }^{1} \mathbf{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra of $\mathbf{6 b}$

${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra of 7 c

${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra of 7

${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra of 8d

${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra of 8
scflad le
1 1中 Ainisis 0 C-E0000 370 K

${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra of 9 b

\qquad

${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra of $\mathbf{1 0 b}$

${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra of 10 e

SC041012
1H AMX500 MMOOO 330K

永のぁぁ

${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra of 10

${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra of 11d

11d

	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	,	
220	210	200	190	180	170	160	150	140	130	120	110	100	90	80	70	60	50	40	30	20	10	0	-10

${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra of 11e

${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra of $\mathbf{1 1 g}$
Sc050112
1H AM $\times 500 ~ M O M i b o ~$

NلU

${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra of 11

$160-140$
120
100
80
60
20
0
${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra of $\mathbf{1 2 a}$

${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra of 12b

${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra of 12

$\stackrel{\text { N }}{\stackrel{1}{1}}$
î

${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra of 13b
sc0705
1H AM 500 MOMO

Nilid.

220	210	200	190	180	170	160	150	140	130	120	110	100	90	80	70	60	50	40	30	20	10	0	-10

${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra of $\mathbf{1 3 c}$

.

${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra of 13

$\stackrel{\circ}{\stackrel{\circ}{2}}=\stackrel{\rightharpoonup}{1}=$

${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra of 16 e

${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra of 16

${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra of 17 d

${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra of 17 e

${ }^{1} \mathrm{H}$ spectrum of 17

${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra of 18a

.

-

${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra of 18

sc0709
13 C AM $\times 500$ C-MMMOO

 3 the

U1

H and ${ }^{13} \mathrm{C}$ NMR spectra of 19a

${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra of 19

"لـلـ

${ }^{1} \mathrm{H}$ spectrum of 20a

${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra of 20c

 ज 小 人f

180	170	160	150	140	130	120	110	100	90	80	70	60	50	40	30	20	10	0

${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra of 20

