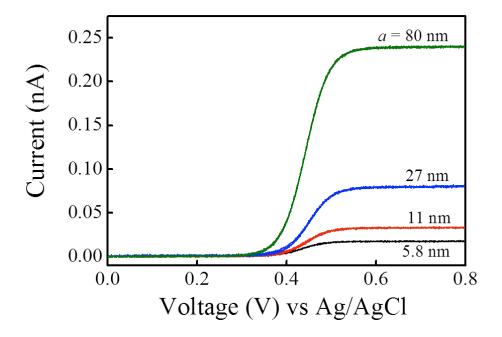
## Supporting Information

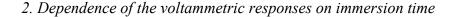
## Electrochemical Nucleation of Stable N2 Nanobubbles at Pt Nanoelectrodes

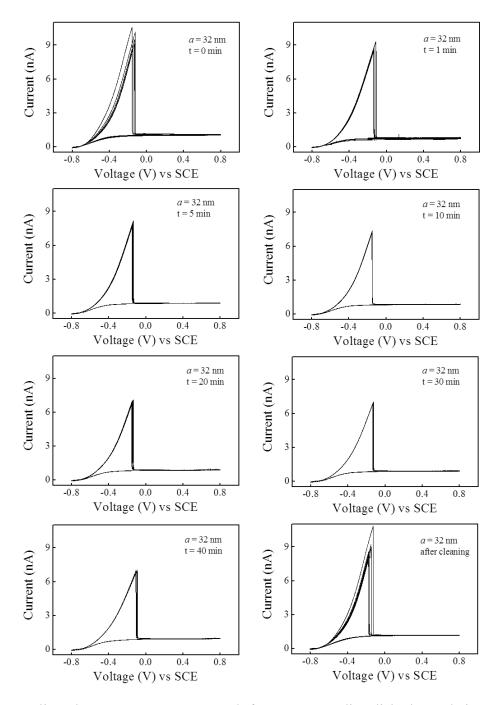
Qianjin Chen<sup>1</sup>, Hilke S. Wiedenroth<sup>1,2</sup>, Sean R. German<sup>1,3</sup> and Henry S. White<sup>1\*</sup>

1. Department of Chemistry, University of Utah, 315 S 1400 E, Salt Lake City, Utah 84112


2. Department of Environmental and Sustainable Chemistry, Braunschweig University of Technology, Hagenring 30, Braunschweig 38106, Germany

3. Revalesio Corporation, 1200 East D Street, Tacoma, Washington 98421

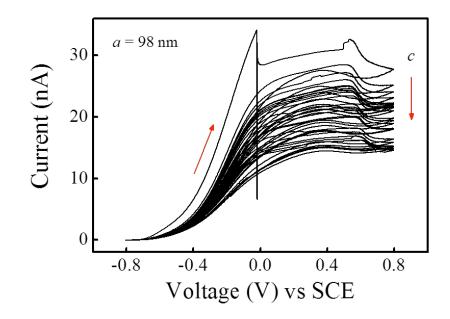

## **Table of Contents**


| 1. | Characterization of Pt nanodisk electrodes                 | SI-2          |
|----|------------------------------------------------------------|---------------|
| 2. | Dependence of the voltammetric responses on immersion time | SI-3          |
| 3  | Voltammetric response of a 98 nm radius Pt electrode       | . <i>SI-4</i> |

1. Characterization of Pt nanodisk electrodes



**Figure S1.** Voltammetric response of Pt nanodisk electrodes immersed in CH<sub>3</sub>CN/ 0.1 M TBAPF<sub>6</sub> containing 5.0 mM ferrocene (Fc) at 20 mV/s. The electrode radii, *a*, were calculated from the diffusion limiting current, *i*<sub>d</sub>, using the expression  $i_d = 4nFD_{Fc}C_{Fc}^*a$ , where  $D_{Fc}$  and  $C_{Fc}^*$  are the diffusivity and bulk concentration of Fc, respectively, *F* = Faraday's constant, and *n* = 1. The curves show both the forward and reverse scans.






**Figure S2.** Cyclic voltammograms at 200 mV/s for a 32-nm radius disk electrode in 1.0 M  $N_2H_4$  solution after various immersion times: fresh electrode ( $t = 0 \min$ ), t = 1, 5, 10, 20, 30 and 40 min, and after the electrode was carefully cleaned (bottom right) by rinsing with copious amounts of CH<sub>3</sub>CN and water to remove adsorbed species. The electrode potential was continuously scanned during the time intervals between two consecutive voltammetric measurements.

## 3. Voltammetric response of a 98 nm-radius Pt electrode

On the initial scan, a sudden current drop occurs at potential ~0 V, but immediately recovers to a constant current level that is the characteristic of the diffusion limited oxidation of N<sub>2</sub>H<sub>4</sub>. The response indicates that a N<sub>2</sub> nanobubble nucleates, but fails to cover the entire electrode surface. In the subsequent scans, we observed sigmoidal-like voltammetric response with significant hysteresis. A significant drop of the current plateau between two consecutive cycles is also observed (the direction of increasing scans is indicated by the arrow labeled *c*), which is most likely due to the Pt deactivation by adsorption of N<sub>2</sub>H<sub>4</sub> and the intermediates.



**Figure S3** Cyclic voltammograms at 200 mV/s for a 98-nm radius disk electrode in 1.0 M  $N_2H_4$  solution at different scan cycles (within 5 min of immersion). In the initial scan cycle, a peak shaped voltammetric response appeared at ~0 V.