Electronic Supporting Information

Knölker-Type Iron Complexes Bearing an N-Heterocyclic Carbene Ligand: Synthesis, Characterization, and Catalytic Dehydration of Primary Amides

Saravanakumar Elangovan,^a Samuel Quintero-Duque,^a Vincent Dorcet,^b Thierry Roisnel,^b Lucie Norel,^a Christophe Darcel,^{a*} Jean-Baptiste Sortais^{a*}

^a UMR 6226 CNRS-Université de Rennes 1, Institut des Sciences Chimiques de Rennes, Team Organometallics: Materials and Catalysis, Centre for Catalysis and Green Chemistry, Campus de Beaulieu, 263 av. du Général Leclerc, 35042 Rennes Cedex, France.

^b Institut des Sciences Chimiques de Rennes, UMR 6226 CNRS-Université de Rennes 1, Centre de Diffractométrie X, Campus de Beaulieu, 263 av. du Général Leclerc, 35042 Rennes Cedex, France.

E-mail: christophe.darcel@univ-rennes1.fr, jean-baptiste.sortais@univ-rennes1.fr

Table of Contents.

Synthesis of 1-mesityl-3-((<i>R</i>)-1-phenylethyl)imidazolium chloride salt	S3
Electrochemical studies	S3
Dehydration of primary amides	S4
1. General procedure for the dehydration of the primary amides	S4
2. Optimization of the parameters of the reaction.	S4
3. Characterization data of the nitrile products.	S6
References	S8
¹ H NMR and ¹³ C{ ¹ H} NMR data for the compounds	S9
¹ H and ¹³ C{ ¹ H} Spectra of the new NHC salt	S9
¹ H and ¹³ C{ ¹ H} Spectra of the complexes 2-7	S11
¹ H and ¹³ C{ ¹ H} Spectra of the benzonitrile derivatives	S22

Synthesis of 1-mesityl-3-((R)-1-phenylethyl)imidazolium chloride salt

The imidazolium salt was prepared following the procedure described by Baslé and Maudit,¹ starting from R-(+)- α -methylbenzylamine (1.41 mL, 10 mmol). Pure compound was obtained after purification by column chromatography on silica gel (CH₂Cl₂/MeOH, 9/1 as the eluant). 900 mg, yield 28%.

¹H NMR (400 MHz, CDCl₃) δ 10.86 (s, 1H), 7.85 (s, 1H), 7.61 (d, J = 6.5 Hz, 2H), 7.36-7.29 (m, 3H), 7.19 (s, 1H), 6.92 (s, 1H, CH_{Im}), 6.91 (s, 1H, CH_{Im}), 6.67 (q, J = 7.0 Hz, 1H), 2.27 (s, 3H, CH_{3Mes}), 2.03 (s, 3H, CH_{3Mes}), 2.02 (d, J = 7.0 Hz, 3H), 1.95 (s, 3H, CH_{3Mes}).

¹³C{¹H} NMR (101 MHz, CDCl₃) δ 140.9, 138.1, 137.8, 134.0, 133.9, 130.7, 129.6, 129.2, 129.0, 127.1, 123.4, 120.9, 59.1 (CH), 20.9 (CH_{3Mes}), 20.6 (CH₃), 17.5 (CH_{3Mes}), 17.4 (CH_{3Mes}).

Anal. calc for C₂₀H₂₃N₂Cl: C, 73.49; H, 7.09; N, 8.57. Found: C, 73.31; H, 7.02; N, 8.32.

Electrochemical studies

Figure S1. Normalized CV traces of the complex 8 in CH₂Cl₂ (0.2 M Bu₄NPF₆, $v = 100 \text{ mV} \cdot \text{s}^{-1}$).

Dehydration of primary amides

1. General procedure for the dehydration of the primary amides

A Schlenk tube containing a stirring bar was loaded with the primary amide (1.0 mmol), followed by the addition of the iron complex (0.05-0.08 mmol), the solvent (dry toluene or 1,4-dioxane: THF, 4 mL) and finally PMHS (5.0 mmol). The mixture was stirred for 24 h at 100 °C. After completion of reaction, the reaction mixture was cooled to r.t. The cooled reaction mixture was diluted with ethyl acetate (5 mL) and concentrated under reduced pressure (850 mbar, 40 °C). The residue was purified by silica gel column chromatography and gave the corresponding nitrile derivatives.

2. Optimization of the parameters of the reaction.

Table S1: Optimization of parameters of the dehydration of benzamide with the complex 2^a

Entry	PMHS	Solvent	Temp (°C)	Yield (%) ^b
	(equiv.)			
1	5	Toluene	100	97
2	5	CPME	100	97
3	5	1,4 dioxane	100	94
4	5	THF	70	13
5	5	DMC	100	0
6	5	EtOH	100	0
7	5	Toluene	70	12
8 °	5	CPME	100	51
9	3	CPME	100	87
10	2	CPME	100	35
11	5	CPME	UV	6

^a Typical conditions: catalyst (5 mol%), benzamide (0.25 mmol), toluene (2 mL), and PMHS (5 equiv.) were added in this order under argon atmosphere and the solution was heated at 100 °C for 24 h. ^b Determined by GC using dodecane as the internal standard. ^c 3 mol% of catalyst **2** was used.

Table S2: Screening of the complexes^a

Entry	Catalyst (5 mol%)	PMHS (equiv.)	Solvent	Temp (°C)	Yield(%) ^b
1	2	3	CPME	80	18
		5	toluene	100	97
2	3	3	CPME	80	24
		5	toluene	100	97
3	4	3	CPME	80	29
		5	toluene	100	97
4	5	3	CPME	80	0
		5	toluene	100	97
5	6	3	CPME	80	0
		5	toluene	100	97
6	1	5	toluene	100	2
7	(IMes) Fe(CO) ₄	5	toluene	100	57

^a catalyst (5 mol%), benzamide (0.25 mmol), solvent (2 mL), and PMHS (3-5 equiv.) were added in this order under argon atmosphere and the solution was heated to 80-100 °C for 24 h.

^b Determined by GC using dodecane as the internal standard.

3. Characterization data of the nitrile products.

Benzonitrile²

The compound was prepared as described in the general procedure. Purification by flash chromatography (Petroleum ether/ethyl acetate: 80:20), colorless oil, 75 mg, 72% isolated yield.

¹H NMR (400 MHz, CDCl₃): δ 7.47 (t, J = 7.7 Hz, 2H), 7.60 (t, J = 7.6 Hz, 1H), 7.65 (d, J = 7.7 Hz, 2H).

¹³C{¹H} NMR (100 MHz, CDCl₃): δ 112.4, 118.8, 129.0, 132.1, 132.7.

4-Methylbenzonitrile²

The compound was prepared as described in the general procedure. Purification by flash chromatography (Petroleum ether/ethyl acetate: 80:20), colorless oil, 98 mg, 84% isolated vield.

 1 H NMR (400 MHz, CDCl₃): δ 2.40 (s, 3H), 7.25 (d, J = 8.1 Hz, 2H), 7.51 (d, J = 8.1 Hz, 2H).

¹³C{¹H} NMR (100 MHz, CDCl₃): δ 21.7, 109.1, 119.0, 129.7, 131.9, 143.6.

3-Methylbenzonitrile ³

The compound was prepared as described in the general procedure. Purification by flash chromatography (Petroleum ether/ethyl acetate: 80:20), colorless oil, 90 mg, 77% isolated yield.

¹H NMR (400 MHz, CDCl₃): δ 2.39 (s, 3H), 7.32-7.46 (m, 4H).

 13 C{ 1 H} NMR (100 MHz, CDCl₃): δ 21.1, 112.2, 119.0, 128.9, 129.2, 132.5, 133.6, 139.2.

2-Methylbenzonitrile²

The compound was prepared as described in the general procedure. Purification by flash chromatography (Petroleum ether/ethyl acetate: 80:20), colorless oil, 85 mg, 72% isolated yield.

¹H NMR (400 MHz, CDCl₃): δ 2.55 (s, 3 H), 7.26 (t, J = 7.6 Hz, 1H), 7.31 (d, J = 7.8 Hz, 1H), 7.48 (t, J = 7.7 Hz, 1H), 7.59 (d, J = 7.7 Hz, 1H).

¹³C{¹H} NMR (75 MHz, CDCl₃): δ 20.4, 112.8, 118.0, 126.2, 130.2, 132.5, 132.6, 141.9.

4-Bromobenzonitrile ³

The compound was prepared as described in the general procedure. Purification by flash chromatography (Petroleum ether/ethyl acetate: 80:20), white powder, 96 mg, 53% isolated yield.

¹H NMR (400 MHz, CDCl₃): δ 7.53 (d, J = 8.5 Hz, 2H), 7.64 (d, J = 8.5 Hz, 2H).

¹³C{¹H} NMR (75 MHz, CDCl₃): δ 111.2, 118.0, 127.9, 132.6, 133.4.

p-Chlorobenzonitrile ²

The compound was prepared as described in the general procedure. Purification by flash chromatography (Petroleum ether/ethyl acetate: 80:20), white powder, 71 mg, 52% isolated yield.

¹H NMR (400 MHz, CDCl₃): δ 7.47 (d, J = 8.6 Hz, 2 H), 7.60 (d, J = 8.6 Hz, 2 H).

¹³C{¹H} NMR (100 MHz, CDCl₃): δ 110.8, 118.0, 129.7, 133.3, 139.5.

Cinnamonitrile ³

The compound was prepared as described in the general procedure. Purification by flash chromatography (Petroleum ether/ethyl acetate: 80:20), white powder, 80 mg, 61% isolated yield.

¹H NMR (400 MHz, CDCl₃): δ 5.89 (d, J = 16.7 Hz, 1H), 7.39-7.46 (m, 6H).

¹³C{¹H} NMR (100 MHz, CDCl₃): δ 96.3, 118.1, 127.3, 129.1, 131.2, 133.5, 150.5.

References

- 1. Queval, P.; Jahier, C.; Rouen, M.; Artur, I.; Legeay, J.-C.; Falivene, L.; Toupet, L.; Crévisy, C.; Baslé, O.; Maudit M. *Angew. Chem. Int. Ed.* **2013**, *52*, 14103-14107.
- 2. Hanada, S.; Motoyama, Y.; Nagashima, H. Eur. J. Org. Chem., 2008, 4097-4100.
- 3. Zhou, S.; Addis, D.; Das, S.; Junge, K.; Beller, M.; Chem. Commun. 2009, 4883-4885.

^{1}H NMR and $^{13}C\{^{1}H\}$ NMR data for the compounds

1H and $^{13}C\{^1H\}$ Spectra of the new NHC salt

Figure S2: 1 H NMR spectrum of 1-mesityl-3-((R)-1-phenylethyl)imidazolium chloride salt in CDCl₃ recorded at 400 MHz.

Figure S3: $^{13}C\{^{1}H\}$ NMR spectrum of 1-mesityl-3-((R)-1-phenylethyl)imidazolium chloride salt in CDCl₃ recorded at 101 MHz.

¹H and ¹³C{¹H} Spectra of the complexes 2-7

Figure S4: ¹H NMR spectrum of the complex 2 in CDCl₃ recorded at 400MHz.

Figure S5: ¹³C{¹H} NMR spectrum of the complex 2 in CDCl₃ recorded at 101 MHz.

Figure S6: ¹H NMR spectrum of the complex 3 in CDCl₃ recorded at 500MHz.

Figure S7: $^{13}C\{^{1}H\}$ NMR spectrum of the complex 3 in CDCl₃ recorded at 125 MHz.

Figure S8: ^{1}H ^{13}C HSQC NMR spectrum of the complex **3** in CDCl₃ recorded at 500 MHz, $^{13}\text{C}\{^{1}\text{H}\}$ 125 MHz.

Figure S9: ${}^{1}H$ ${}^{13}C$ HMBC NMR spectrum of the complex **3** in CDCl₃ recorded at 500 MHz, ${}^{13}C\{{}^{1}H\}$ 125 MHz.

Figure S10: ¹H NMR spectrum of the complex 4 in C₆D₆ recorded at 500MHz.

Figure S11: ${}^{13}C\{{}^{1}H\}$ NMR spectrum of the complex **4** in C_6D_6 recorded at 125 MHz.

Figure S12: ${}^{1}H$ ${}^{13}C$ HSQC NMR spectrum of the complex **4** in C₆D₆ recorded at 500 MHz, ${}^{13}C\{{}^{1}H\}$ **125** MHz.

Figure S13: ${}^{1}H$ ${}^{13}C$ HMBC NMR spectrum of the complex **4** in C6D6 recorded at 500 MHz, ${}^{13}C\{{}^{1}H\}$ 125 MHz.

Figure S14: ¹H NMR spectrum of the complex 5 in CDCl₃ recorded at 500MHz.

Figure S15: ¹³C{¹H} NMR spectrum of the complex **5** in CDCl₃ recorded at 125 MHz.

Figure S16: ${}^{1}H$ ${}^{13}C$ HMBC NMR spectrum of the complex **5** in CDCl₃ recorded at 500 MHz, ${}^{13}C\{{}^{1}H\}$ 125 MHz.

Figure S17: ¹H NMR spectrum of the complex 6 in CDCl₃ recorded at 400MHz.

Figure S18: ¹³C{¹H} NMR spectrum of the complex **6** in CDCl₃ recorded at 125 MHz.

Figure S19: 1 H 13 C HSQC NMR spectrum of the complex **6** in CDCl₃ recorded at 500 MHz, 13 C{ 1 H} 125 MHz.

Figure S20: ¹H NMR spectrum of the complex 7 in CDCl₃ recorded at 400MHz.

Figure S21: ¹³C{¹H} NMR spectrum of the complex 7 in CDCl₃ recorded at 125 MHz.

Figure S22: ${}^{1}H$ ${}^{13}C$ HSQC NMR spectrum of the complex **7** in CDCl₃ recorded at 500 MHz, ${}^{13}C\{{}^{1}H\}$ 125 MHz.

Figure S23: ${}^{1}H$ ${}^{13}C$ HMBC NMR spectrum of the complex **7** in CDCl₃ recorded at 500 MHz, ${}^{13}C\{{}^{1}H\}$ 125 MHz.

¹H and ¹³C{¹H} Spectra of the benzonitrile derivatives

Benzonitrile

Figure S24: ¹H NMR spectrum of benzonitrile in CDCl₃ recorded at 400MHz.

Figure S25: ¹³C{¹H} NMR spectrum of benzonitrile in CDCl₃ recorded at 100 MHz.

4-Methylbenzonitrile

Figure S26: ¹H NMR spectrum of 4-methylbenzonitrile in CDCl₃ recorded at 400MHz.

Figure S27: ¹³C{¹H} NMR spectrum of 4-methylbenzonitrile in CDCl₃ recorded at 100 MHz.

3-Methylbenzonitrile

Figure S28: ¹H NMR spectrum of 3-methylbenzonitrile in CDCl₃ recorded at 400MHz.

Figure S29: ¹³C{¹H} NMR spectrum of 3-methylbenzonitrile in CDCl₃ recorded at 100 MHz.

2-Methylbenzonitrile

Figure S30: ¹H NMR spectrum of 2-methylbenzonitrile in CDCl₃ recorded at 400MHz.

Figure S31: ¹³C{¹H} NMR spectrum of 2-methylbenzonitrile in CDCl₃ recorded at 75 MHz.

4-Bromobenzonitrile

Figure S32: ¹H NMR spectrum of 4-bromobenzonitrile in CDCl₃ recorded at 400MHz.

Figure S33: ¹³C{¹H} NMR spectrum of 4-bromobenzonitrile in CDCl₃ recorded at 75 MHz.

p-Chlorobenzonitrile

Figure S34: ¹H NMR spectrum of 4-chlorobenzonitrile in CDCl₃ recorded at 400MHz.

Figure S35: $^{13}C\{^{1}H\}$ NMR spectrum of 4-chlorobenzonitrile in CDCl₃ recorded at 100 MHz.

Cinnamonitrile

Figure S36: ¹H NMR spectrum of cinnamotrile in CDCl₃ recorded at 400MHz.

Figure S37: ¹³C{¹H} NMR spectrum of cinnamonitrile in CDCl₃ recorded at 100 MHz.