## **Supporting Information for:**

# Strain-Induced Stereoselective Formation of Blue-Emitting Cyclostilbenes

Qishui Chen, M. Tuan Trinh, Daniel W. Paley, Molleigh B. Preefer, Haiming Zhu, Brandon S. Fowler, X.-Y. Zhu\*, Michael L. Steigerwald<sup>\*</sup>, and Colin Nuckolls<sup>\*</sup>

Department of Chemistry, Columbia University, New York, New York 10027 \*Email addresses of corresponding authors: <u>xz2324@columbia.edu</u>, <u>mls2064@columbia.edu</u>, cn37@columbia.edu

### **Table of Contents**

| 1. General Information                                  | <b>S1</b>  |
|---------------------------------------------------------|------------|
| 2. Synthetic Procedures                                 | <b>S3</b>  |
| 3. <sup>1</sup> H and <sup>13</sup> C NMR Spectra       | <b>S6</b>  |
| 4. Thermal Gravimetric Analysis                         | <b>S10</b> |
| 5. Crystallographic Characterization                    | <b>S11</b> |
| 6. 2D-NMR analysis of intermediate 6-Pt <sub>2</sub>    | <b>S19</b> |
| 7. NMR kinetic experiments                              | S20        |
| 8. Cyclic Voltammetry                                   | <b>S21</b> |
| 9. Photoluminescence quantum yield (PLQY) measurements  | S22        |
| 10. Time resolved photoluminescence (PL) decay kinetics | S23        |
| 11. Transient Absorption                                | S25        |
| 12. DFT computation details                             | <b>S26</b> |
| I) Orbital images                                       |            |
| II) Calculation of strain energies                      |            |
| III) Optimized geometries                               |            |
| IV) TD-DFT calculations                                 |            |

### **1. General Information**

All reactions were performed in flame-dried round bottom flasks, unless otherwise noted. The flasks were fitted with rubber septa and reactions were conducted under a positive pressure of argon, unless otherwise noted. Anhydrous solvents were obtained from a Schlenk manifold with purification columns packed with activated alumina and supported copper catalyst (Glass Contour, Irvine, CA). Stainless steel syringes were used to transfer air- and moisture-sensitive liquids. Chromatography was performed on a Teledyne ISCO Combiflash RF using Redisep RF silica gel columns.

The following reagents were purchased from Sigma-Aldrich: dichloro(1,5cyclooctadiene)platinum(II), *n*-butyllithium (1.6 M in hexanes), trimethyltin chloride solution (1.0 M in THF), triphenylphosphine. *trans*-4,4'-dibromostilbene was purchased from TCI America. All chemicals purchased from commercial sources were used without further purification unless otherwise specified.

Proton nuclear magnetic resonance (<sup>1</sup>H NMR) spectra, carbon nuclear magnetic resonance (<sup>13</sup>C NMR) spectra, tin nuclear magnetic resonance (<sup>119</sup>Sn NMR) were recorded on a Bruker DRX300 (300 MHz) and Bruker DRX500 (500 MHz) spectrometer. Chemical shifts for protons are reported in parts per million downfield from tetramethylsilane and are referenced to NMR solvent (CDCl<sub>3</sub>:  $\delta$  7.26; CD<sub>2</sub>Cl<sub>2</sub>:  $\delta$  5.32). Chemical shifts for carbon are reported in parts per million downfield from tetramethylsilane and referenced to the carbon resonances of the solvent (CDCl<sub>3</sub>:  $\delta$  77.2; CD<sub>2</sub>Cl<sub>2</sub>:  $\delta$  53.8). Spectra were analyzed with MestraNova software (Version 7.1). Data are represented as follows: chemical shift, multiplicity (s = singlet, d = doublet, t = triplet, m = multiplet), coupling constants in Hertz (Hz), and integration. High-resolution mass spectrometry (HRMS) was performed on a Waters XEVO G2XS instrument equipped with a UPC2 SFC inlet, electrospray ionization, and a QToF mass spectrometer. Absorption spectra were obtained on a Fluorolog-3 spectrophotometer.

In the transient absorption measurement, the pump laser light (~100 fs pulse width)

comes from an optical parametric amplifier (TOPAS) pumped by a Ti:sapphire femtosecond regenerative amplifier (800 nm, 1 kHz rep-rate). The probe light is a whitelight supercontinuum (450-850 nm and 900-1600 nm wavelength range, ~100 fs pulse width). The pump and probe beams overlapped under a small angle in a cuvette of 2 mm path length. The detection consists of a pair of high-resolution multichannel detector arrays coupled to a high-speed data acquisition system (Ultrafast Systems). The pump intensity was  $2.5 \,\mu$ J/cm<sup>2</sup>.

Time resolved photoluminescence (PL) decay kinetics were measured using a home-built epifluorescence microscope setup (Olympus, IX73 inverted microscope). The 402 nm excitation light was generated from doubling the fundamental output (805 nm, 100 fs, 250 kHz) from a regenerative amplifier (Coherent RegA amplifier seeded by Coherent Mira oscillator). The light was focused into diluted sample solution in 1cm cuvette by a 50X, NA=0.5 objective (Olympus LMPLFLN50X) and time resolved photoluminescence (TRPL) decay kinetics with emission wavelength between 450 nm and 550 nm were collected using a TCSPC module (B&H, SPC130) and a SPAD detector (IDQ, id100-50) with an instrument response function of  $\sim$  100 ps (FWHM).

### 2. Synthetic Procedures

Synthesis of *trans*-1,2-bis(4-(trimethylstannyl)phenyl)ethane (4b)



A 250 mL round bottom flask was charged with *trans*-4,4'-dibromostilbene (2.76 g, 8.2 mmol) and 100 mL anhydrous THF. The solution was cooled down to -78 °C and *n*-BuLi (1.6 M, 12.3 mL, 19.6 mmol) was added dropwise, during which a light yellow suspension formed. After stirring for 3 h, trimethyltin chloride solution in THF (1.0 M, 19.6 mL, 19.6 mmol) was slowly added, and the reaction was warmed to room temperature overnight. The light yellow reaction mixture was quenched with water and extracted with DCM three times, dried over MgSO<sub>4</sub>, then concentrated under reduced pressure. The residue was recrystallized from hot hexanes to yield **4b** as white solid (3.24 g, 78%).

<sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>): δ 7.44-7.57 (m, 8H), 7.12 (s, 2H), 0.31 (s, 9H).

<sup>13</sup>C NMR (100 MHz, CDCl3): δ 142.2, 137.4, 136.3, 128.9, 126.2, -9.4.

<sup>119</sup>Sn NMR (112 MHz, CDCl<sub>3</sub>): δ 27.5.

HRMS (ASAP+): calculated m/z for  $[C_{20}H_{28}Sn_2]^+$  is 508.0235, found 508.0235.

Synthesis of platinum macrocycle 5



A solution of **4b** (1.01 g, 2.0 mmol) and  $Pt(cod)Cl_2$  (0.75 g, 2.0 mmol) in 1,2dichloroethane (200 mL) was degassed under N<sub>2</sub> for 30 minutes. The mixture was heated to 75 °C for 20 hours, during which a precipitate formed and was collected by filtration. The precipitate was thoroughly washed by hexanes and dried to give 5 (0.81 g, 84%) as an off-white solid.

<sup>1</sup>H NMR (400 MHz,  $C_2D_2Cl_4$ ):  $\delta$  7.24 (d, J = 8.4 Hz, 16H), 7.12 (d, J = 8.4 Hz, 16H), 6.84 (s, 8H), 5.13 (s, 16H), 2.55 (s, 32H).

<sup>13</sup>C NMR could not be obtained due to poor solubility.

### Synthesis of cyclostilbene 1-CTCT



A suspension of **5** (0.48 g, 0.25 mmol) and PPh<sub>3</sub> (2.62 g, 10 mmol) in toluene (100 mL) was degassed under N<sub>2</sub> for 30 minutes. The mixture was stirred at room temperature for 30 minutes, and then heated to 100 °C for 24 hours. The reaction was filtered to collect a yellow precipitate, which was extracted with DCM ( $3 \times 50$  mL) and concentrated under reduced pressure. The residue was recrystallized from DCM/MeOH to yield **1** (49 mg, 28%) as a light yellow solid.

<sup>1</sup>H NMR (500 MHz, CD<sub>2</sub>Cl<sub>2</sub>): δ 7.44 (d, *J* = 8.5 Hz, 8H), 7.42 (d, *J* = 8.5 Hz, 8H), 7.23 (d, *J* = 8.5 Hz, 8H), 6.94-6.96 (m, 16H).

<sup>13</sup>C NMR (125 MHz, CD<sub>2</sub>Cl<sub>2</sub>): δ 140.6, 139.4, 137.7, 136.8, 133.0, 130.2, 128.6, 127.7, 127.1, 126.7.

HRMS (ASAP+): calculated m/z for  $[C_{56}H_{40}]^+$  is 712.3130, found 713.3124.

### Synthesis of cyclostilbene 2-CCCC



In a 100 mL round bottom flask, all-*trans* cyclostilbene 1 (25 mg, 0.035 mmol) was dissolved in anhydrous THF (35 mL) and degassed under  $N_2$  for 20 minutes. The solution was irradiated using a 450 W mercury lamp for 1 hour, then concentrated under reduced

pressure. The resultant solid was recrystallized from DCM/hexanes to give 2 (19 mg, 79%) as a light yellow solid. This compound is known and agrees with spectroscopic data in literature.<sup>1</sup>

<sup>1</sup>H NMR (500 MHz, CD<sub>2</sub>Cl<sub>2</sub>):  $\delta$  7.48 (d, J = 8.0 Hz, 16H), 7.36 (d, J = 8.0 Hz, 16H), 6.66 (s, 8H).

<sup>13</sup>C NMR (125 MHz, CDCl3): δ 139.7, 136.8, 130.3, 129.8, 127.0.

HRMS (ASAP+): calculated m/z for  $[C_{56}H_{40}]^+$  is 712.3130, found 713.3132.

# 3. <sup>1</sup>H and <sup>13</sup>C NMR Spectra



Figure S1. <sup>1</sup>H NMR spectrum (400 MHz) of 4b in CDCl<sub>3</sub>.



Figure S2. <sup>13</sup>C NMR spectrum (100 MHz) of 4b in CDCl<sub>3</sub>.



Figure S3. <sup>1</sup>H NMR spectrum (400 MHz) of 5 in  $C_2D_2Cl_4$ .



Figure S4. <sup>1</sup>H NMR spectrum (500 MHz) of 1-CTCT in  $CD_2Cl_2$ .



Figure S5. <sup>13</sup>C NMR spectrum (125 MHz) of 1-CTCT in  $CD_2Cl_2$ .



Figure S6. <sup>1</sup>H NMR spectrum (500 MHz) of 2-CCCC in CD<sub>2</sub>Cl<sub>2</sub>.



Figure S7. <sup>13</sup>C NMR spectrum (125 MHz) of 2-CCCC in CD<sub>2</sub>Cl<sub>2</sub>.

### 4. Thermal Gravimetric Analysis



Figure S8. TGA analysis of 1-CTCT.



Figure S9. TGA analysis of 2-CCCC.

### 5. Crystallographic Characterization

Data for all compounds was collected on an Agilent SuperNova diffractometer using mirror-monochromated Cu Kα or Mo Kα radiation. Data collection, integration, scaling (ABSPACK) and absorption correction (face-indexed Gaussian integration<sup>2</sup> or numeric analytical methods<sup>3</sup>) were performed in CrysAlisPro.<sup>4</sup> Structure solution was performed using ShelXS,<sup>5</sup> ShelXT,<sup>6</sup> or SuperFlip.<sup>7</sup> Subsequent refinement was performed by full-matrix least-squares on F<sup>2</sup> in ShelXL.<sup>5</sup> Olex2<sup>8</sup> was used for viewing and to prepare CIF files. PLATON<sup>9</sup> was used extensively for SQUEEZE,<sup>10</sup> ADDSYM<sup>11</sup> and TwinRotMat. Many disordered solvent molecules were modeled as rigid fragments from the Idealized Molecular Geometry Library.<sup>12</sup> ORTEP graphics were prepared in CrystalMaker.<sup>13</sup> Thermal ellipsoids are rendered at the 50% probability level.

A THF solution of **1-CTCT** was layered with toluene. Part of a crystal ( $.17 \times .06 \times .02 \text{ mm}$ ) was separated carefully, mounted with STP oil treatment, and cooled to 100 K on the diffractometer. Complete data (99.9%) were collected to 0.833 Å. 32409 reflections were collected.

The lattice was very nearly orthorhombic, with  $\beta$  approximately 90.6° and clear signs of twinning by rotation around [100]. There were absences for 2<sub>1</sub> axes in all three directions, indicating a twin in P2<sub>1</sub> that very closely approximated P2<sub>1</sub>2<sub>1</sub>2<sub>1</sub>. Twin decomposition in CrysAlisPro and solution in P2<sub>1</sub> resulted in poor refinements with numerous NPD atoms. When the data were processed assuming an orthorhombic lattice, the structure solved easily in P2<sub>1</sub>2<sub>1</sub>2<sub>1</sub>.

For the orthorhombic data set, there were 8679 unique data (6394 observed) with R(int) 12.7% and R(sigma) 11.5% after multiscan absorption correction.

For the solution in  $P2_12_12_1$ , all non-solvent C atoms were located readily in Fourier maps and refined anisotropically with a rigid-bond restraint on all anisotropic ADPs. A toluene molecule in the cavity of the macrocycle was disordered over two positions in a 70:30 ratio; these were refined with SAME and FLAT restraints on their geometry and with anisotropic ADPs for only the major component of the disorder. All hydrogen atoms were placed in calculated positions and refined with riding coordinates and ADPs.

The final refinement (8679 data, 597 restraints, 599 parameters) converged with  $R_1$  ( $F_o > 4\sigma(F_o)$ ) = 12.6%, w $R_2$  = 28.5%, S = 1.04. The largest Fourier features were 0.51 and - 0.41 e<sup>-</sup> A<sup>-3</sup> and are explained by deviation from strict orthorhombic symmetry. The absolute structure was undetermined; the Flack parameter for the final refinement was - 1.8(10).



Figure S10. Molecular structure of 1-CTCT•toluene. Hydrogen atoms and the minor position of the disordered toluene molecule are omitted for clarity.



**Figure S11.** Molecular structure of **1-CTCT**. Hydrogen atoms and a disordered toluene molecule are omitted for clarity.

| Compound                              | CTCT . PhMe           |  |
|---------------------------------------|-----------------------|--|
|                                       |                       |  |
| Formula                               | $C_{63}H_{48}$        |  |
| MW                                    | 805.01                |  |
| Space group                           | $P2_{1}2_{1}2_{1}$    |  |
| a (Å)                                 | 8.9270(14)            |  |
| <i>b</i> (Å)                          | 17.389(2)             |  |
| <i>c</i> (Å)                          | 28.757(4)             |  |
| α (°)                                 | 90                    |  |
| в (°)                                 | 90                    |  |
| ץ (°)                                 | 90                    |  |
| V (Å <sup>3</sup> )                   | 4464.1(11)            |  |
| Z                                     | 4                     |  |
| ρ <sub>calc</sub> (g cm⁻³)            | 1.198                 |  |
| т (и)                                 | 100                   |  |
| I (K)                                 | 100                   |  |
| Λ (A)                                 | 1.54184               |  |
| 20 <sub>min</sub> , 20 <sub>max</sub> | 10.174, 147.0         |  |
| Nrei<br>D(int) D(g)                   | 52409<br>1260 1147    |  |
| κ(IIIt), κ(Ο)                         | .1209, .1147          |  |
| μ(mm)                                 | 0.510<br>17 x 00 x 02 |  |
| Size (mm)                             | .1/X.06X.02           |  |
| T <sub>max</sub> , T <sub>min</sub>   | .904, .992            |  |
|                                       | (calc.)               |  |
| Data                                  | 8679                  |  |
| Restraints                            | 597                   |  |
| Parameters                            | 599                   |  |
| R₁(obs)                               | 0.1265                |  |
| wR₂(all)                              | 0.2849                |  |
| S                                     | 1.040                 |  |
| Peak, hole (e <sup>-</sup><br>Å⁻³)    | 0.51, -0.41           |  |
| Flack                                 | -1.8(10)              |  |

Table S1. Crystal data for compound 1-CTCT.

A DCM solution of **2-CCCC** was layered with MeOH. The crystals disintegrated rapidly in contact with the mounting oil. A crystal was mounted successfully by cooling the microscope slide with dry ice and cooling the mounted crystal continuously with cold  $N_2$ 

gas. Part of a crystal (.12 x .07 x .04 mm) was separated carefully, mounted with STP oil treatment, and cooled to 100 K on the diffractometer. Complete data (99.7%) were collected to 0.815 Å. 73051 reflections were collected (8941 unique, 8090 observed) with R(int) 4.6% and R(sigma) 2.2% after analytical absorption correction (Tmax .908, Tmin .773).

The space group assignment was not completely obvious. There were clean absences for a  $2_1$  axis and weakly violated absences for a *c* glide (<I> 1.4 vs. 27.3 for the full data set). ShelXT and Superflip gave good solutions in P2<sub>1</sub>/c. A refinement in P2<sub>1</sub> was difficult and unstable, as expected for a (pseudo-)centrosymmetric structure, and this possibility was not explored further.

The macrocycle was located readily in the initial solution and refined with no restraints. A molecule of dichloromethane outside the macrocycle was disordered over two independent positions that were introduced as rigid fragments from the IMGL and subsequently refined with SAME and RIGU restraints.

The macrocycle crystallizes in columns aligned along the c axis, forming a continuous channel that is filled with disordered dichloromethane. The disorder is extensive and no satisfactory discrete model could be constructed. Therefore the solvent-filled channel was treated with Platon Squeeze, which recovered 215 electrons per unit cell (corresponding to approximately 1.25 DCM molecules per formula unit).

Hydrogen atoms were placed in calculated positions and refined with riding coordinates and ADPs. The final refinement (8941 data, 37 restraints, 560 parameters) converged with  $R_1 (F_o > 4\sigma(F_o)) = 6.3\%$ ,  $wR_2 = 16.1\%$ , S = 1.13. The final R indices are slightly high compared to R(int) and R(sigma), which may indicate a slight deviation from strict centrosymmetry.

The largest Fourier features were 0.40 and -0.46  $e^{-}$  A<sup>-3</sup>.



Figure S12. Molecular structure of 2-CCCC. Hydrogen atoms are omitted for clarity.

 Table S2. Crystal data for compound 2-CCCC.

Compound cccc \* CH<sub>2</sub>Cl<sub>2</sub>

| Formula                           | $C_{57}H_{42}Cl_2$ |  |
|-----------------------------------|--------------------|--|
| MW                                | 797.8              |  |
| Space group                       | P21/c              |  |
| a (Å)                             | 14.73721(18)       |  |
| b (Å)                             | 33.7850(3)         |  |
| <i>c</i> (Å)                      | 9.62683(10)        |  |
| α (°)                             | 90                 |  |
| <i>в</i> (°)                      | 106.5877(12)       |  |
| ץ (°)                             | 90                 |  |
| V (Å <sup>3</sup> )               | 4593.69(9)         |  |
| Z                                 | 4                  |  |
| ρ <sub>calc</sub> (g cm⁻³)        | 1.154              |  |
| т (к)                             | 100                |  |
| λ (Å)                             | 1.54184            |  |
| $2\theta_{min}$ , $2\theta_{max}$ | 9.938, 143.2       |  |
| Nref                              | 73051              |  |
| R(int) <i>,</i> R(σ)              | .0460, .0223       |  |
| μ(mm⁻¹)                           | 1.535              |  |
|                                   |                    |  |
| Sizo (mm)                         | .12 x .07          |  |
| Size (mm)                         | .12 x .07<br>x .04 |  |

| Data                                            | 8941        |
|-------------------------------------------------|-------------|
| Restraints                                      | 37          |
| Parameters                                      | 560         |
| R₁(obs)                                         | 0.0627      |
| wR <sub>2</sub> (all)                           | 0.1606      |
| S                                               | 1.137       |
| Peak, hole (e <sup>-</sup><br>Å <sup>-3</sup> ) | 0.40, -0.46 |
| Flack                                           |             |

Single crystals of the platinum macrocycle **5** were grown by vapor diffusion of methanol into tetrachloroethane solution to afford small, colorless blocks. A small single crystal (.11 x .06 x .04 mm) was separated carefully, mounted with STP oil treatment, and cooled to 100 K on the diffractometer. Complete data (99.8%) were collected to 0.800 Å. 110111 reflections were collected (11973 unique, 10859 observed) out to 0.72 Å resolution but the data set was ultimately truncated to 0.800 Å resolution, with 6661 unique data within this limit. R(int) was 5.8% and R(sigma) 3.0% after analytical absorption correction (Tmax .853, Tmin .674).

The space group was assigned as  $P2_1/c$  based on the systematic absences. The structure solved readily in ShelXT with  $\frac{1}{2}$  macrocycle in the asymmetric unit. All non-H, non-solvent atoms were located rapidly in Fourier maps. The saturated  $C_2H_4$  bridges of the two independent cyclooctadiene ligands were each disordered over two positions, which were located in difference maps and refined using SAME and RIGU restraints.

The asymmetric unit contains four tetrachloroethane molecules. Two were fully ordered, one was disordered over two positions and refined with similarity restraints for geometry and ADPs, and one was extensively disordered over multiple positions. This molecule was ultimately modeled as a diffuse contribution to the overall scattering using Platon Squeeze. The unaccounted electron density was estimated as 379 e<sup>-</sup> per unit cell (4  $C_2H_2Cl_4 = 328$  e<sup>-</sup>).

All hydrogen atoms were placed in calculated positions and refined with riding coordinates and ADPs. The final refinement (6661 data, 574 restraints, 706 parameters)

converged with  $R_1$  ( $F_o > 4\sigma(F_o)$ ) = 3.7%,  $wR_2 = 8.5\%$ , S = 1.09. The largest Fourier features were 2.50 and -0.80 e<sup>-</sup> A<sup>-3</sup>; the large positive feature occurred near a Pt atom.



**Figure S13.** Molecular structure of **5**. Black, carbon; purple, platinum. Solvent molecules, hydrogen atoms and the minor positions of the disordered cod ligands are omitted for clarity.

Table S3. Crystal data for compound 5.

| Compound                                | Pt-cycle-<br>3(TCE)           |  |
|-----------------------------------------|-------------------------------|--|
|                                         |                               |  |
| Formula                                 | $C_{100}H_{100}CI_{24}Pt_{4}$ |  |
| MW                                      | 2392.95                       |  |
| Space group                             | P21/c                         |  |
| <i>a</i> (Å)                            | 18.3098(3)                    |  |
| <i>b</i> (Å)                            | 26.5227(4)                    |  |
| <i>c</i> (Å)                            | 12.8182(2)                    |  |
| α (°)                                   | 90                            |  |
| <i>в</i> (°)                            | 109.301(2)                    |  |
| γ (°)                                   | 90                            |  |
| V (Å <sup>3</sup> )                     | 5874.99(19)                   |  |
| Z                                       | 2                             |  |
| ρ <sub>calc</sub> (g cm <sup>-3</sup> ) | 1.658                         |  |

| Т (К)                                           | 100             |
|-------------------------------------------------|-----------------|
| λ (Å)                                           | 0.71073         |
| $2\theta_{min}$ , $2\theta_{max}$               | 6.582, 52.74    |
| Nref                                            | 110111          |
| R(int), R(σ)                                    | .0580, .0296    |
| μ(mm⁻¹)                                         | 5.334           |
| Size (mm)                                       | .11 x .06 x .04 |
| T <sub>max</sub> , T <sub>min</sub>             | .853, .674      |
|                                                 |                 |
| Data                                            | 6661            |
| Restraints                                      | 574             |
| Parameters                                      | 706             |
| R1(obs)                                         | 0.0367          |
| wR₂(all)                                        | 0.0846          |
| S                                               | 1.089           |
| Peak, hole (e <sup>-</sup><br>Å <sup>-3</sup> ) | 2.50, -0.80     |
| Flack                                           |                 |

## 6. 2D-NMR analysis of intermediate 6-Pt<sub>2</sub>



Figure S14. COSY spectrum of intermediate 6-Pt<sub>3</sub>.



Figure S15. HSQC spectrum of intermediate 6-Pt<sub>3</sub>.

### 7. NMR kinetic experiments

Platinum complex **5** (7.20  $\times$  10<sup>-7</sup> mol), PPh<sub>3</sub> (2.88  $\times$  10<sup>-6</sup> mol), and 1,3,5trimethoxybenzene (1.08  $\times$  10<sup>-6</sup> mol, internal standard) were dissolved in C<sub>2</sub>D<sub>2</sub>Cl<sub>4</sub> (0.6 mL) in a screw-capped NMR tube. The tube was heated to 90°C in the NMR probe, and the decay of **6-Pt<sub>3</sub>** (Figure S12) and formation of product **1-CTCT** (Figure S13) over time were monitored by <sup>1</sup>H NMR spectroscopy.



Figure S16. Decay of 6-Pt<sub>3</sub> over time monitored by <sup>1</sup>H NMR spectroscopy.



**Figure S17.** Formation of **1-CTCT** over time monitored by <sup>1</sup>H NMR spectroscopy.

#### 8. Cyclic Voltammetry



Figure S18. Cyclic voltammograms for 1-CTCT (blue) and 2-CCCC (red).

Reduction potentials were estimated from peak onset values. Ferrocene/ferrocenium (Fc/Fc+) was used for calibration. The redox potential of Fc/Fc+ was located at 0.42V to Ag/AgCl reference electrode under the same condition. Therefore, reduction onset potentials ( $E_{red}$ ) were estimated to be -1.26 V for 1-CTCT and -1.28 V for 2-CCCC. The absolute energy level for Fc/Fc+ redox potential is -4.80eV to vacuum level. The energy levels of the lowest unoccupied molecular orbitals (LUMO) can be calculated according to the following equation: E<sub>LUMO</sub>=-(E<sub>red</sub>+4.80) (eV). The LUMO energies from DFT calculations (Figure S23) are nearly identical for the two isomers, as are the values determined by cyclic voltammetry.

#### 9. PLQY measurements.

We performed photoluminescence quantum yield (PLQY) measurements using absolute and relative methods. In the relative method, we used coumarin 1 as a reference. The advantages of the coumarin 1 are high QY and the good overlapping of the absorption and emission spectra to that of **1-CTCT** and **2-CCCC**. Coumarin 1 was dissolved in EtOH in air with the known QY of 79%.<sup>14</sup> **1** and **2** were dissolved in chloroform inside a nitrogen-filled glovebox. To avoid re-absorption we chose an optical density in the range of 0.1 to 0.2 for all solutions. The relative emission QY was calculated using equation<sup>15</sup>:

$$\Phi_{S} = \Phi_{R} \frac{I_{S}}{I_{R}} \frac{1 - 10^{A_{R}}}{1 - 10^{A_{S}}} \frac{n_{S}}{n_{R}}$$

where  $\Phi$ , *I*, *A*, and *n* denotes the quantum yield, integrated PL intensity, optical density at the excitation wavelength, and reflective index, respectively. The abbreviations S and R refer to sample and reference, respectively. Using the above method we obtained relative QYs of 56 ± 6 and 55 ± 2 % for 1 and 2, respectively. The results were averaged from three different measurements with the excitation wavelengths of 340, 350 and 360 nm. The errors are the standard deviation obtained from these measurements. We also performed the absolute PLQY measurements. At the excitation of 350 nm, the QY are 63 ± 5 and 60 ± 5 % for 1 and 2, respectively. The QY results obtained from two methods are quantitatively in agreement.



**Figure S19.** Emission spectrum (blue) of **1-CTCT** decomposed into three different Gaussian peaks (red).

#### 10. Time resolved photoluminescence (PL) decay kinetics

The PL decay kinetics for 1-CTCT and 2-CCCC molecules in DCM solutions (see Fig. 5b, main text) were fitted by a stretched exponential function  $I(t) = A \exp[-(t/\tau)^{\alpha}]$ , which yields  $\tau$  of 1.26 ns and 0.78 ns,  $\alpha$  of 0.92 and 0.86 for 1-CTCT and 2-CCCC, respectively.

To test the possible isomerization process of as synthesized molecules, **1-CTCT** and **2-CCCC** are also prepared in polystyrene film and time resolved PL of them were measured as a function of temperature (88K~ 293K). No significant difference of PL emission spectra between molecules in DCM and in polymer matrix were observed (Fig. S20) and more importantly, the PL lifetime of both **1-CTCT** (Fig. S21a) and **2-CCCC** (Fig. S21a) depends very weekly on the temperature, indicating the absence of isomerization of **1-CTCT** and **2-CCCC**.



**Figure S20.** Fluorescence spectra of **1-CTCT**,  $1 \times 10^{-6}$  M in DCM (blue) and in a polystyrene film (blue, dashed line); **2-CCCC**,  $1 \times 10^{-6}$  M in DCM (red) and in a polystyrene film (red, dashed line). All samples were excited at 320 nm.



**Figure S21.** Temperature dependent fluorescence decay lifetime of (a) **1-CTCT** and (b) **2-CCCC** in a polymer matrix.

### **11. Transient Absorption**

The samples were dissolved in chloroform in cuvettes with the path length of 2 mm for transient absorption measurements. The laser beam from a Ti:sapphire femtosecond regenerative amplifier at 800 nm wavelength and 1 kHz repetition rate was split into two paths. The first path was directed into an optical parametric amplifier to generate tunable pump laser (UV to near IR). The second path was focused onto a sapphire crystal to produce the white-light super-continuum (visible: 450 nm – 900 nm, near IR: 850 nm – 1600 nm) as probe. The probe spot was located within the pump spot on the sample cuvette. The transmitted probe beam was focused onto a fiber coupled high-speed multichannel detector and collected by a high speed spectrometer (HELIOS, Ultrafast Systems).



**Figure S22.** Transient absorption spectra in the visible range (a) and the dynamics (b) of **1-CTCT** and **2-CCCC** upon 325 nm excitation.

### **12. DFT computation details**

All quantum chemical calculations were performed using Jaguar, version 8.3, Schrodinger, Inc., New York, NY, 2014.<sup>16</sup> Geometries were optimized using the B3LYP functional and the 6-31G\*\* and LACVP (for platinum intermediates) basis set. All orbital surfaces shown are plotted at a 0.03 isovalue. At the optimized geometry, excited singlet states were calculated using the TD-DFT method that is included in the Jaguar package.

I) Orbital images



**Figure S23.** DFT calculated molecular frontier orbitals of a) **1-CTCT** b) **1-CTCT** C2 conformer and c) **2-CCCC** at the B3LYP/6-31G\*\* level, plotted at 0.05 isovalue.

## II) Calculation of strain energies

Strain energies of cyclostilbenes **1-CTCT** and **2-CCCC** were estimated by the following isodesmic reactions (1) and (2):



The energies are summarized below.

Table S4. DFT calculated energies of components relevant to the isodesmic reactions.

|            | Biphenyl  | 2 × benzene | 1-CTCT     | CTCT-<br>acyclic | <b>2-</b> CCCC | CCCC-<br>acyclic |
|------------|-----------|-------------|------------|------------------|----------------|------------------|
| Energy (h) | -463.3215 | -464.5164   | -2158.0947 | -2159.3167       | -2158.1049     | -2159.3001       |

III) Optimized geometries

Cyclostilbene 1-CTCT

B3LYP/6-31G\*\* optimized geometry

Final total energy = -2158.0947 hartrees

Final geometry:

#### angstroms

| atom | Х             | y z           |              |
|------|---------------|---------------|--------------|
| C1   | -0.1879000000 | 0.5740000000  | 0.2529000000 |
| C2   | -0.2737000000 | 0.1113000000  | 1.5753000000 |
| C3   | 0.8656000000  | -0.5101000000 | 2.1205000000 |
| C4   | 2.0220000000  | -0.6924000000 | 1.3762000000 |

| C5  | 2.0993000000  | -0.2554000000  | 0.0420000000  |
|-----|---------------|----------------|---------------|
| C6  | 0.9782000000  | 0.4058000000   | -0.4895000000 |
| C7  | -1.5103000000 | 0.2018000000   | 2.3859000000  |
| C8  | -2.7848000000 | -0.0131000000  | 1.8272000000  |
| C9  | -3.9177000000 | -0.1354000000  | 2.6239000000  |
| C10 | -3.8245000000 | -0.0528000000  | 4.0270000000  |
| C11 | -2.5677000000 | 0.2749000000   | 4.5708000000  |
| C12 | -1.4390000000 | 0.3958000000   | 3.7749000000  |
| C13 | -4.8737000000 | -0.4415000000  | 4.9683000000  |
| C14 | -6.0407000000 | -1.0757000000  | 4.7237000000  |
| C15 | -6.8106000000 | -1.7852000000  | 5.7515000000  |
| C16 | -7.6719000000 | -2.8312000000  | 5.3716000000  |
| C17 | -8.1425000000 | -3.7590000000  | 6.2989000000  |
| C18 | -7.7673000000 | -3.6769000000  | 7.6488000000  |
| C19 | -7.0408000000 | -2.540000000   | 8.0519000000  |
| C20 | -6.5839000000 | -1.6110000000  | 7.1319000000  |
| C21 | -7.9602000000 | -4.8117000000  | 8.5841000000  |
| C22 | -9.1227000000 | -5.5955000000  | 8.6332000000  |
| C23 | -9.1889000000 | -6.7247000000  | 9.4483000000  |
| C24 | -8.0863000000 | -7.1352000000  | 10.2167000000 |
| C25 | -6.9388000000 | -6.3256000000  | 10.1987000000 |
| C26 | -6.8824000000 | -5.1884000000  | 9.4063000000  |
| C27 | -8.1356000000 | -8.3632000000  | 11.0387000000 |
| C28 | -7.1963000000 | -9.3260000000  | 11.1347000000 |
| C29 | -5.9707000000 | -9.5017000000  | 10.3302000000 |
| C30 | -4.8110000000 | -10.048000000  | 10.9081000000 |
| C31 | -3.6474000000 | -10.2379000000 | 10.1656000000 |
| C32 | -3.6037000000 | -9.9171000000  | 8.7997000000  |
| C33 | -4.7765000000 | -9.4035000000  | 8.2156000000  |
| C34 | -5.9294000000 | -9.1963000000  | 8.9585000000  |
| C35 | -2.3820000000 | -10.0487000000 | 7.9711000000  |

| C36 | -2.4754000000 | -10.4241000000 | 6.6214000000  |
|-----|---------------|----------------|---------------|
| C37 | -1.3769000000 | -10.3465000000 | 5.7783000000  |
| C38 | -0.1292000000 | -9.8813000000  | 6.2341000000  |
| C39 | -0.0090000000 | -9.6133000000  | 7.6124000000  |
| C40 | -1.1093000000 | -9.6959000000  | 8.4576000000  |
| C41 | 0.8698000000  | -9.5335000000  | 5.2247000000  |
| C42 | 2.0058000000  | -8.8248000000  | 5.3940000000  |
| C43 | 2.7260000000  | -8.1223000000  | 4.3286000000  |
| C44 | 2.4329000000  | -8.2711000000  | 2.9575000000  |
| C45 | 2.8819000000  | -7.3443000000  | 2.0289000000  |
| C46 | 3.6622000000  | -6.2375000000  | 2.4143000000  |
| C47 | 4.0786000000  | -6.1740000000  | 3.7525000000  |
| C48 | 3.6209000000  | -7.0974000000  | 4.6864000000  |
| C49 | 3.8911000000  | -5.0982000000  | 1.4941000000  |
| C50 | 5.0866000000  | -4.3637000000  | 1.4700000000  |
| C51 | 5.1979000000  | -3.2031000000  | 0.7080000000  |
| C52 | 4.1095000000  | -2.7121000000  | -0.0318000000 |
| C53 | 2.9329000000  | -3.4792000000  | -0.0549000000 |
| C54 | 2.8310000000  | -4.6487000000  | 0.6865000000  |
| C55 | 4.2078000000  | -1.4329000000  | -0.7661000000 |
| C56 | 3.3175000000  | -0.4204000000  | -0.7747000000 |
| H57 | -2.8762000000 | -0.1570000000  | 0.7550000000  |
| H58 | 5.9366000000  | -4.7038000000  | 2.0541000000  |
| H59 | -4.8723000000 | -0.3568000000  | 2.1553000000  |
| H60 | -2.7702000000 | -10.6614000000 | 10.6471000000 |
| H61 | 1.8034000000  | -9.0889000000  | 2.6208000000  |
| H62 | 6.1325000000  | -2.6476000000  | 0.7133000000  |
| H63 | -2.4740000000 | 0.3856000000   | 5.6482000000  |
| H64 | -7.9004000000 | -2.9713000000  | 4.3178000000  |
| H65 | 1.8935000000  | -5.1964000000  | 0.6892000000  |
| H66 | 2.6018000000  | -7.4582000000  | 0.9856000000  |

| H67 | -9.9848000000  | -5.3159000000  | 8.0336000000  |
|-----|----------------|----------------|---------------|
| H68 | -3.4285000000  | -10.7584000000 | 6.2245000000  |
| H69 | 3.8921000000   | -6.9753000000  | 5.7323000000  |
| H70 | 2.0864000000   | -3.1359000000  | -0.6403000000 |
| H71 | 2.3358000000   | -8.5848000000  | 6.4034000000  |
| H72 | -6.8079000000  | -2.4057000000  | 9.1043000000  |
| H73 | 2.8755000000   | -1.1817000000  | 1.8301000000  |
| H74 | -1.4929000000  | -10.5987000000 | 4.7272000000  |
| H75 | -5.9679000000  | -4.6041000000  | 9.3809000000  |
| H76 | -10.1014000000 | -7.3154000000  | 9.4694000000  |
| H77 | -4.7692000000  | -9.1299000000  | 7.1651000000  |
| H78 | -0.4830000000  | 0.6232000000   | 4.2367000000  |
| H79 | 0.5444000000   | -9.7378000000  | 4.2065000000  |
| H80 | 3.5217000000   | 0.4045000000   | -1.4569000000 |
| H81 | -6.0815000000  | -6.6059000000  | 10.8009000000 |
| H82 | -8.7229000000  | -4.6099000000  | 5.9540000000  |
| H83 | 0.8280000000   | -0.8907000000  | 3.1364000000  |
| H84 | -0.9988000000  | -9.4103000000  | 9.5000000000  |
| H85 | -4.5695000000  | -0.3398000000  | 6.008000000   |
| H86 | -9.0293000000  | -8.4824000000  | 11.6508000000 |
| H87 | -6.0027000000  | -0.7647000000  | 7.4846000000  |
| H88 | -4.8210000000  | -10.3205000000 | 11.9608000000 |
| H89 | 5.1040000000   | -1.3079000000  | -1.3735000000 |
| H90 | 4.6934000000   | -5.3419000000  | 4.0835000000  |
| H91 | -6.8110000000  | -8.7944000000  | 8.4736000000  |
| H92 | 0.9402000000   | -9.2758000000  | 8.0186000000  |
| H93 | -6.3575000000  | -1.2458000000  | 3.6961000000  |
| H94 | -7.3647000000  | -10.1015000000 | 11.8816000000 |
| H95 | 1.0203000000   | 0.7842000000   | -1.5080000000 |
| H96 | -1.0348000000  | 1.0880000000   | -0.1929000000 |

Cyclostilbene **1-CTCT** C2 conformer B3LYP/6-31G\*\* optimized geometry Final total energy = -2158.0943 hartrees Final geometry:

angstroms

| atom | Х              | y z           |               |
|------|----------------|---------------|---------------|
| C1   | -0.1399417513  | 0.1807958631  | 0.1354522723  |
| C2   | -0.1084742472  | 0.2069935468  | 1.5422078482  |
| C3   | 1.1507610083   | 0.1870967448  | 2.1592904346  |
| C4   | 2.3234412297   | 0.1948557503  | 1.4056253237  |
| C5   | 2.2899443472   | 0.2537109456  | 0.0037728815  |
| C6   | 1.0275679106   | 0.2040009189  | -0.6149121896 |
| C7   | -1.3755798661  | 0.3523571581  | 2.2997629341  |
| C8   | -1.4695288625  | 1.2186241075  | 3.3974796460  |
| C9   | -2.7036665194  | 1.5543834205  | 3.9414574906  |
| C10  | -3.9062543489  | 1.0409244031  | 3.4230628818  |
| C11  | -3.7978326634  | 0.0717830512  | 2.4074272069  |
| C12  | -2.5660789036  | -0.2608695857 | 1.8618918471  |
| C13  | -5.1734502577  | 1.6402835737  | 3.8469587271  |
| C14  | -6.3894389729  | 1.4196138331  | 3.3018025747  |
| C15  | -7.6123873447  | 2.2009767754  | 3.5168020759  |
| C16  | -7.7327154925  | 3.2848321678  | 4.4100351401  |
| C17  | -8.8132687106  | 4.1574884343  | 4.3374494609  |
| C18  | -9.8304366765  | 3.9902976060  | 3.3769053175  |
| C19  | -9.7716410075  | 2.8420264891  | 2.5717044832  |
| C20  | -8.6946868299  | 1.9680193322  | 2.6466314291  |
| C21  | -10.8226211698 | 5.0602627567  | 3.1126366038  |
| C22  | -11.3939562178 | 5.8482147109  | 4.1243207962  |
| C23  | -12.1941968024 | 6.9480356188  | 3.8166296963  |
| C24  | -12.4348750412 | 7.3257379410  | 2.4852520400  |
| C25  | -11.9245057325 | 6.4920203085  | 1.4754053819  |

| C26 | -11.1443466620 | 5.3866223183  | 1.7823913208  |
|-----|----------------|---------------|---------------|
| C27 | -13.2030000916 | 8.5464334030  | 2.1469808400  |
| C28 | -12.8771907468 | 9.4833812536  | 1.2312203067  |
| C29 | -11.5977379774 | 9.5985525763  | 0.4954844151  |
| C30 | -11.5609662553 | 9.8287120591  | -0.8897452597 |
| C31 | -10.3534403598 | 9.8604324767  | -1.5854122591 |
| C32 | -9.1311518372  | 9.6985245744  | -0.9158425608 |
| C33 | -9.1678494551  | 9.5449524539  | 0.4812117786  |
| C34 | -10.3698102533 | 9.4909682767  | 1.1702841327  |
| C35 | -7.8280680114  | 9.5962167354  | -1.6117815138 |
| C36 | -6.6616069388  | 10.1166995678 | -1.0301958462 |
| C37 | -5.4115648937  | 9.8282472880  | -1.5569574650 |
| C38 | -5.2617772806  | 8.9951679724  | -2.6811427016 |
| C39 | -6.4366280738  | 8.5612324156  | -3.3245784208 |
| C40 | -7.6888665720  | 8.8557696698  | -2.7998371465 |
| C41 | -3.9140015812  | 8.5303621515  | -3.0043999824 |
| C42 | -3.5639896802  | 7.5334910209  | -3.8430478946 |
| C43 | -2.2569016218  | 6.8753529706  | -3.8848428456 |
| C44 | -1.1455861241  | 7.3053855333  | -3.1330005268 |
| C45 | -0.0239136555  | 6.5041943585  | -2.9944115609 |
| C46 | 0.0539493572   | 5.2373719056  | -3.6031503757 |
| C47 | -0.9981086543  | 4.8613895702  | -4.4511985081 |
| C48 | -2.1264071394  | 5.6632455224  | -4.5866872856 |
| C49 | 1.1217132651   | 4.2806522339  | -3.2303193322 |
| C50 | 1.5164058248   | 4.1975335026  | -1.8834119650 |
| C51 | 2.3846466340   | 3.2091469118  | -1.4458524483 |
| C52 | 2.9084343373   | 2.2594619496  | -2.3378703245 |
| C53 | 2.5869259342   | 2.3954178255  | -3.6982441237 |
| C54 | 1.6973639924   | 3.3750885519  | -4.1348276837 |
| C55 | 3.7687385969   | 1.1554353726  | -1.8523332237 |
| C56 | 3.5345215825   | 0.3462832783  | -0.7973128510 |

| H57 | -0.5736280361  | 1.7005924518  | 3.7766380054  |
|-----|----------------|---------------|---------------|
| H58 | 1.4464613786   | 3.4380306962  | -5.1900735412 |
| H59 | -2.7482325588  | 2.2852060565  | 4.7454732563  |
| H60 | -10.3599148365 | 10.0185895588 | -2.6605099965 |
| H61 | -1.1724928953  | 8.2617102150  | -2.6198082948 |
| H62 | 3.0115292424   | 1.7006116185  | -4.4187068837 |
| H63 | -4.6907444994  | -0.3987043559 | 2.0070386966  |
| H64 | -6.9440618512  | 3.4866722816  | 5.1288310791  |
| H65 | 1.0873909888   | 4.8840536247  | -1.1602749806 |
| H66 | 0.8041583255   | 6.8518243349  | -2.3836154966 |
| H67 | -11.2078975760 | 5.6022846229  | 5.1660266194  |
| H68 | -6.7374360971  | 10.7366006465 | -0.1425108935 |
| H69 | -2.9569044422  | 5.3142611299  | -5.1954548097 |
| H70 | 2.6433004575   | 3.1491706653  | -0.3941535967 |
| H71 | -4.3313130839  | 7.0647154973  | -4.4572101180 |
| H72 | -10.5664080659 | 2.6471589133  | 1.8577328507  |
| H73 | 0.9677602987   | 0.2087888883  | -1.6974708044 |
| H74 | -4.5228027479  | 10.2125446196 | -1.0625562513 |
| H75 | -10.7217464994 | 4.7998612181  | 0.9738202269  |
| H76 | -12.6115255561 | 7.5457306322  | 4.6234513128  |
| H77 | -8.2376256000  | 9.4126686804  | 1.0250090428  |
| H78 | -2.5248474886  | -0.9920641652 | 1.0611165906  |
| H79 | -3.1405908400  | 8.9693729645  | -2.3767576559 |
| H80 | 4.3331890473   | -0.3377506023 | -0.5118709259 |
| H81 | -12.1210990480 | 6.7351582620  | 0.4374862986  |
| H82 | -8.8324813677  | 5.0296314072  | 4.9845196791  |
| H83 | -1.0971660437  | 0.1981026656  | -0.3753602772 |
| H84 | -8.5746350162  | 8.4470438689  | -3.2781362183 |
| H85 | -14.1383141052 | 8.6863162114  | 2.6879436672  |
| H86 | -8.6562054812  | 1.1153514796  | 1.9724010572  |
| H87 | -12.4931350498 | 9.9536214742  | -1.4352909900 |

| H88 | 4.6969149860   | 1.0011158172  | -2.4015952986 |
|-----|----------------|---------------|---------------|
| H89 | -0.9694402906  | 3.8938794201  | -4.9442526701 |
| H90 | -10.3655024420 | 9.3413789296  | 2.2438942424  |
| H91 | -6.3704236312  | 7.9425171825  | -4.2149275199 |
| H92 | -13.6149280657 | 10.2566164227 | 1.0185741735  |
| H93 | 3.2840967569   | 0.1845000536  | 1.9147553049  |
| H94 | 1.2150588916   | 0.1638707609  | 3.2436722074  |
| H95 | -6.4888286657  | 0.6631298759  | 2.5230536970  |
| H96 | -5.0826644112  | 2.4181642824  | 4.6041894309  |

Cyclostilbene 2-CCCC

B3LYP/6-31G\*\* optimized geometry Final total energy = -2158.1049 hartrees Final geometry:

### angstroms

| atom | X             | y z           |               |
|------|---------------|---------------|---------------|
| C1   | -1.004000000  | 0.3550000000  | 0.8690000000  |
| C2   | -1.707000000  | -0.4020000000 | 1.8210000000  |
| C3   | -1.501000000  | -1.795000000  | 1.8180000000  |
| C4   | -0.6260000000 | -2.3990000000 | 0.9240000000  |
| C5   | 0.0830000000  | -1.6380000000 | -0.0230000000 |
| C6   | -0.1440000000 | -0.2510000000 | -0.0380000000 |
| C7   | -2.6360000000 | 0.2340000000  | 2.7810000000  |
| C8   | -3.3270000000 | 1.4150000000  | 2.4630000000  |
| C9   | -4.1840000000 | 2.0160000000  | 3.3790000000  |
| C10  | -4.4160000000 | 1.4540000000  | 4.6450000000  |
| C11  | -3.7190000000 | 0.2740000000  | 4.9670000000  |
| C12  | -2.8500000000 | -0.3150000000 | 4.0590000000  |
| C13  | -5.2970000000 | 2.1510000000  | 5.5990000000  |
| C14  | -6.0610000000 | 1.6330000000  | 6.5800000000  |
| C15  | -6.3320000000 | 0.2070000000  | 6.8580000000  |
| C16 | -6.7270000000 | -0.6780000000  | 5.8400000000 |
|-----|---------------|----------------|--------------|
| C17 | -6.9790000000 | -2.0170000000  | 6.1100000000 |
| C18 | -6.8350000000 | -2.5330000000  | 7.4090000000 |
| C19 | -6.4720000000 | -1.6420000000  | 8.4320000000 |
| C20 | -6.2400000000 | -0.2970000000  | 8.1650000000 |
| C21 | -7.0380000000 | -3.9740000000  | 7.6880000000 |
| C22 | -8.0640000000 | -4.7090000000  | 7.0700000000 |
| C23 | -8.2370000000 | -6.0620000000  | 7.3420000000 |
| C24 | -7.3770000000 | -6.7490000000  | 8.2170000000 |
| C25 | -6.3570000000 | -6.0110000000  | 8.8400000000 |
| C26 | -6.1950000000 | -4.6550000000  | 8.5830000000 |
| C27 | -7.6250000000 | -8.1700000000  | 8.5230000000 |
| C28 | -6.7570000000 | -9.1830000000  | 8.7240000000 |
| C29 | -5.2980000000 | -9.2610000000  | 8.5370000000 |
| C30 | -4.5710000000 | -10.2240000000 | 9.2600000000 |
| C31 | -3.2070000000 | -10.4060000000 | 9.0630000000 |
| C32 | -2.5030000000 | -9.6470000000  | 8.1140000000 |
| C33 | -3.2300000000 | -8.6860000000  | 7.3880000000 |
| C34 | -4.5900000000 | -8.4960000000  | 7.5920000000 |
| C35 | -1.0600000000 | -9.8660000000  | 7.8600000000 |
| C36 | -0.5270000000 | -9.7400000000  | 6.5630000000 |
| C37 | 0.8220000000  | -9.9430000000  | 6.3090000000 |
| C38 | 1.7160000000  | -10.2780000000 | 7.3450000000 |
| C39 | 1.1770000000  | -10.4360000000 | 8.6340000000 |
| C40 | -0.1750000000 | -10.2270000000 | 8.8890000000 |
| C41 | 3.1510000000  | -10.5380000000 | 7.1310000000 |
| C42 | 3.9930000000  | -10.0450000000 | 6.200000000  |
| C43 | 3.7440000000  | -8.9970000000  | 5.1950000000 |
| C44 | 4.2530000000  | -9.1310000000  | 3.8930000000 |
| C45 | 3.9850000000  | -8.1820000000  | 2.9120000000 |
| C46 | 3.2070000000  | -7.0460000000  | 3.1920000000 |

| C47 | 2.7560000000  | -6.880000000  | 4.5130000000  |
|-----|---------------|---------------|---------------|
| C48 | 3.0230000000  | -7.8270000000 | 5.4920000000  |
| C49 | 2.8430000000  | -6.0760000000 | 2.1340000000  |
| C50 | 2.6110000000  | -4.7170000000 | 2.4210000000  |
| C51 | 2.2300000000  | -3.8210000000 | 1.430000000   |
| C52 | 2.070000000   | -4.2390000000 | 0.0950000000  |
| C53 | 2.3320000000  | -5.5890000000 | -0.1950000000 |
| C54 | 2.6940000000  | -6.4880000000 | 0.800000000   |
| C55 | 1.7340000000  | -3.3310000000 | -1.0130000000 |
| C56 | 0.9630000000  | -2.2250000000 | -1.0450000000 |
| H57 | -3.2080000000 | 1.8600000000  | 1.4800000000  |
| H58 | 2.7620000000  | -4.3490000000 | 3.4310000000  |
| H59 | -4.6990000000 | 2.9330000000  | 3.1040000000  |
| H60 | -2.6890000000 | -11.180000000 | 9.6210000000  |
| H61 | 4.8510000000  | -10.004000000 | 3.6420000000  |
| H62 | 2.080000000   | -2.7780000000 | 1.6840000000  |
| H63 | -3.8360000000 | -0.1660000000 | 5.9500000000  |
| H64 | -6.8250000000 | -0.3060000000 | 4.8260000000  |
| H65 | 2.8370000000  | -7.5310000000 | 0.5410000000  |
| H66 | 4.3960000000  | -8.320000000  | 1.9170000000  |
| H67 | -8.7510000000 | -4.2060000000 | 6.3960000000  |
| H68 | -1.1900000000 | -9.5160000000 | 5.7340000000  |
| H69 | 2.6480000000  | -7.6760000000 | 6.4990000000  |
| H70 | 2.2270000000  | -5.9410000000 | -1.2180000000 |
| H71 | -6.3890000000 | -2.0050000000 | 9.4520000000  |
| H72 | -0.5140000000 | -3.4770000000 | 0.9370000000  |
| H73 | 1.1850000000  | -9.8660000000 | 5.2920000000  |
| H74 | -5.3860000000 | -4.1160000000 | 9.0670000000  |
| H75 | -9.0540000000 | -6.6020000000 | 6.8700000000  |
| H76 | -2.7160000000 | -8.0700000000 | 6.6560000000  |
| H77 | -2.2970000000 | -1.1990000000 | 4.3590000000  |

| H78 | 0.9660000000  | -1.675000000   | -1.9860000000 |
|-----|---------------|----------------|---------------|
| H79 | -5.6890000000 | -6.5070000000  | 9.5350000000  |
| H80 | -7.2570000000 | -2.6830000000  | 5.2980000000  |
| H81 | -2.0630000000 | -2.4190000000  | 2.5050000000  |
| H82 | -0.5450000000 | -10.3240000000 | 9.9060000000  |
| H83 | -8.6800000000 | -8.4240000000  | 8.620000000   |
| H84 | -5.9660000000 | 0.3730000000   | 8.9760000000  |
| H85 | -5.093000000  | -10.850000000  | 9.9790000000  |
| H86 | 2.2060000000  | -3.6030000000  | -1.9570000000 |
| H87 | 2.1540000000  | -6.0140000000  | 4.7700000000  |
| H88 | -5.1160000000 | -7.7570000000  | 7.0000000000  |
| H89 | 1.8370000000  | -10.7120000000 | 9.4530000000  |
| H90 | -7.200000000  | -10.1250000000 | 9.0470000000  |
| H91 | 0.380000000   | 0.3620000000   | -0.7680000000 |
| H92 | -1.1170000000 | 1.4350000000   | 0.8510000000  |
| H93 | -6.550000000  | 2.3390000000   | 7.2490000000  |
| H94 | -5.300000000  | 3.2360000000   | 5.4990000000  |
| H95 | 4.994000000   | -10.4750000000 | 6.1760000000  |
| H96 | 3.5770000000  | -11.2580000000 | 7.8300000000  |

Cyclostilbene **3-TTTT** 

B3LYP/6-31G\*\* optimized geometry

Final total energy = -2158.0514 hartrees

Final geometry:

| atom | х             | y z          |              |
|------|---------------|--------------|--------------|
| C1   | 0.1060000000  | 0.2010000000 | 0.0660000000 |
| C2   | -0.0470000000 | 0.2360000000 | 1.4700000000 |
| C3   | 1.1380000000  | 0.2530000000 | 2.2290000000 |
| C4   | 2.3770000000  | 0.0510000000 | 1.6350000000 |

| C5  | 2.4990000000  | -0.2090000000  | 0.2570000000  |
|-----|---------------|----------------|---------------|
| C6  | 1.3420000000  | -0.0180000000  | -0.5280000000 |
| C7  | -1.3470000000 | -0.0190000000  | 2.1400000000  |
| C8  | -1.5430000000 | 0.2220000000   | 3.5180000000  |
| C9  | -2.5530000000 | -0.4070000000  | 4.2320000000  |
| C10 | -3.4370000000 | -1.3090000000  | 3.6040000000  |
| C11 | -3.3590000000 | -1.3910000000  | 2.2000000000  |
| C12 | -2.3410000000 | -0.7700000000  | 1.4860000000  |
| C13 | -4.2510000000 | -2.3080000000  | 4.3020000000  |
| C14 | -4.187000000  | -2.6400000000  | 5.6120000000  |
| C15 | -4.5770000000 | -3.9220000000  | 6.2090000000  |
| C16 | -4.1100000000 | -4.2210000000  | 7.5040000000  |
| C17 | -4.1020000000 | -5.5190000000  | 7.9980000000  |
| C18 | -4.5550000000 | -6.5990000000  | 7.2180000000  |
| C19 | -5.1820000000 | -6.2740000000  | 5.9950000000  |
| C20 | -5.2010000000 | -4.9740000000  | 5.5060000000  |
| C21 | -4.191000000  | -8.0030000000  | 7.5370000000  |
| C22 | -4.8360000000 | -9.1160000000  | 6.9650000000  |
| C23 | -4.2540000000 | -10.3800000000 | 6.9900000000  |
| C24 | -3.0060000000 | -10.6140000000 | 7.6010000000  |
| C25 | -2.4440000000 | -9.5320000000  | 8.3080000000  |
| C26 | -3.0140000000 | -8.2690000000  | 8.2690000000  |
| C27 | -2.2550000000 | -11.8350000000 | 7.2810000000  |
| C28 | -1.0010000000 | -12.132000000  | 7.6930000000  |
| C29 | -0.0210000000 | -12.9650000000 | 6.9910000000  |
| C30 | -0.3150000000 | -13.8400000000 | 5.9230000000  |
| C31 | 0.6690000000  | -14.2080000000 | 5.0140000000  |
| C32 | 1.9900000000  | -13.7180000000 | 5.1140000000  |
| C33 | 2.3210000000  | -13.0330000000 | 6.2970000000  |
| C34 | 1.340000000   | -12.6750000000 | 7.2140000000  |
| C35 | 2.8990000000  | -13.6470000000 | 3.9420000000  |

| C36 | 4.2870000000 | -13.4110000000 | 4.0550000000  |
|-----|--------------|----------------|---------------|
| C37 | 5.0290000000 | -12.909000000  | 2.9910000000  |
| C38 | 4.4190000000 | -12.6240000000 | 1.7510000000  |
| C39 | 3.0860000000 | -13.0480000000 | 1.5890000000  |
| C40 | 2.3430000000 | -13.5340000000 | 2.6550000000  |
| C41 | 4.9570000000 | -11.7370000000 | 0.7170000000  |
| C42 | 5.9760000000 | -10.8560000000 | 0.8340000000  |
| C43 | 6.1560000000 | -9.6430000000  | 0.029000000   |
| C44 | 5.2710000000 | -9.2530000000  | -0.9970000000 |
| C45 | 5.2520000000 | -7.9530000000  | -1.4770000000 |
| C46 | 6.1250000000 | -6.9630000000  | -0.9790000000 |
| C47 | 7.1090000000 | -7.3910000000  | -0.0700000000 |
| C48 | 7.1190000000 | -8.6920000000  | 0.4220000000  |
| C49 | 5.8510000000 | -5.5290000000  | -1.2480000000 |
| C50 | 6.1660000000 | -4.5510000000  | -0.2830000000 |
| C51 | 5.6220000000 | -3.2770000000  | -0.3290000000 |
| C52 | 4.7130000000 | -2.9050000000  | -1.3400000000 |
| C53 | 4.5240000000 | -3.8300000000  | -2.3860000000 |
| C54 | 5.0820000000 | -5.1020000000  | -2.3460000000 |
| C55 | 3.7970000000 | -1.7660000000  | -1.2230000000 |
| C56 | 3.7070000000 | -0.9150000000  | -0.1760000000 |
| H57 | 4.8690000000 | -5.7900000000  | -3.1580000000 |
| H58 | 5.8310000000 | -2.5960000000  | 0.490000000   |
| Н59 | 6.7670000000 | -4.8230000000  | 0.5780000000  |
| H60 | 4.4790000000 | -7.6760000000  | -2.1860000000 |
| H61 | 4.5230000000 | -9.9480000000  | -1.3660000000 |
| H62 | 7.8510000000 | -8.9660000000  | 1.1770000000  |
| Н63 | 7.8500000000 | -6.6870000000  | 0.2970000000  |
| H64 | 6.0790000000 | -12.6740000000 | 3.1450000000  |
| H65 | 4.7820000000 | -13.5650000000 | 5.0090000000  |
| H66 | 1.2840000000 | -13.7170000000 | 2.5080000000  |

| H67 | 2.594000000   | -12.8870000000 | 0.6330000000  |
|-----|---------------|----------------|---------------|
| H68 | 0.3920000000  | -14.8320000000 | 4.1690000000  |
| H69 | -1.3360000000 | -14.1720000000 | 5.7600000000  |
| H70 | 1.6130000000  | -12.0480000000 | 8.0590000000  |
| H71 | 3.3290000000  | -12.6590000000 | 6.4410000000  |
| H72 | -4.7470000000 | -11.1980000000 | 6.4700000000  |
| H73 | -5.7790000000 | -8.9850000000  | 6.4440000000  |
| H74 | -2.4750000000 | -7.4490000000  | 8.7320000000  |
| H75 | -1.4900000000 | -9.6490000000  | 8.8110000000  |
| H76 | -3.6850000000 | -5.7000000000  | 8.9830000000  |
| H77 | -3.6760000000 | -3.4250000000  | 8.1050000000  |
| H78 | -5.6250000000 | -4.7940000000  | 4.5230000000  |
| H79 | -5.5710000000 | -7.0690000000  | 5.3670000000  |
| H80 | -2.6150000000 | -0.2430000000  | 5.3040000000  |
| H81 | -0.8550000000 | 0.8680000000   | 4.0530000000  |
| H82 | -2.2550000000 | -0.9720000000  | 0.4240000000  |
| H83 | -4.052000000  | -2.0400000000  | 1.6710000000  |
| H84 | -0.7700000000 | 0.2860000000   | -0.5700000000 |
| H85 | 1.3980000000  | -0.1140000000  | -1.609000000  |
| H86 | 3.2560000000  | -0.0340000000  | 2.2680000000  |
| H87 | 1.0870000000  | 0.3050000000   | 3.3110000000  |
| H88 | 3.8690000000  | -3.5640000000  | -3.2120000000 |
| H89 | -0.5680000000 | -11.5290000000 | 8.4880000000  |
| H90 | -2.6950000000 | -12.4320000000 | 6.4830000000  |
| H91 | -3.6170000000 | -1.9990000000  | 6.2810000000  |
| H92 | -4.806000000  | -2.9630000000  | 3.6330000000  |
| H93 | 4.4990000000  | -0.9280000000  | 0.5700000000  |
| H94 | 2.9950000000  | -1.7650000000  | -1.9590000000 |
| H95 | 6.6250000000  | -10.9170000000 | 1.7060000000  |
| H96 | 4.3100000000  | -11.6520000000 | -0.1540000000 |

5

B3LYP/LACVP optimized geometry

Final total energy = -3883.0093 hartrees

Final geometry:

| atom | Х             | y z           |               |
|------|---------------|---------------|---------------|
| C1   | 1.3508455771  | 5.7411654068  | -3.6556021929 |
| C2   | -1.3508455771 | -5.7411654068 | 3.6556021929  |
| C3   | 6.9976377761  | -2.7570905220 | -0.8091795757 |
| C4   | -6.9976377761 | 2.7570905220  | 0.8091795757  |
| C5   | 2.2613424801  | 5.8210868199  | -2.5827305454 |
| C6   | -2.2613424801 | -5.8210868199 | 2.5827305454  |
| C7   | 7.2689424336  | -3.9782907129 | -1.4518885087 |
| C8   | -7.2689424336 | 3.9782907129  | 1.4518885087  |
| C9   | 3.6274008220  | 5.6110287496  | -2.7660051512 |
| C10  | -3.6274008220 | -5.6110287496 | 2.7660051512  |
| C11  | 7.3113523781  | -5.1860046947 | -0.7528190460 |
| C12  | -7.3113523781 | 5.1860046947  | 0.7528190460  |
| C13  | 4.1696634547  | 5.3278133027  | -4.0347802000 |
| C14  | -4.1696634547 | -5.3278133027 | 4.0347802000  |
| C15  | 7.0711901150  | -5.2361012028 | 0.6314949363  |
| C16  | -7.0711901150 | 5.2361012028  | -0.6314949363 |
| C17  | 3.2593342516  | 5.2306744355  | -5.1027015514 |
| C18  | -3.2593342516 | -5.2306744355 | 5.1027015514  |
| C19  | 6.8080223604  | -4.0117928224 | 1.2767642109  |
| C20  | -6.8080223604 | 4.0117928224  | -1.2767642109 |
| C21  | -1.8912696664 | -5.4299854006 | 4.9166525631  |
| C22  | 1.8912696664  | 5.4299854006  | -4.9166525631 |
| C23  | 6.7841836934  | -2.8050172259 | 0.5833272040  |
| C24  | -6.7841836934 | 2.8050172259  | -0.5833272040 |
| C25  | 7.0187337151  | -9.3249521691 | 1.9960471314  |

| C26 | -7.0187337151 | 9.3249521691  | -1.9960471314 |
|-----|---------------|---------------|---------------|
| C27 | 6.3735676477  | 7.5058778142  | -4.7416243455 |
| C28 | -6.3735676477 | -7.5058778142 | 4.7416243455  |
| C29 | 7.3856412830  | -8.7916461690 | 3.2126694121  |
| C30 | -7.3856412830 | 8.7916461690  | -3.2126694121 |
| C31 | 6.2371483795  | 6.9649067734  | -6.0009939988 |
| C32 | -6.2371483795 | -6.9649067734 | 6.0009939988  |
| C33 | 5.0793169685  | -6.7650662150 | 1.9097771051  |
| C34 | -5.0793169685 | 6.7650662150  | -1.9097771051 |
| C35 | 6.2297866688  | 3.4141184166  | -3.3853697499 |
| C36 | -6.2297866688 | -3.4141184166 | 3.3853697499  |
| C37 | 8.7960732076  | -8.7411019208 | 3.7817059193  |
| C38 | -8.7960732076 | 8.7411019208  | -3.7817059193 |
| C39 | 7.3609425070  | 6.7104281094  | -6.9948952954 |
| C40 | -7.3609425070 | -6.7104281094 | 6.9948952954  |
| C41 | 4.5188631628  | -6.6547973443 | 3.1989218586  |
| C42 | -4.5188631628 | 6.6547973443  | -3.1989218586 |
| C43 | 6.2701161914  | 2.1734890123  | -4.0530574989 |
| C44 | -6.2701161914 | -2.1734890123 | 4.0530574989  |
| C45 | 9.5752519896  | -7.4471640610 | 3.4367313115  |
| C46 | -9.5752519896 | 7.4471640610  | -3.4367313115 |
| C47 | 7.9933833958  | 5.2990584405  | -6.8951093831 |
| C48 | -7.9933833958 | -5.2990584405 | 6.8951093831  |
| C49 | 3.1473713457  | -6.4862562375 | 3.3927074269  |
| C50 | -3.1473713457 | 6.4862562375  | -3.3927074269 |
| C51 | 6.4200213119  | 0.9695832701  | -3.3646594331 |
| C52 | -6.4200213119 | -0.9695832701 | 3.3646594331  |
| C53 | 9.3957929156  | -6.9395470412 | 2.0206622701  |
| C54 | -9.3957929156 | 6.9395470412  | -2.0206622701 |
| C55 | 8.2026439358  | 4.7781530466  | -5.4876038386 |
| C56 | -8.2026439358 | -4.7781530466 | 5.4876038386  |

| C57 | 2.2534490260  | -6.4298056621 | 2.3056234378  |
|-----|---------------|---------------|---------------|
| C58 | -2.2534490260 | 6.4298056621  | -2.3056234378 |
| C59 | 6.5316361632  | 0.9406898989  | -1.9607429999 |
| C60 | -6.5316361632 | -0.9406898989 | 1.9607429999  |
| C61 | 9.2460398464  | -7.6899940901 | 0.8736450759  |
| C62 | -9.2460398464 | 7.6899940901  | -0.8736450759 |
| C63 | 8.5517608828  | 5.5015443156  | -4.3679629671 |
| C64 | -8.5517608828 | -5.5015443156 | 4.3679629671  |
| C65 | 2.8147508588  | -6.5578001487 | 1.0208959124  |
| C66 | -2.8147508588 | 6.5578001487  | -1.0208959124 |
| C67 | 6.4688492281  | 2.1779680904  | -1.2944561948 |
| C68 | -6.4688492281 | -2.1779680904 | 1.2944561948  |
| C69 | 9.3032059545  | -9.2078836766 | 0.7802097115  |
| C70 | -9.3032059545 | 9.2078836766  | -0.7802097115 |
| C71 | 8.8766826746  | 6.9875820277  | -4.3275096357 |
| C72 | -8.8766826746 | -6.9875820277 | 4.3275096357  |
| C73 | 4.1863673975  | -6.7038777556 | 0.8264876161  |
| C74 | -4.1863673975 | 6.7038777556  | -0.8264876161 |
| C75 | 6.3213535425  | 3.3803569812  | -1.9842255909 |
| C76 | -6.3213535425 | -3.3803569812 | 1.9842255909  |
| C77 | 7.9290285785  | -9.9072808510 | 0.9340207679  |
| C78 | -7.9290285785 | 9.9072808510  | -0.9340207679 |
| C79 | 7.6571142846  | 7.8990230651  | -4.0400050443 |
| C80 | -7.6571142846 | -7.8990230651 | 4.0400050443  |
| C81 | 0.8040661445  | -6.2319697044 | 2.4248426042  |
| C82 | -0.8040661445 | 6.2319697044  | -2.4248426042 |
| C83 | 6.6805278351  | -0.2808498815 | -1.1649658073 |
| C84 | -6.6805278351 | 0.2808498815  | 1.1649658073  |
| C85 | 0.0969395606  | -5.9528989032 | 3.5401327115  |
| C86 | -0.0969395606 | 5.9528989032  | -3.5401327115 |
| C87 | 6.9091942672  | -1.5332947535 | -1.6107736116 |

| C88  | -6.9091942672 | 1.5332947535   | 1.6107736116  |
|------|---------------|----------------|---------------|
| Pt89 | 7.0918743460  | -7.0152550703  | 1.6357706899  |
| Pt90 | -7.0918743460 | 7.0152550703   | -1.6357706899 |
| Pt91 | 6.1805989538  | 5.1967163878   | -4.3822150762 |
| Pt92 | -6.1805989538 | -5.1967163878  | 4.3822150762  |
| H93  | 9.3577319292  | -9.6209509690  | 3.4557892114  |
| H94  | 8.7309454318  | -8.8173790317  | 4.8726941659  |
| H95  | 10.6458567470 | -7.5965439609  | 3.6447671051  |
| H96  | 9.2470491065  | -6.6473865748  | 4.1101537573  |
| H97  | 7.3928105032  | -9.8455709294  | -0.0194475664 |
| H98  | 8.0829056155  | -10.9803152027 | 1.1251471526  |
| H99  | 10.0108367681 | -9.5970586388  | 1.5171178062  |
| H100 | 9.7141935961  | -9.4782049726  | -0.1986385115 |
| H101 | 5.9593082569  | -9.5178646706  | 1.8429588373  |
| H102 | 6.5799994307  | -8.5756163265  | 3.9093822004  |
| H103 | 9.5871521587  | -5.8765429791  | 1.8907937866  |
| H104 | 9.2987739120  | -7.1493078476  | -0.0680723065 |
| H105 | 7.5068962022  | -6.1003971249  | -1.3092056911 |
| H106 | 7.4369944016  | -3.9802858605  | -2.5279106097 |
| H107 | 6.5603324401  | -1.8930503239  | 1.1294654403  |
| H108 | 6.5918445982  | -4.0025227583  | 2.3419130463  |
| H109 | 7.0292835545  | -1.6902729592  | -2.6821701753 |
| H110 | 6.5882874851  | -0.1221273300  | -0.0914575742 |
| H111 | 6.4279385453  | 0.0401587413   | -3.9275410265 |
| H112 | 6.1704782436  | 2.1401642689   | -5.1361316759 |
| H113 | 6.2757114413  | 4.3045997415   | -1.4126091681 |
| H114 | 6.5382510179  | 2.1931060364   | -0.2079853434 |
| H115 | 8.9480887239  | 5.2859983396   | -7.4429563907 |
| H116 | 7.3420651348  | 4.5839856990   | -7.4104104061 |
| H117 | 8.1308987607  | 7.4795560613   | -6.8868553367 |
| H118 | 6.9599941618  | 6.8315468799   | -8.0073157046 |

| H119 | 9.3601129385   | 7.2845637459  | -5.2624516778 |
|------|----------------|---------------|---------------|
| H120 | 9.6201716141   | 7.1569834803  | -3.5409382158 |
| H121 | 7.4534040439   | 7.8878073621  | -2.9634425746 |
| H122 | 7.9112355172   | 8.9408871808  | -4.2882701723 |
| H123 | 8.8100970281   | 4.9298675496  | -3.4798539475 |
| H124 | 8.2510769588   | 3.6944679108  | -5.4045477911 |
| H125 | 5.4644795219   | 7.8525795676  | -4.2551039672 |
| H126 | 5.2253255073   | 6.8989623270  | -6.3925630257 |
| H127 | 4.2801135769   | 5.6668403697  | -1.8986533800 |
| H128 | 3.6160021642   | 4.9885080297  | -6.1018019597 |
| H129 | 1.2205917535   | 5.3434178268  | -5.7702784455 |
| H130 | 1.8987404214   | 6.0462544137  | -1.5834343128 |
| H131 | -0.6342021273  | 5.8566417972  | -4.4831802538 |
| H132 | -0.2697470090  | 6.3056973757  | -1.4785055472 |
| H133 | -2.1571055761  | 6.5144460190  | -0.1543106949 |
| H134 | -2.7700524321  | 6.3985907101  | -4.4083992136 |
| H135 | -5.1617590032  | 6.6799051941  | -4.0766921212 |
| H136 | -4.5666143697  | 6.7533010645  | 0.1900786070  |
| H137 | -8.7309454318  | 8.8173790317  | -4.8726941659 |
| H138 | -9.3577319292  | 9.6209509690  | -3.4557892114 |
| H139 | -9.2470491065  | 6.6473865748  | -4.1101537573 |
| H140 | -10.6458567470 | 7.5965439609  | -3.6447671051 |
| H141 | -8.0829056155  | 10.9803152027 | -1.1251471526 |
| H142 | -7.3928105032  | 9.8455709294  | 0.0194475664  |
| H143 | -9.7141935961  | 9.4782049726  | 0.1986385115  |
| H144 | -10.0108367681 | 9.5970586388  | -1.5171178062 |
| H145 | -5.9593082569  | 9.5178646706  | -1.8429588373 |
| H146 | -6.5799994307  | 8.5756163265  | -3.9093822004 |
| H147 | -9.2987739120  | 7.1493078476  | 0.0680723065  |
| H148 | -9.5871521587  | 5.8765429791  | -1.8907937866 |
| H149 | -6.5918445982  | 4.0025227583  | -2.3419130463 |

| H150 | -6.5603324401 | 1.8930503239  | -1.1294654403 |
|------|---------------|---------------|---------------|
| H151 | -7.4369944016 | 3.9802858605  | 2.5279106097  |
| H152 | -7.5068962022 | 6.1003971249  | 1.3092056911  |
| H153 | -7.0292835545 | 1.6902729592  | 2.6821701753  |
| H154 | -6.5882874851 | 0.1221273300  | 0.0914575742  |
| H155 | -6.5382510179 | -2.1931060364 | 0.2079853434  |
| H156 | -6.2757114413 | -4.3045997415 | 1.4126091681  |
| H157 | -6.1704782436 | -2.1401642689 | 5.1361316759  |
| H158 | -6.4279385453 | -0.0401587413 | 3.9275410265  |
| H159 | -7.9112355172 | -8.9408871808 | 4.2882701723  |
| H160 | -7.4534040439 | -7.8878073621 | 2.9634425746  |
| H161 | -9.6201716141 | -7.1569834803 | 3.5409382158  |
| H162 | -9.3601129385 | -7.2845637459 | 5.2624516778  |
| H163 | -8.8100970281 | -4.9298675496 | 3.4798539475  |
| H164 | -8.2510769588 | -3.6944679108 | 5.4045477911  |
| H165 | -7.3420651348 | -4.5839856990 | 7.4104104061  |
| H166 | -8.9480887239 | -5.2859983396 | 7.4429563907  |
| H167 | -6.9599941618 | -6.8315468799 | 8.0073157046  |
| H168 | -8.1308987607 | -7.4795560613 | 6.8868553367  |
| H169 | -5.2253255073 | -6.8989623270 | 6.3925630257  |
| H170 | -5.4644795219 | -7.8525795676 | 4.2551039672  |
| H171 | -4.2801135769 | -5.6668403697 | 1.8986533800  |
| H172 | -3.6160021642 | -4.9885080297 | 6.1018019597  |
| H173 | -1.2205917535 | -5.3434178268 | 5.7702784455  |
| H174 | -1.8987404214 | -6.0462544137 | 1.5834343128  |
| H175 | 0.6342021273  | -5.8566417972 | 4.4831802538  |
| H176 | 0.2697470090  | -6.3056973757 | 1.4785055472  |
| H177 | 2.7700524321  | -6.3985907101 | 4.4083992136  |
| H178 | 5.1617590032  | -6.6799051941 | 4.0766921212  |
| H179 | 4.5666143697  | -6.7533010645 | -0.1900786070 |
| H180 | 2.1571055761  | -6.5144460190 | 0.1543106949  |

# **6-Pt**<sub>3</sub>

B3LYP/LACVP optimized geometry Final total energy = -3451.7645 hartrees

Final geometry:

| atom | х             | y z           |               |
|------|---------------|---------------|---------------|
| C1   | 2.1860000000  | 5.6670000000  | -4.0160000000 |
| C2   | -2.0550000000 | -5.4630000000 | 3.9360000000  |
| C3   | 6.5730000000  | -2.2010000000 | -1.2590000000 |
| C4   | -6.6110000000 | 1.8060000000  | 0.7560000000  |
| C5   | 3.1000000000  | 5.809000000   | -2.9530000000 |
| C6   | -3.0260000000 | -5.4640000000 | 2.9150000000  |
| C7   | 6.2710000000  | -3.4380000000 | -1.8550000000 |
| C8   | -6.2580000000 | 3.0720000000  | 1.2650000000  |
| C9   | 4.4710000000  | 5.8550000000  | -3.1720000000 |
| C10  | -4.3870000000 | -5.4570000000 | 3.2030000000  |
| C11  | 6.1610000000  | -4.6080000000 | -1.1060000000 |
| C12  | -5.4490000000 | 3.9480000000  | 0.5530000000  |
| C13  | 5.0150000000  | 5.7840000000  | -4.4680000000 |
| C14  | -4.869000000  | -5.470000000  | 4.5260000000  |
| C15  | 6.3410000000  | -4.603000000  | 0.2860000000  |
| C16  | -4.931000000  | 3.5990000000  | -0.708000000  |
| C17  | 4.1060000000  | 5.6740000000  | -5.5330000000 |
| C18  | -3.901000000  | -5.4330000000 | 5.5450000000  |
| C19  | 6.6380000000  | -3.3650000000 | 0.887000000   |
| C20  | -5.408000000  | 2.4020000000  | -1.279000000  |
| C21  | -2.5360000000 | -5.4270000000 | 5.2570000000  |
| C22  | 2.7290000000  | 5.6070000000  | -5.3110000000 |
| C23  | 6.7560000000  | -2.197000000  | 0.1390000000  |
| C24  | -6.2310000000 | 1.5340000000  | -0.575000000  |

| C25 | 6.0620000000  | -8.6490000000 | 1.7630000000  |
|-----|---------------|---------------|---------------|
| C26 | 7.1410000000  | 8.1350000000  | -4.9400000000 |
| C27 | -6.6060000000 | -7.9910000000 | 5.3700000000  |
| C28 | 6.5010000000  | -8.1130000000 | 2.9500000000  |
| C29 | 7.1050000000  | 7.6770000000  | -6.2370000000 |
| C30 | -6.5600000000 | -7.4060000000 | 6.6130000000  |
| C31 | 4.2760000000  | -5.9780000000 | 1.7070000000  |
| C32 | -3.7820000000 | 4.3230000000  | -1.302000000  |
| C33 | 7.0640000000  | 3.9730000000  | -3.8670000000 |
| C34 | -7.2260000000 | -3.9790000000 | 3.9090000000  |
| C35 | 7.9290000000  | -8.1390000000 | 3.4700000000  |
| C36 | 8.2960000000  | 7.5480000000  | -7.1740000000 |
| C37 | -7.6980000000 | -7.3490000000 | 7.6190000000  |
| C38 | 3.8000000000  | -5.8590000000 | 3.0280000000  |
| C39 | -3.4630000000 | 4.2850000000  | -2.6750000000 |
| C40 | 6.5350000000  | 2.8120000000  | -4.4610000000 |
| C41 | -7.0990000000 | -2.6900000000 | 4.4630000000  |
| C42 | 8.7780000000  | -6.9070000000 | 3.0690000000  |
| C43 | 8.9870000000  | 6.1620000000  | -7.1400000000 |
| C44 | -8.5870000000 | -6.0860000000 | 7.5070000000  |
| C45 | 2.4450000000  | -5.7150000000 | 3.3140000000  |
| C46 | -2.2450000000 | 4.7600000000  | -3.1520000000 |
| C47 | 6.5460000000  | 1.5830000000  | -3.8060000000 |
| C48 | -7.2490000000 | -1.5410000000 | 3.6900000000  |
| C49 | 8.5850000000  | -6.4190000000 | 1.6490000000  |
| C50 | 9.1420000000  | 5.5480000000  | -5.7660000000 |
| C51 | -8.9090000000 | -5.6410000000 | 6.0960000000  |
| C52 | 1.4790000000  | -5.6870000000 | 2.2910000000  |
| C53 | -1.280000000  | 5.3080000000  | -2.2810000000 |
| C54 | 7.0710000000  | 1.4560000000  | -2.5050000000 |
| C55 | -7.520000000  | -1.620000000  | 2.3080000000  |

| C56  | 8.3460000000  | -7.179000000  | 0.5260000000  |
|------|---------------|---------------|---------------|
| C57  | 9.3860000000  | 6.1990000000  | -4.5790000000 |
| C58  | -9.1250000000 | -6.4360000000 | 4.9940000000  |
| C59  | 1.9580000000  | -5.7800000000 | 0.9710000000  |
| C60  | -1.6450000000 | 5.4300000000  | -0.9280000000 |
| C61  | 7.6070000000  | 2.6150000000  | -1.9170000000 |
| C62  | -7.7250000000 | -2.9060000000 | 1.7760000000  |
| C63  | 8.3020000000  | -8.6970000000 | 0.4650000000  |
| C64  | 9.6360000000  | 7.6890000000  | -4.4040000000 |
| C65  | -9.1650000000 | -7.9560000000 | 4.9790000000  |
| C66  | 3.3160000000  | -5.9100000000 | 0.6850000000  |
| C67  | -2.8530000000 | 4.9470000000  | -0.4510000000 |
| C68  | 7.6110000000  | 3.8390000000  | -2.5800000000 |
| C69  | -7.5890000000 | -4.054000000  | 2.5540000000  |
| C70  | 6.8940000000  | -9.3030000000 | 0.6810000000  |
| C71  | 8.3590000000  | 8.5220000000  | -4.1290000000 |
| C72  | -7.8000000000 | -8.6290000000 | 4.6930000000  |
| C73  | 0.0340000000  | -5.5860000000 | 2.5210000000  |
| C74  | 0.0930000000  | 5.6610000000  | -2.6390000000 |
| C75  | 7.0540000000  | 0.2230000000  | -1.7160000000 |
| C76  | -7.4080000000 | -0.4940000000 | 1.380000000   |
| C77  | -0.6090000000 | -5.5150000000 | 3.7050000000  |
| C78  | 0.7450000000  | 5.4890000000  | -3.8080000000 |
| C79  | 6.6450000000  | -1.0030000000 | -2.098000000  |
| C80  | -7.1440000000 | 0.7970000000  | 1.6730000000  |
| Pt81 | 6.2570000000  | -6.3410000000 | 1.3450000000  |
| Pt82 | 7.0350000000  | 5.807000000   | -4.7600000000 |
| Pt83 | -6.8600000000 | -5.6900000000 | 4.9580000000  |
| H84  | 8.4220000000  | -9.0600000000 | 3.1490000000  |
| H85  | 7.8980000000  | -8.1860000000 | 4.5640000000  |
| H86  | 9.8430000000  | -7.1240000000 | 3.2450000000  |

| H87  | 8.5270000000  | -6.0740000000  | 3.7340000000  |
|------|---------------|----------------|---------------|
| H88  | 6.3280000000  | -9.2240000000  | -0.2540000000 |
| H89  | 6.9870000000  | -10.3810000000 | 0.8860000000  |
| H90  | 9.009000000   | -9.1160000000  | 1.1850000000  |
| H91  | 8.6600000000  | -9.0140000000  | -0.5210000000 |
| H92  | 4.9870000000  | -8.7730000000  | 1.6460000000  |
| Н93  | 5.7350000000  | -7.8330000000  | 3.6680000000  |
| H94  | 8.8330000000  | -5.3720000000  | 1.490000000   |
| H95  | 8.3910000000  | -6.6610000000  | -0.4290000000 |
| H96  | 5.9190000000  | -5.5360000000  | -1.6200000000 |
| H97  | 6.1150000000  | -3.4780000000  | -2.9320000000 |
| H98  | 6.9630000000  | -1.2630000000  | 0.6550000000  |
| H99  | 6.7590000000  | -3.3060000000  | 1.9670000000  |
| H100 | 6.3210000000  | -1.1490000000  | -3.1290000000 |
| H101 | 7.408000000   | 0.3490000000   | -0.6940000000 |
| H102 | 6.1070000000  | 0.7190000000   | -4.300000000  |
| H103 | 6.0770000000  | 2.8740000000   | -5.4450000000 |
| H104 | 8.0210000000  | 4.7070000000   | -2.0660000000 |
| H105 | 8.0170000000  | 2.5510000000   | -0.910000000  |
| H106 | 9.9710000000  | 6.2310000000   | -7.6280000000 |
| H107 | 8.402000000   | 5.4600000000   | -7.7440000000 |
| H108 | 9.020000000   | 8.3380000000   | -6.9600000000 |
| H109 | 7.9520000000  | 7.7300000000   | -8.198000000  |
| H110 | 10.1630000000 | 8.0810000000   | -5.278000000  |
| H111 | 10.319000000  | 7.8280000000   | -3.5580000000 |
| H112 | 8.091000000   | 8.4180000000   | -3.0720000000 |
| H113 | 8.5790000000  | 9.5900000000   | -4.2790000000 |
| H114 | 9.620000000   | 5.5720000000   | -3.7220000000 |
| H115 | 9.2320000000  | 4.4640000000   | -5.7590000000 |
| H116 | 6.1910000000  | 8.4130000000   | -4.4880000000 |
| H117 | 6.1230000000  | 7.604000000    | -6.6980000000 |

| H118 | 5.1330000000  | 5.907000000   | -2.3120000000 |
|------|---------------|---------------|---------------|
| H119 | 4.4710000000  | 5.604000000   | -6.5560000000 |
| H120 | 2.0580000000  | 5.4910000000  | -6.1610000000 |
| H121 | 2.7390000000  | 5.8270000000  | -1.9280000000 |
| H122 | 0.1920000000  | 5.1320000000  | -4.6770000000 |
| H123 | 0.6680000000  | 6.0430000000  | -1.7970000000 |
| H124 | -0.9320000000 | 5.8590000000  | -0.2280000000 |
| H125 | -2.0260000000 | 4.6740000000  | -4.2130000000 |
| H126 | -4.1710000000 | 3.8530000000  | -3.3780000000 |
| H127 | -3.0430000000 | 4.9820000000  | 0.6160000000  |
| H128 | -5.0430000000 | 2.0960000000  | -2.2560000000 |
| H129 | -6.4930000000 | 0.5840000000  | -1.030000000  |
| H130 | -6.5770000000 | 3.3410000000  | 2.2700000000  |
| H131 | -5.1720000000 | 4.8960000000  | 1.0070000000  |
| H132 | -7.1730000000 | 1.1110000000  | 2.7160000000  |
| H133 | -7.4070000000 | -0.7910000000 | 0.3320000000  |
| H134 | -7.9490000000 | -3.0060000000 | 0.7150000000  |
| H135 | -7.7170000000 | -5.0240000000 | 2.0770000000  |
| H136 | -6.8220000000 | -2.5800000000 | 5.5090000000  |
| H137 | -7.0780000000 | -0.5720000000 | 4.1540000000  |
| H138 | -7.8530000000 | -9.6940000000 | 4.9640000000  |
| H139 | -7.6120000000 | -8.6040000000 | 3.6140000000  |
| H140 | -9.8700000000 | -8.2760000000 | 4.2040000000  |
| H141 | -9.5770000000 | -8.3230000000 | 5.9230000000  |
| H142 | -9.5020000000 | -5.9390000000 | 4.1030000000  |
| H143 | -9.1630000000 | -4.5880000000 | 5.9990000000  |
| H144 | -8.0780000000 | -5.2520000000 | 8.0020000000  |
| H145 | -9.5210000000 | -6.2440000000 | 8.0680000000  |
| H146 | -7.2710000000 | -7.3740000000 | 8.6270000000  |
| H147 | -8.3100000000 | -8.2510000000 | 7.5350000000  |
| H148 | -5.574000000  | -7.1490000000 | 6.9900000000  |

| H149 | -5.6540000000 | -8.1710000000 | 4.876000000   |
|------|---------------|---------------|---------------|
| H150 | -5.092000000  | -5.4400000000 | 2.3760000000  |
| H151 | -4.206000000  | -5.4010000000 | 6.5890000000  |
| H152 | -1.820000000  | -5.4040000000 | 6.0780000000  |
| H153 | -2.7140000000 | -5.4700000000 | 1.8740000000  |
| H154 | -0.0130000000 | -5.5150000000 | 4.6180000000  |
| H155 | -0.5610000000 | -5.5870000000 | 1.608000000   |
| H156 | 2.1370000000  | -5.6270000000 | 4.3530000000  |
| H157 | 4.5020000000  | -5.8680000000 | 3.8600000000  |
| H158 | 3.6300000000  | -5.9550000000 | -0.3550000000 |
| H159 | 1.2430000000  | -5.7470000000 | 0.1500000000  |

# 7-Pt<sub>2</sub>

B3LYP/LACVP optimized geometry

Final total energy = -3020.5276 hartrees

Final geometry:

| atom | Х             | y z           |               |
|------|---------------|---------------|---------------|
| C1   | 2.7417816369  | 5.5023445321  | -4.0134382684 |
| C2   | -2.5340174076 | -5.7426407709 | 4.0947095886  |
| C3   | 6.1688307957  | -1.2549625306 | -0.7861846186 |
| C4   | -5.7094242611 | 1.3199281477  | 1.4397715181  |
| C5   | 3.6442139093  | 6.2138488276  | -3.1983655266 |
| C6   | -3.4432680607 | -6.2070173008 | 3.1226637656  |
| C7   | 5.7141656380  | -2.4626647428 | -1.3506611120 |
| C8   | -5.1973965831 | 2.5053698455  | 2.0032609543  |
| C9   | 4.9822338474  | 6.3604287731  | -3.5530520057 |
| C10  | -4.7922670987 | -6.3828601023 | 3.4139607483  |
| C11  | 4.8148111300  | -3.2886764349 | -0.6897450945 |
| C12  | -4.3380836149 | 3.3425074933  | 1.3006696129  |
| C13  | 5.4959923635  | 5.8200595945  | -4.7482066042 |

| C14 | -5.3125676140 | -6.1247867491 | 4.6973029564  |
|-----|---------------|---------------|---------------|
| C15 | 4.3062886562  | -2.9535068319 | 0.5782661240  |
| C16 | -3.9241413139 | 3.0326594602  | -0.0086290818 |
| C17 | 4.5843579670  | 5.1648754980  | -5.5932444194 |
| C18 | -4.3987762592 | -5.7208019917 | 5.6848512667  |
| C19 | 4.8475138510  | -1.8057282093 | 1.1922918986  |
| C20 | -4.5174923371 | 1.9034785148  | -0.6085600684 |
| C21 | -3.0457766464 | -5.5348634105 | 5.3885728842  |
| C22 | 3.2422564556  | 5.0146617572  | -5.2348080499 |
| C23 | 5.7567886139  | -0.9823752224 | 0.5359461057  |
| C24 | -5.3881993639 | 1.0744070028  | 0.0878577889  |
| C25 | 7.3261044882  | 8.2006977980  | -5.8249164836 |
| C26 | -7.2155424342 | -8.6145064721 | 5.2558559217  |
| C27 | 7.2720293932  | 7.4842937632  | -7.0017084372 |
| C28 | -7.1644804886 | -8.1438434784 | 6.5512157472  |
| C29 | 3.1547060596  | -3.6899384202 | 1.1582576024  |
| C30 | -2.8080286785 | 3.7574791015  | -0.6660959094 |
| C31 | 7.7109148424  | 4.3164654351  | -3.9905985423 |
| C32 | -7.4737542800 | -4.4634238645 | 4.1671021910  |
| C33 | 8.4244859050  | 7.2911976429  | -7.9768769324 |
| C34 | -8.3261262277 | -8.1119072685 | 7.5335958297  |
| C35 | 2.9039577978  | -3.7831091089 | 2.5424144390  |
| C36 | -2.6470077669 | 3.8158745965  | -2.0662080686 |
| C37 | 7.7399400125  | 3.0039134210  | -4.5043367233 |
| C38 | -7.2124982206 | -3.2510923008 | 4.8370817152  |
| C39 | 9.2755957475  | 6.0216514820  | -7.7188167981 |
| C40 | -9.1391630453 | -6.7925856928 | 7.5187736935  |
| C41 | 1.7376986243  | -4.3585359783 | 3.0405414033  |
| C42 | -1.5054710027 | 4.3524551606  | -2.6544606281 |
| C43 | 7.6930409630  | 1.8874671203  | -3.6690381167 |
| C44 | -7.1243922365 | -2.0389073672 | 4.1530379426  |

| C45  | 9.5487722679  | 5.7068753512  | -6.2619246645 |
|------|---------------|---------------|---------------|
| C46  | -9.3878104308 | -6.1976686552 | 6.1475430385  |
| C47  | 0.7510186304  | -4.8745151521 | 2.1744150725  |
| C48  | -0.4531774894 | 4.8658707776  | -1.8684366725 |
| C49  | 7.6076335411  | 2.0303919545  | -2.2691671347 |
| C50  | -7.2802242886 | -1.9809595088 | 2.7526665538  |
| C51  | 9.7738515541  | 6.6035807027  | -5.2387808415 |
| C52  | -9.6243496107 | -6.8762101375 | 4.9709883446  |
| C53  | 1.0327398312  | -4.8303678925 | 0.7952337878  |
| C54  | -0.6491544466 | 4.8711608911  | -0.4736363145 |
| C55  | 7.6921773886  | 3.3391057043  | -1.7574593766 |
| C56  | -7.6400326774 | -3.1765242842 | 2.1026952470  |
| C57  | 9.8779664782  | 8.1151076400  | -5.3866290696 |
| C58  | -9.7597076366 | -8.3849550893 | 4.8200971467  |
| C59  | 2.1920996711  | -4.2523302881 | 0.3005121624  |
| C60  | -1.7841084744 | 4.3276021760  | 0.1115106107  |
| C61  | 7.7369412874  | 4.4534672934  | -2.5927006589 |
| C62  | -7.7355064464 | -4.3861562184 | 2.7884967942  |
| C63  | 8.5365622569  | 8.8704494952  | -5.2074104187 |
| C64  | -8.4307440735 | -9.1170390373 | 4.5035057891  |
| C65  | -0.5661133469 | -5.3758646349 | 2.5763583568  |
| C66  | 0.8454718188  | 5.3205613797  | -2.3744325296 |
| C67  | 7.2563596994  | 0.9511739616  | -1.3412778991 |
| C68  | -6.9253687745 | -0.8288175828 | 1.9197987328  |
| C69  | -1.1388616214 | -5.3893806131 | 3.7993753906  |
| C70  | 1.3649799184  | 5.1812169251  | -3.6135638022 |
| C71  | 6.8793817048  | -0.3080924792 | -1.6507346395 |
| C72  | -6.3884060063 | 0.3491334380  | 2.3048648706  |
| Pt73 | 7.4920567669  | 5.9624365542  | -5.1902103471 |
| Pt74 | -7.3193948940 | -6.2969984363 | 5.0670204790  |
| H75  | 4.4794922435  | -4.1976166121 | -1.1797637119 |

| H76  | 6.0418261167  | -2.7302547721 | -2.3529599894 |
|------|---------------|---------------|---------------|
| H77  | 6.0894475829  | -0.0752953938 | 1.0324690492  |
| H78  | 4.4898921221  | -1.5091648404 | 2.1741885332  |
| H79  | 6.9704016767  | -0.6377767592 | -2.6851057567 |
| H80  | 7.1613631214  | 1.2773457432  | -0.3063788945 |
| H81  | 7.6604231567  | 0.8975177140  | -4.1176434762 |
| H82  | 7.7406686596  | 2.8433631454  | -5.5805386446 |
| H83  | 7.7318620743  | 5.4421219287  | -2.1404959982 |
| H84  | 7.6528031869  | 3.4842117215  | -0.6792075845 |
| H85  | 10.2261645147 | 6.1004531624  | -8.2678760786 |
| H86  | 8.7547153703  | 5.1562873563  | -8.1437273315 |
| H87  | 9.0602994613  | 8.1810165845  | -7.9729970394 |
| H88  | 8.0127722421  | 7.2240973883  | -8.9896791290 |
| H89  | 10.3220085661 | 8.3583681398  | -6.3556709942 |
| H90  | 10.5811655381 | 8.4881284362  | -4.6342745699 |
| H91  | 8.3330950072  | 8.9795235399  | -4.1363344521 |
| H92  | 8.6371655335  | 9.8934661110  | -5.6004865772 |
| H93  | 10.1140254119 | 6.1894425352  | -4.2927070479 |
| H94  | 9.7595560940  | 4.6606763633  | -6.0514971943 |
| H95  | 6.3755509343  | 8.4674979655  | -5.3688692890 |
| H96  | 6.2822664393  | 7.2176507833  | -7.3650332630 |
| H97  | 5.6430818600  | 6.8856958735  | -2.8673378198 |
| H98  | 4.9240517229  | 4.7312841466  | -6.5311467933 |
| H99  | 2.5726804084  | 4.4704437675  | -5.8990656896 |
| H100 | 3.3029553218  | 6.6431641317  | -2.2603898863 |
| H101 | 0.7608051109  | 4.7123732479  | -4.3897120463 |
| H102 | 1.4858687533  | 5.7434803326  | -1.6015763317 |
| H103 | 0.1376431761  | 5.2663990613  | 0.1649923004  |
| H104 | -1.4260720342 | 4.3614930125  | -3.7383498426 |
| H105 | -3.4322663693 | 3.4290326502  | -2.7093882967 |
| H106 | -1.8482024412 | 4.2894999767  | 1.1946960949  |

| H107 | -4.2257662618  | 1.6208935439   | -1.6156899294 |
|------|----------------|----------------|---------------|
| H108 | -5.7527735513  | 0.1767100871   | -0.4025649764 |
| H109 | -5.4517714508  | 2.7505145972   | 3.0322942016  |
| H110 | -3.9587853247  | 4.2349868029   | 1.7888021572  |
| H111 | -6.3288010736  | 0.5773317112   | 3.3686535518  |
| H112 | -7.0004083570  | -1.0285531469  | 0.8515835179  |
| H113 | -7.7878241387  | -3.1636858341  | 1.0239961810  |
| H114 | -7.9585752316  | -5.2880912731  | 2.2225610974  |
| H115 | -7.0135734272  | -3.2571608091  | 5.9061400331  |
| H116 | -6.8635317857  | -1.1408026439  | 4.7076318449  |
| H117 | -8.5555228302  | -10.1961266101 | 4.6784929672  |
| H118 | -8.2145779969  | -9.0104508974  | 3.4345179422  |
| H119 | -10.4619522433 | -8.5888587222  | 4.0045368370  |
| H120 | -10.2179082641 | -8.8050696421  | 5.7194170877  |
| H121 | -9.9403469564  | -6.2786838606  | 4.1190589164  |
| H122 | -9.5684720270  | -5.1248141939  | 6.1409033377  |
| H123 | -8.5997496604  | -6.0397214227  | 8.1040916514  |
| H124 | -10.0978507850 | -6.9474498475  | 8.0365632132  |
| H125 | -7.9280537802  | -8.2546748136  | 8.5439813722  |
| H126 | -8.9852055325  | -8.9649205032  | 7.3507908261  |
| H127 | -6.1747451510  | -7.9810866344  | 6.9703402221  |
| H128 | -6.2641872505  | -8.8154115271  | 4.7677540797  |
| H129 | -5.4576722643  | -6.6955055388  | 2.6127968474  |
| H130 | -4.7430529736  | -5.5105785131  | 6.6950270392  |
| H131 | -2.3736656625  | -5.1864249611  | 6.1713068800  |
| H132 | -3.1018056237  | -6.4047316291  | 2.1105133499  |
| H133 | -0.5640781088  | -5.0426881263  | 4.6576720453  |
| H134 | -1.1693109850  | -5.7096644998  | 1.7333207432  |
| H135 | 1.5849065412   | -4.3909494348  | 4.1160484236  |
| H136 | 3.6370910756   | -3.3943086593  | 3.2437341576  |
| H137 | 2.3258886389   | -4.1819421322  | -0.7745102719 |

#### 8-Pt<sub>2</sub>

B3LYP/LACVP optimized geometry

Final total energy = -3020.5291 hartrees

Final geometry:

| atom | X             | y z           |               |
|------|---------------|---------------|---------------|
| C1   | 2.7519003356  | 4.6526318176  | -2.6216403128 |
| C2   | -2.4744461618 | -4.2117704549 | 3.4077780111  |
| C3   | 7.3079454051  | -0.6405759167 | -0.1500881626 |
| C4   | -6.7107218451 | 1.2251672456  | 1.7451742066  |
| C5   | 3.9629334434  | 4.6166813903  | -1.9047922227 |
| C6   | -3.0547792696 | -5.2218147288 | 2.6155548409  |
| C7   | 6.9962900655  | -1.9961757405 | 0.0601077799  |
| C8   | -5.5594134494 | 0.6213491171  | 2.2850338464  |
| C9   | 5.1843336092  | 4.8358587536  | -2.5413472579 |
| C10  | -4.2956399624 | -5.7675170830 | 2.9379630762  |
| C11  | 5.7025982837  | -2.4086896926 | 0.3500959096  |
| C12  | -4.2886438370 | 0.9621310908  | 1.8348435877  |
| C13  | 5.2727233180  | 5.1050368101  | -3.9261437435 |
| C14  | -5.0302953173 | -5.3301299867 | 4.0590895330  |
| C15  | 4.6539413451  | -1.4809133641 | 0.4760775040  |
| C16  | -4.0894584893 | 1.9096616471  | 0.8121013564  |
| C17  | 4.0492986819  | 5.1955673627  | -4.6188127053 |
| C18  | -4.4259083588 | -4.3619739349 | 4.8795279823  |
| C19  | 4.9648061883  | -0.1238722346 | 0.2836794901  |
| C20  | -5.2428558536 | 2.4929313826  | 0.2546140340  |
| C21  | -3.1767440477 | -3.8278867232 | 4.5657218452  |
| C22  | 2.8256889255  | 4.9861322208  | -3.9847860801 |
| C23  | 6.2574462336  | 0.2880178681  | -0.0307257960 |

| C24 | -6.5115551013 | 2.1711760281  | 0.7213381462  |
|-----|---------------|---------------|---------------|
| C25 | 6.6825246227  | 7.4228833342  | -5.7647526301 |
| C26 | -6.4836664923 | -8.3054247816 | 4.2700378515  |
| C27 | 6.3118528221  | 6.6047539953  | -6.8082850521 |
| C28 | -6.3639639716 | -7.8674792351 | 5.5724471685  |
| C29 | 3.2924452830  | -1.9585586666 | 0.8179015542  |
| C30 | -2.7317227283 | 2.3058971978  | 0.3621537717  |
| C31 | 7.7618799793  | 3.7803712063  | -3.7203388081 |
| C32 | -7.4853964819 | -4.0550029401 | 3.8696784649  |
| C33 | 7.1383126795  | 6.2680777288  | -8.0395036741 |
| C34 | -7.4003830455 | -7.9575021308 | 6.6735481521  |
| C35 | 2.4685902042  | -1.3032941694 | 1.7538689163  |
| C36 | -2.4995441566 | 3.5746945596  | -0.2042107420 |
| C37 | 7.1772152575  | 2.5006359181  | -3.6746246326 |
| C38 | -7.0791172522 | -3.4437945392 | 2.6664725940  |
| C39 | 8.0012088664  | 4.9935183523  | -7.8854445217 |
| C40 | -8.8703301832 | -7.7841403213 | 6.2162478852  |
| C41 | 1.2360613666  | -1.8347660148 | 2.1299340662  |
| C42 | -1.2402815451 | 3.9617623279  | -0.6415869353 |
| C43 | 7.6503659172  | 1.5096963841  | -2.8174939559 |
| C44 | -7.4359861620 | -2.1343257035 | 2.3526440199  |
| C45 | 8.6985872925  | 4.8490923050  | -6.5498610456 |
| C46 | -9.0745360672 | -6.6938572418 | 5.1748254216  |
| C47 | 0.7637470802  | -3.0437165974 | 1.5781229391  |
| C48 | -0.1304677217 | 3.1033624101  | -0.5291074931 |
| C49 | 8.7302934478  | 1.7526220641  | -1.9503684844 |
| C50 | -8.2088029826 | -1.3578799930 | 3.2346945469  |
| C51 | 9.2137847551  | 5.8534957421  | -5.7554919718 |
| C52 | -9.0478750809 | -6.8573850739 | 3.8066503006  |
| C53 | 1.5657910879  | -3.6586653982 | 0.5983764218  |
| C54 | -0.3507475815 | 1.8500403217  | 0.0732572582  |

| C55  | 9.3353638833  | 3.0191589977  | -2.0139882137 |
|------|---------------|---------------|---------------|
| C56  | -8.6333540453 | -1.9704741581 | 4.4263714198  |
| C57  | 9.2498391743  | 7.3398485491  | -6.0806271935 |
| C58  | -8.7412051701 | -8.1252328550 | 3.0371216863  |
| C59  | 2.8001171353  | -3.1390241976 | 0.2361028389  |
| C60  | -1.6179363564 | 1.4558240847  | 0.4929742505  |
| C61  | 8.8580263405  | 4.0131316411  | -2.8690654395 |
| C62  | -8.2739363327 | -3.2819619058 | 4.7416897758  |
| C63  | 8.0125122716  | 8.1239242045  | -5.5777424720 |
| C64  | -7.6734328297 | -9.0473036702 | 3.6772128221  |
| C65  | -0.4878596389 | -3.7060757224 | 1.9521266951  |
| C66  | 1.2017473212  | 3.4637131571  | -1.0306482492 |
| C67  | -8.6639066997 | 0.0093619777  | 2.9268565245  |
| C68  | -1.2236668176 | -3.5245769197 | 3.0679552918  |
| C69  | 1.4440070216  | 4.3215513093  | -2.0440444517 |
| C70  | 8.7202456686  | -0.2793667714 | -0.3728260278 |
| C71  | -8.0759976671 | 1.0273505327  | 2.2603234661  |
| Pt72 | 7.0596774758  | 5.2572515136  | -4.9373283482 |
| Pt73 | -6.9494970520 | -5.9744993376 | 4.3368377222  |
| H74  | 5.5042662302  | -3.4627576370 | 0.5234997735  |
| H75  | 7.7916841681  | -2.7359270177 | 0.0009586827  |
| H76  | 6.4592568382  | 1.3439675268  | -0.1760681310 |
| H77  | 4.1770831090  | 0.6201538403  | 0.3629414661  |
| H78  | 7.1764309798  | 0.5328055664  | -2.8189881256 |
| H79  | 6.3241266972  | 2.2765969600  | -4.3084908853 |
| H80  | 9.3399360331  | 4.9874914361  | -2.8477149729 |
| H81  | 10.1859358699 | 3.2325591160  | -1.3688074246 |
| H82  | 8.7432668287  | 4.9485506845  | -8.6973028523 |
| H83  | 7.3602388364  | 4.1141525377  | -8.0143874524 |
| H84  | 7.7640269663  | 7.1209409159  | -8.3142429147 |
| H85  | 6.4533924619  | 6.1172976484  | -8.8811183232 |

| H86  | 9.3822974771  | 7.4836212863  | -7.1563419356 |
|------|---------------|---------------|---------------|
| H87  | 10.1402652937 | 7.7728805108  | -5.6118971234 |
| H88  | 8.1287236392  | 8.3180647781  | -4.5058200609 |
| H89  | 7.9790683721  | 9.1111804229  | -6.0623900312 |
| H90  | 9.8406601067  | 5.5337697201  | -4.9278183340 |
| H91  | 8.9852471863  | 3.8306204811  | -6.2968228831 |
| H92  | 5.8915406001  | 7.7573854979  | -5.0971395170 |
| H93  | 5.2622466985  | 6.3359333607  | -6.8658257851 |
| H94  | 6.0909038232  | 4.7756164925  | -1.9486827434 |
| H95  | 4.0313644959  | 5.3963247998  | -5.6857371534 |
| H96  | 1.9074123252  | 5.0385958718  | -4.5670975511 |
| H97  | 3.9466203571  | 4.4135376805  | -0.8363660446 |
| H98  | 0.5893356255  | 4.7578917361  | -2.5606725792 |
| H99  | 2.0391221098  | 2.9301062054  | -0.5824897307 |
| H100 | 0.4812185712  | 1.1574570864  | 0.1825768917  |
| H101 | -1.1050285488 | 4.9606771285  | -1.0473203275 |
| H102 | -3.3146106086 | 4.2881977325  | -0.2720153380 |
| H103 | -1.7450763441 | 0.4587043838  | 0.9050267959  |
| H104 | -5.1494782649 | 3.2031380836  | -0.5605709501 |
| H105 | -7.3778424720 | 2.6614428981  | 0.2822877458  |
| H106 | -5.6594560284 | -0.0951515241 | 3.0930380634  |
| H107 | -3.4295694726 | 0.5073180061  | 2.3181336499  |
| H108 | -9.2466604766 | -1.4021787868 | 5.1237152413  |
| H109 | -8.6056439759 | -3.6923777760 | 5.6928152359  |
| H110 | -6.4592496176 | -3.9941937247 | 1.9653177375  |
| H111 | -7.1131181272 | -1.7048489211 | 1.4090526389  |
| H112 | -8.1292630798 | -9.6845211054 | 4.4399406843  |
| H113 | -7.3043749039 | -9.7281434032 | 2.9025298920  |
| H114 | -8.3976730004 | -7.8233505923 | 2.0415521090  |
| H115 | -9.6697108171 | -8.6933306107 | 2.8764911304  |
| H116 | -9.4618719112 | -6.0497554007 | 3.2071055007  |

| H117 | -9.4794624358 | -5.7546136062 | 5.5412243901  |
|------|---------------|---------------|---------------|
| H118 | -9.4728649601 | -7.5364738135 | 7.0970103985  |
| H119 | -9.2670927130 | -8.7320122046 | 5.8425197444  |
| H120 | -7.1637258310 | -7.1759704835 | 7.4042466091  |
| H121 | -7.2921064376 | -8.9135071913 | 7.2081345458  |
| H122 | -5.3664975433 | -7.5922883050 | 5.9074841073  |
| H123 | -5.5736871705 | -8.3093242521 | 3.6750750866  |
| H124 | -4.7153490879 | -6.5193909844 | 2.2729869232  |
| H125 | -4.9526654366 | -3.9845351709 | 5.7516056824  |
| H126 | -2.7490718038 | -3.0612584246 | 5.2099706381  |
| H127 | -2.5457042779 | -5.5752630631 | 1.7235430165  |
| H128 | -0.8879390518 | -2.7953178689 | 3.8046856891  |
| H129 | -0.8143470556 | -4.4593368799 | 1.2371559111  |
| H130 | 0.6345208545  | -1.3077001401 | 2.8648204574  |
| H131 | 2.8187766620  | -0.3870789640 | 2.2224302028  |
| H132 | 3.3914275686  | -3.6459028282 | -0.5214727616 |
| H133 | 1.2131613442  | -4.5743963126 | 0.1289280954  |
| H134 | -9.6694192222 | 0.2209789340  | 3.2933351020  |
| H135 | -8.7133009950 | 1.8974606691  | 2.0987788204  |
| C136 | 9.2993577864  | 0.7304395785  | -1.0558548699 |
| H137 | 10.3826125378 | 0.8010036841  | -0.9489262289 |
| H138 | 9.4126304655  | -0.9546761452 | 0.1310960798  |

# **III) TD-DFT calculations**

### 1-CTCT

| Restricted Singlet Excited State | 1: | 2.8403 eV | 436.52 nm |
|----------------------------------|----|-----------|-----------|
|----------------------------------|----|-----------|-----------|

excitation X coeff.

-----

 $186 \Longrightarrow 191 -0.16190$  $187 \Longrightarrow 190 0.18274$   $188 \implies 189 \quad 0.96605$ 

Transition dipole moment (debye):

X= 0.0098 Y= 0.1461 Z= -0.1425 Tot= 0.2043

Oscillator strength, f= 0.0004

\_\_\_\_\_

Restricted Singlet Excited State 2: 3.2182 eV 385.26 nm

excitation X coeff.

-----

 $187 \Longrightarrow 189 -0.72095$  $188 \Longrightarrow 190 0.68883$ 

Transition dipole moment (debye):

X= -0.1162 Y= -0.4217 Z= 0.2625 Tot= 0.5101

Oscillator strength, f = 0.0032

\_\_\_\_\_

Restricted Singlet Excited State 3: 3.3269 eV 372.67 nm

excitation X coeff.

-----

 $187 \Longrightarrow 189 \quad 0.69020$  $188 \Longrightarrow 190 \quad 0.72204$ 

Transition dipole moment (debye):

X= 10.2379 Y= 5.5929 Z= -9.0027 Tot= 14.7358

Oscillator strength, f=2.7396

\_\_\_\_\_

Restricted Singlet Excited State 4: 3.4178 eV 362.76 nm

excitation X coeff.

-----

 $186 \Rightarrow 191 \quad 0.15104$  $187 \Rightarrow 190 \quad -0.95731$  $188 \Rightarrow 189 \quad 0.21595$ 

Transition dipole moment (debye):

X= 0.1937 Y= 0.2298 Z= -0.1215 Tot= 0.3242

Oscillator strength, f = 0.0014

-----

Restricted Singlet Excited State 5: 3.4871 eV 355.55 nm

excitation X coeff. ------186 => 189 -0.93223

 $188 \implies 191 \quad 0.34275$ 

Transition dipole moment (debye):

X= 4.0878 Y= -5.7778 Z= 0.3970 Tot= 7.0888

Oscillator strength, f = 0.6645

Restricted Singlet Excited State 6: 3.5421 eV 350.03 nm

\_\_\_\_\_

excitation X coeff. 186 => 189 -0.33862 188 => 191 -0.92991

Transition dipole moment (debye):

X= -1.2592 Y= 3.0727 Z= -0.7642 Tot= 3.4075

Oscillator strength, f = 0.1560

\_\_\_\_\_

Restricted Singlet Excited State 7: 3.6556 eV 339.16 nm

excitation X coeff. 186 => 190 0.75679 187 => 191 0.64193

Transition dipole moment (debye):

X= 0.0907 Y= 0.0653 Z= -0.0913 Tot= 0.1443

Oscillator strength, f = 0.0003

-----

Restricted Singlet Excited State 8: 3.8689 eV 320.47 nm

excitation X coeff. 184 => 189 -0.10011 186 => 190 0.63799  $187 \implies 191 -0.75048$ 

Transition dipole moment (debye):

X= 0.1247 Y= -0.0390 Z= 0.0121 Tot= 0.1312

Oscillator strength, f = 0.0003

\_\_\_\_\_

Restricted Singlet Excited State 9: 3.9563 eV 313.38 nm

excitation X coeff.

185 => 189 -0.77586

 $188 \implies 192 \quad 0.61470$ 

Transition dipole moment (debye):

X= -0.0200 Y= -0.0135 Z= 0.0375 Tot= 0.0445

Oscillator strength, f = 0.0000

-----

Restricted Singlet Excited State 10: 4.0846 eV 303.54 nm

excitation X coeff.

-----

 $186 \Rightarrow 191$ 0.95152 $187 \Rightarrow 190$ 0.19080 $188 \Rightarrow 189$ 0.13273

Transition dipole moment (debye):

X= -0.1672 Y= 0.1130 Z= -0.1874 Tot= 0.2754

Oscillator strength, f = 0.0012

\_\_\_\_\_

Restricted Singlet Excited State 11: 4.1290 eV 300.28 nm

excitation X coeff. 185 => 189 0.59212 186 => 191 -0.15709 188 => 192 0.74631

Transition dipole moment (debye):

X= -0.0397 Y= -0.0362 Z= -0.1542 Tot= 0.1633

Oscillator strength, f = 0.0004

\_\_\_\_\_

Restricted Singlet Excited State 12: 4.1668 eV 297.55 nm

excitation X coeff. 184 => 191 -0.12701 185 => 190 0.75230 187 => 192 -0.60436

Transition dipole moment (debye):

X= 0.4607 Y= 0.6108 Z= -0.3975 Tot= 0.8621

Oscillator strength, f = 0.0117

-----

Restricted Singlet Excited State 13: 4.1733 eV 297.09 nm

excitation X coeff. 184 => 189 0.82246 188 => 193 0.52525

Transition dipole moment (debye):

X= 0.0298 Y= 0.0246 Z= 0.0082 Tot= 0.0395

Oscillator strength, f= 0.0000

-----

Restricted Singlet Excited State 14: 4.2773 eV 289.87 nm

| excitation X coeff. |     |          |  |
|---------------------|-----|----------|--|
|                     |     |          |  |
| 177 =>              | 189 | -0.18238 |  |
| 178 =>              | 190 | -0.12704 |  |
| 179 =>              | 189 | 0.17597  |  |
| 179 =>              | 190 | 0.11708  |  |
| 180 =>              | 190 | -0.12601 |  |
| 182 =>              | 191 | 0.10620  |  |
| 183 =>              | 189 | -0.23584 |  |
| 185 =>              | 190 | -0.44066 |  |
| 186 =>              | 194 | -0.15250 |  |
| 187 =>              | 192 | -0.39279 |  |
| 187 =>              | 197 | 0.20834  |  |
| 187 =>              | 198 | 0.15869  |  |
| 188 =>              | 194 | -0.45500 |  |

 $188 \Longrightarrow 195 \quad 0.16521$  $188 \Longrightarrow 196 \quad 0.21541$ 

Transition dipole moment (debye):

X= -0.9144 Y= -1.0727 Z= 0.8660 Tot= 1.6543

Oscillator strength, f = 0.0444

-----

Restricted Singlet Excited State 15: 4.3002 eV 288.32 nm

excitation X coeff. \_\_\_\_\_ \_\_\_\_  $178 \implies 189 \quad 0.11579$  $178 \implies 190 -0.14599$  $179 \implies 189 -0.15004$  $180 \implies 189 -0.10124$  $182 \implies 189 -0.36538$  $183 \implies 189 -0.17310$  $183 \Longrightarrow 191 \quad 0.18239$  $185 \implies 190 \quad 0.23566$  $186 \implies 194 -0.21673$  $186 \implies 195 \quad 0.10093$  $187 \implies 192 \quad 0.29251$  $187 \implies 198 -0.18947$  $188 \implies 194 -0.47642$ 188 => 195 -0.33765  $188 \implies 196 -0.16517$ 188 => 199 0.14685

Transition dipole moment (debye):

X= 0.7864 Y= 0.8412 Z= -0.7680 Tot= 1.3842

Oscillator strength, f = 0.0312

#### **2-CCCC**

Restricted Singlet Excited State 1: 2.8726 eV 431.61 nm

excitation X coeff.

 $186 \Longrightarrow 191$  0.17886  $187 \Longrightarrow 190$  -0.20258  $188 \Longrightarrow 189$  -0.96033

Transition dipole moment (debye):

X= 0.4966 Y= 0.8011 Z= 0.3765 Tot= 1.0150

Oscillator strength, f = 0.0112

\_\_\_\_\_

Restricted Singlet Excited State 2: 3.3594 eV 369.07 nm

excitation X coeff.

-----

 $187 \Rightarrow 189 \quad 0.98257$  $188 \Rightarrow 190 \quad 0.15357$ 

Transition dipole moment (debye):

X= -2.2058 Y= 6.7296 Z= -5.2988 Tot= 8.8448

Oscillator strength, f = 0.9966

\_\_\_\_\_

Restricted Singlet Excited State 3: 3.3939 eV 365.32 nm

excitation X coeff. 187 => 189 0.14930 188 => 190 -0.98171

Transition dipole moment (debye):

X= 1.6217 Y= -4.8554 Z= 3.8698 Tot= 6.4172

Oscillator strength, f = 0.5300

-----

Restricted Singlet Excited State 4: 3.4228 eV 362.23 nm

excitation X coeff.

-----

186 => 189 -0.99138

Transition dipole moment (debye):

X= -4.2468 Y= -5.0302 Z= -4.5157 Tot= 7.9831

Oscillator strength, f = 0.8272

Restricted Singlet Excited State 5: 3.4528 eV 359.08 nm

\_\_\_\_\_

excitation X coeff.

\_\_\_\_\_

188 => 191 -0.99068
Transition dipole moment (debye):

X= 3.6856 Y= 4.3812 Z= 3.9015 Tot= 6.9282

Oscillator strength, f = 0.6285

\_\_\_\_\_

Restricted Singlet Excited State 6: 3.6298 eV 341.57 nm

excitation X coeff.

-----

 $186 \Rightarrow 191 \quad 0.41344$  $187 \Rightarrow 190 \quad -0.86567$  $188 \Rightarrow 189 \quad 0.26353$ 

Transition dipole moment (debye):

X= -0.3316 Y= -0.8068 Z= -0.3852 Tot= 0.9535

Oscillator strength, f = 0.0125

\_\_\_\_\_

Restricted Singlet Excited State 7: 3.6534 eV 339.37 nm

excitation X coeff.

-----

 $186 \Longrightarrow 190 \quad 0.69280$  $187 \Longrightarrow 191 \quad 0.70700$ 

Transition dipole moment (debye):

X= 0.1092 Y= 0.2048 Z= 0.0975 Tot= 0.2517

Oscillator strength, f = 0.0009

\_\_\_\_\_

Restricted Singlet Excited State 8: 3.8439 eV 322.55 nm

excitation X coeff.

-----

 $186 \implies 190$  0.14667  $186 \implies 191$  -0.86605  $187 \implies 190$  -0.43211  $187 \implies 191$  -0.14592

Transition dipole moment (debye):

X= -0.0124 Y= 0.9090 Z= -0.7149 Tot= 1.1565

Oscillator strength, f = 0.0195

-----

Restricted Singlet Excited State 9: 3.8805 eV 319.50 nm

excitation X coeff. 184 => 189 0.15188 185 => 189 -0.10290 186 => 190 -0.68204 186 => 191 -0.17536 187 => 190 -0.10529 187 => 191 0.66577

Transition dipole moment (debye):

X= -0.9055 Y= -1.5476 Z= -0.0330 Tot= 1.7934

Oscillator strength, f = 0.0473

\_\_\_\_\_

Restricted Singlet Excited State 10: 4.0253 eV 308.01 nm

excitation X coeff.

-----

 $184 \Longrightarrow 189 -0.10934$  $185 \Longrightarrow 189 0.84404$  $188 \Longrightarrow 192 -0.47354$  $188 \Longrightarrow 193 -0.14094$ 

Transition dipole moment (debye):

X= -0.1475 Y= 0.0432 Z= 0.1591 Tot= 0.2213

Oscillator strength, f = 0.0007

\_\_\_\_\_

Restricted Singlet Excited State 11: 4.0904 eV 303.11 nm

excitation X coeff.

-----

184 => 189 -0.82262 185 => 189 -0.16233 188 => 193 -0.49938

Transition dipole moment (debye):

X= -0.0248 Y= 0.1468 Z= 0.0765 Tot= 0.1674

Oscillator strength, f = 0.0004

\_\_\_\_\_

Restricted Singlet Excited State 12: 4.2012 eV 295.12 nm

excitation X coeff. 185 => 189 0.46015 188 => 192 0.83330 188 => 193 -0.14989

Transition dipole moment (debye):

X= -0.4385 Y= 0.3478 Z= 0.1817 Tot= 0.5885

Oscillator strength, f = 0.0055

-----

Restricted Singlet Excited State 13: 4.2360 eV 292.69 nm

| excitation X coeff. |     |          |  |  |
|---------------------|-----|----------|--|--|
|                     |     |          |  |  |
| 181 =>              | 191 | -0.17149 |  |  |
| 182 =>              | 189 | 0.38367  |  |  |
| 182 =>              | 190 | -0.21287 |  |  |
| 183 =>              | 189 | 0.33600  |  |  |
| 183 =>              | 190 | 0.10899  |  |  |
| 186 =>              | 196 | 0.20579  |  |  |
| 187 =>              | 194 | 0.13901  |  |  |
| 187 =>              | 195 | 0.26177  |  |  |
| 188 =>              | 194 | -0.64944 |  |  |
| 188 =>              | 196 | -0.15250 |  |  |

Transition dipole moment (debye):

X= 0.0116 Y= 0.1527 Z= -0.0639 Tot= 0.1659

Oscillator strength, f = 0.0004

-----

Restricted Singlet Excited State 14: 4.2676 eV 290.52 nm

excitation X coeff.

-----

| 179 => | 191 | -0.10797 |
|--------|-----|----------|
| 180 => | 190 | -0.13819 |
| 182 => | 189 | -0.35249 |
| 183 => | 189 | 0.38827  |
| 183 => | 190 | 0.27583  |
| 186 => | 198 | 0.12153  |
| 187 => | 194 | -0.30827 |
| 187 => | 195 | 0.14648  |
| 187 => | 197 | -0.13513 |
| 188 => | 195 | 0.60040  |

Transition dipole moment (debye):

X= -0.0557 Y= -0.0511 Z= 0.2039 Tot= 0.2174

Oscillator strength, f = 0.0008

\_\_\_\_\_

Restricted Singlet Excited State 15: 4.3043 eV 288.05 nm

excitation X coeff.

-----

S76

| 179 => | 190 | -0.13611 |
|--------|-----|----------|
| 180 => | 189 | 0.13841  |
| 180 => | 191 | 0.15447  |
| 181 => | 189 | -0.51099 |
| 182 => | 191 | 0.15288  |
| 183 => | 191 | 0.16615  |
| 184 => | 190 | -0.11453 |
| 186 => | 194 | 0.28813  |
| 186 => | 197 | -0.12078 |
| 187 => | 195 | -0.12450 |
| 187 => | 198 | -0.15483 |
| 188 => | 194 | 0.10671  |
| 188 => | 196 | -0.56707 |
| 188 => | 197 | 0.13707  |

Transition dipole moment (debye):

X = -0.1760 Y = 0.0222 Z = 0.0006 Tot = 0.1774

Oscillator strength, f= 0.0005

## **References and Notes**

- (1) Shabtai, E.; Segev, O.; Beust, R.; Rabinovitz, M. J. Chem. Soc. Perkin Trans. 2 2000, 1233–1241.
- (2) Blanc, E.; Schwarzenbach, D.; Flack, H. D. J. Appl. Cryst. 1991, 24, 1035–1041.
- (3) Clark, R. C.; Reid, J. S. Acta. Cryst. 1995, A51, 887–897.
- (4) Version 1.171.37.35 (2014). Oxford Diffraction /Agilent Technologies UK Ltd, Yarnton, England.
- (5) Sheldrick, G. M. Acta. Cryst. 2007, A64, 112–122.
- (6) Sheldrick, G. M. Acta. Cryst. 2015, A71, 3–8.
- (7) Palatinus, L.; Chapuis, G. J. Appl. Cryst. 2007, 40, 786–790.
- (8) Dolomanov, O. V.; Bourhis, L. J.; Gildea, R. J.; Howard, J. a K.; Puschmann, H. J. *Appl. Cryst.* **2009**, *42*, 339–341.
- (9) Spek, A. L. Acta. Cryst. 2009, D65, 148–155.
- (10) Van der Sluis, P.; Spek, a. L. Acta. Cryst. 1990, A46, 194–201.
- (11) Le Page, Y. J. Appl. Cryst. 1988, 21, 983–984.
- (12) Guzei, I. a. J. Appl. Cryst. 2014, 47, 806–809.
- (13) CrystalMaker Software Ltd, Oxford, England (www.crystalmaker.com).
- (14) Kubin, R. F.; Fletcher, A. N. Chem. Phys. Lett. 1983, 99, 49-52.
- (15) Brouwer, A. M. Pure Appl. Chem. 2011, 83, 2213–2228.
- (16) Bochevaroc, A. D.; Harder, E.; Hughes, T. F.; Greenwood, J. R.; Braden, D. A.; Philipp, D. M.; Rinaldo, D.; Halls, M. D.; Zhang, J.; Friesner, R. A. Int. J. Quantum Chem. 2013, 113, 2110–2142.