Rhodium-Catalyzed, Enantioselective Hydroacylation of ortho-Allylbenzaldehydes

Kirsten F. Johnson, Adam C. Schmidt, and Levi M. Stanley*

Department of Chemistry, Iowa State University, Ames, Iowa 50011

Supporting Information

Table of Contents

General Experimental Details	S-2
Materials	S-2
General Procedure A: Synthesis of ortho-Bromobenzylbromides S2b-S2e	S-3
Characterization Data for ortho-Bromobenzylbromides S2b-S2e	S-3
General Procedure B: Synthesis of S3a-S3e, S3g-S3h, S3o, S7	S-4
Characterization Data for <i>ortho</i> -Allylbromobenzenes S3a-S3e , S3g-S3h , S3o , S7	S-5
General Procedure C: Synthesis of 1a-1e, 1g-h, 1o, d-1a, 7	S-7
Characterization Data for ortho-Allylbenzaldehydes 1a-1e, 1g-h, 1o, d-1a, 7	S-7
Synthesis of 6-(2-Methylallyl)benzo[d][1,3]dioxole-5-carbaldehyde 1f	S-10
General Procedure D: Synthesis of ortho-Allylbenzaldehydes 1i-1n	S-11
Characterization Data for ortho-Allylbenzaldehydes 1i-1n	S-11
General Procedure E: Rh-Catalyzed Hydroacylation of 1a-1o	S-13
Characterization data for dihydronaphthalen-1(2H)-ones 2a-20	S-13
Rh-Catalyzed Hydroacylation of <i>d</i> -1a	S-19
Characterization data for <i>d</i> -2a and <i>d</i> -3	S-19
Kinetic Isotope Effect for 1a Versus d-1a	S-19
Rh-Catalyzed Hydroacylation of 5	S-21
Rh-Catalyzed Hydroacylation of 7	S-22
References	S-23
¹ H, ¹³ C, ¹⁹ F Spectra for New Compounds and HPLC Traces for 2a-2n and 8	S-24

General Experimental Details

All air-sensitive procedures were conducted under inert atmosphere in a nitrogen-filled dry box or by standard Schlenk techniques. All reactions were performed under nitrogen unless otherwise stated. All glassware for moisture sensitive reactions was dried in an oven at 140 °C for at least two hours before use. THF was degassed by purging with argon for 45 minutes and dried with a solvent purification system by passing through a one-meter column of activated alumina. Anhydrous 1,4-dioxane and DMF were purchased from Aldrich and used as received. Flash column chromatography was performed on SiliFlash® P60 silica gel (40-63µm, 60Å) using hexanes, hexanes/ethyl acetate, hexanes/diethyl ether, or pentane/diethyl ether mixtures. Products were visualized on TLC by UV light or by staining with KMnO₄, ceric ammonium molybdate (CAM), vanillin or *o*-anisaldehyde.

HRMS (ESI) analysis was performed at the Iowa State University Chemical Instrumentation Facility on an Agilent 6540 QTOF spectrometer. HPLC analyses were carried out on a Waters Alliance HPLC system with an e2695 separations module and a 2489 dual wavelength detector. Optical rotations were measured on an Atago AP-300 automatic polarimeter using a 0.5 dm cell. The absolute configuration of compound **2a** was assigned as *R* based on comparison of the optical rotation with the literature value,^{1,2} and the absolute configuration of compounds **2b-2n** were assigned by analogy. NMR spectra were acquired on Varian MR-400 and Bruker Avance III 600 spectrometers at the Iowa State University Chemical Instrumentation Facility. Chemical shifts are reported in ppm relative to residual solvent peaks (CDCl₃ = 7.26 ppm for ¹H and 77.16 ppm for ¹³C) or an external standard (CF₃CO₂H:CDCl₃ = -77.56 ppm for ¹⁹F). Coupling constants are reported in hertz.

Materials

2-Bromobenzaldehyde, 2-bromobenzylbromide, 2-bromo-5-fluorotoluene, 2-bromo-5fluorotoluene. 2-bromo-4-fluorotoluene, 2-bromo-5-chlorotoluene, 4-bromo-3methylanisole, and 2.2'-bipyridine were purchased from AK Scientific and used without further purification. Ethylene glycol, benzoyl peroxide, α -bromostyrene, δ -valerolactone, 2,3-dibromopropene, pyridium chlorochromate (PCC), methyltriphenylphosphonium 6-bromopiperonal. 5-oxo-5-phenylvaleric 1,5-cyclooctadiene, bromide. acid. ethylmagnesium bromide (3.0 M in diethyl ether), vinylmagnesium bromide (1.0 M in THF), 1-propenylmagnesium bromide (0.5 M in THF), methyllithium (1.6 M in diethyl ether), diisobutylaluminum hydride (1.0 M in hexanes) and copper iodide were purchased from Sigma-Aldrich and used as received. *n*-Butyllithium solution (2.5 M in hexanes) was purchased from Sigma-Aldrich and titrated with recrystallized diphenylacetic acid. 2-Bromopropene was purchased from GFS Chemicals and used without further purification. N-bromosuccinimide (NBS) was purchased from Sigma-Aldrich and purified by recrystallization from H₂O before use. 2-Bromopent-1-ene was prepared according to a literature procedure³ from 2,3-dibromopropene and ethylmagnesium bromide. 5-Bromo-6-(1,3-dioxolan-2-yl)benzo[d][1,3]dioxole was prepared according to a literature procedure^{4,5} from 6-bromopiperonal and ethylene glycol. 5-Phenylhex-5-enal (5) was prepared according to literature procedures from 5-oxo-5-phenylvaleric acid.⁶ 2-(2-Bromoallyl)benzaldehyde was prepared according to a literature procedure from 2bromobenzaldehyde, ethylene glycol and 2,3-dibromopropene.⁷

 $[Rh(COD)_2]BF_4$ rac-BINAP (2,2'-bis(diphenylphosphino)-1,1'-[Rh(COD)Cl]₂, binaphthalene), (R)-BINAP ((R)-2,2'-bis(diphenylphosphino)-1,1'-binaphthalene), (R)-MeO-BIPHEP ((R)-2,2'-bis(diphenylphosphino)-1,1'-biphenyl),(R)-DTBM-MeO-BIPHEP ((R)-2,2'-bis(di(3,5-di-t-butyl-4-methoxyphenyl)phosphino)-6,6'-dimethoxy-((*R*)-2,2'-bis(diphenylphosphino)-4,4'-bi-1,3-1,1'-biphenyl), (R)-SEGPHOS benzodioxole), (R)-DTBM-SEGPHOS ((*R*)-2,2'-bis(di(3,5-di-*t*-butyl-4methoxyphenyl)phosphino)-4,4'-bi-1,3-benzodioxole) and silver tetrafluoroborate were purchased from Strem Chemicals and used without further purification. NaBARF (Sodium tetrakis[3,5-bis(trifluoromethyl)phenyl]borate) was prepared according to a literature procedure.⁸ [Rh(COD)₂]BARF was prepared according to a literature procedure from [Rh(COD)Cl]₂, 1,5-cyclooctadiene and NaBARF.⁹

General Procedure A: Synthesis of ortho-Bromobenzylbromide S2b-S2e

To a solution of the appropriate *ortho*-bromotoluene derivative in CHCl₃ was added NBS (1.20 equiv) and $(PhCO_2)_2$ (0.200 equiv). The reaction mixture was heated to reflux under N₂ for 6-24 h. The solution was cooled to room temperature and quenched by the addition of sat. NaHCO₃ solution. The organic layer was washed with NaHCO₃ (3x) and brine, then dried over Na₂SO₄ and concentrated under reduced pressure. The crude product was purified by flash column chromatography or recrystallization to yield the appropriate *ortho*-bromobenzylbromide **S2b-S2e**.

F Br Br Br

2-Bromo-1-(bromomethyl)-4-fluorobenzene^{10,11} (S2b): Prepared according to general procedure A from 2-bromo-4-fluorotoluene (5.10 g, 27.0 mmol), NBS (5.77 g, 32.4 mmol) and $Ph(CO_2)_2$ (1.31 g, 5.40 mmol) under reflux for 6 h. The crude product was purified by flash

column chromatography (95:5 Hex:EtOAc) to yield **S2b** (2.99 g, 11.14 mmol, 46%) as a white amorphous solid. m.p. = 50–51 °C (lit = 51–52 °C). ¹H NMR (CDCl₃, 400 MHz): δ 4.58 (s, 2H), 7.03 (ddd, J = 8.4, 8.0, 2.4 Hz, 1H), 7.33 (dd, J = 8.0, 2.4 Hz, 1H), 7.44 (dd, J = 8.4, 5.6 Hz, 1H). ¹³C NMR (CDCl₃, 100 MHz): δ 32.6, 115.4 (d, J = 21.0 Hz), 120.8 (d, J = 24.2 Hz), 124.9 (d, J = 10.0 Hz), 132.4 (d, J = 8.8 Hz), 133.3 (d, J = 3.4 Hz), 162.3 (d, J = 251.6 Hz). ¹⁹F NMR (CDCl₃, 376 MHz): δ -111.4 (m, 1F).

1-Bromo-2-(bromomethyl)-4-fluorobenzene¹² (S2c): Prepared according to general procedure A from 2-bromo-5-fluorotoluene (5.10 g, 27.0 mmol), NBS (5.77 g, 32.4 mmol) and $Ph(CO_2)_2$ (1.31 g, 5.40 mmol) under reflux for 24 h. The crude product was purified by flash column chromatography (95:5 Hex:EtOAc) to yield S2c (2.36 g, 8.91

mmol, 33%) as a colorless oil. ¹H NMR (CDCl₃, 400 MHz): δ 4.54 (s, 2H), 6.91 (ddd, J = 8.8, 8.8, 3.2 Hz, 1H), 7.20 (dd, J = 8.8, 3.2 Hz, 1H), 7.53 (dd, J = 8.8, 5.2 Hz, 1H). ¹³C NMR (CDCl₃, 100 MHz): δ 37.5, 47.3 (d, J = 22.0 Hz), 48.1 (d, J = 23.0 Hz), 48.5 (d, J = 3.2 Hz), 64.5 (d, J = 7.8 Hz), 68.8 (d, J = 7.6 Hz), 91.8 (d, J = 246.8 Hz). ¹⁹F NMR (CDCl₃, 376 MHz): δ -114.5 (m, 1F).

1-Bromo-2-(bromomethyl)-4-chlorobenzene¹⁰ (S2d): Prepared according to general procedure A from 2-bromo-5-chlorotoluene (5.55 g, 27.0 mmol), NBS (5.77 g, 32.4 mmol) and Ph(CO₂)₂ (1.31 g, 5.40 mmol) under reflux for 18 h. The crude product was purified by flash column chromatography (95:5 Hex:EtOAc) to yield S2d (2.74 g, 9.65

mmol, 36%) as a pale orange amorphous solid. ¹H NMR (CDCl₃, 400 MHz): δ 4.53 (s, 2H), 7.15 (dd, J = 8.4, 2.4 Hz, 1H), 7.45 (d, J = 2.4 Hz, 1H), 7.50 (d, J = 8.4 Hz, 1H). ¹³C NMR (CDCl₃, 100 MHz): δ 32.3, 122.2, 130.1, 131.0, 133.7, 134.3, 138.6.

1-Bromo-2-(bromomethyl)-4-methoxybenzene¹³ (S2e): Prepared according to general procedure A from 4-bromo-3-methylanisole (8.04 g, 40.0 mmol), NBS (8.54 g, 48.0 mmol) and Ph(CO₂)₂ (1.94 g, 8.00 mmol) under reflux for 24 h. The crude product was purified by recrystallization from hexanes to yield S2e (3.44 g, 12.3 mmol,

31%) as a white crystalline solid. m.p = 92-93 °C (lit = 92-93 °C) ¹H NMR (CDCl₃, 400 MHz): δ 3.80 (s, 3H), 4.56 (s, 2H), 6.74 (dd, J = 8.8, 3.0 Hz, 1H), 6.99 (d, J = 3.0 Hz, 1H), 7.45 (d, J = 8.8 Hz, 1H). ¹³C NMR (CDCl₃, 100 MHz): δ 33.6, 55.7, 114.8, 116.2, 116.7, 134.0, 137.9, 159.3.

General Procedure B: Synthesis of S3a-S3e, S3g-S3h, S3o, and S7

To an oven-dried schlenk flask equipped with a stir bar and under nitrogen atmosphere was added Mg turnings (2.20-3.50 equiv), a few crystals of I₂ and anhydrous THF (4-50 mL). In a separate oven-dried round bottom flask, a solution of the appropriate vinyl bromide (1.67-2.50 equiv) in anhydrous THF (4-10 mL) was prepared. An initial volume of 1 mL of the vinyl bromide solution was added to the Mg suspension and the mixture was heated gently with a heat gun to initiate formation of the Grignard reagent. The remaining vinyl bromide solution was added slowly, keeping the solution of Grignard reagent at reflux. The reaction mixture was refluxed for an additional 2-4 hours and cooled to room temperature. To an oven-dried 100 mL round bottom flask was added the appropriate 2-bromobenzylbromide (1.00 equiv), CuI (0.200 equiv), 2,2'-bipyridine (0.200 equiv) and dry THF (10 mL), and the mixture was cooled to 0 °C. The solution of Grignard reagent was slowly transferred to this mixture via cannula. The combined reaction mixture was stirred overnight and allowed to warm to room temperature. The reaction was quenched by the addition of sat. NH₄Cl solution and extracted with Et₂O

(3x). The combined organic layers were dried over Na_2SO_4 , filtered, and concentrated under reduced pressure. The crude product was purified by flash column chromatography to yield the appropriate *ortho*-allylbromobenzene derivative **S3a-S3e**, **S3g-S3h**, **S3o**, **S7**. As noted with each compound, HRMS values for **S3b-S3e** were found after loss of a -C₃H₅ unit.

1-Bromo-2-(2-methylallyl)benzene¹⁴ **(S3a):** Prepared according to general procedure B from 2-bromopropene (2.42 g, 20.0 mmol) and 2-bromobenzylbromide (2.99 g, 12.0 mmol). The crude product was purified by flash column chromatography (100% hexanes) to yield **S3a** (1.78 g, 8.42 mmol, 70%) as a pale yellow oil. ¹H NMR (CDCl₃, 400

MHz): δ 1.76 (s, 3H), 3.46 (s, 2H), 4.59 (s, 1H), 4.86 (s, 1H), 7.05-7.10 (m, 1H), 7.18-7.29 (m, 2H), 7.55 (d, J = 8.0 Hz, 1H). ¹³C NMR (CDCl₃, 100 MHz): δ 22.6, 44.0, 112.5, 125.3, 127.3, 127.9, 131.0, 132.9, 139.2, 143.5.

2-Bromo-4-fluoro-1-(2-methylallyl)benzene (S3b): Prepared according to general procedure B from 2-bromopropene (1.09 g, 9.00 mmol) and S2b (1.45 g, 5.40 mmol). The crude product was purified by flash column chromatography (98:2 Hex:EtOAc) to yield S3b (0.794 g, 3.47 mmol, 64%) as a yellow oil containing 5% 1-fluoro-4-

(2-methylallyl)benzene. ¹H NMR (CDCl₃, 400 MHz): δ 1.74 (s, 3H), 3.42 (s, 2H), 4.57 (s, 1H), 4.86 (s, 1H), 6.98 (ddd, J = 8.4, 8.4, 2.8 Hz, 1H), 7.19 (dd, J = 8.4, 6.0 Hz, 1H), 7.30 (dd, J = 8.4, 2.8 Hz, 1H). ¹³C NMR (CDCl₃, 100 MHz): δ 22.5, 43.2, 112.7, 114.5 (d, J = 20.4 Hz), 119.9 (d, J = 24.0 Hz), 124.9 (d, J = 9.2 Hz), 131.6 (d, J = 8.0 Hz), 135.1 (d, J = 3.4 Hz), 143.4, 161.0 (d, J = 247.4 Hz). ¹⁹F NMR (CDCl₃, 376 MHz): δ -115.7 (m, 1F). HRMS (ESI) calcd. for C₁₀H₁₀BrF (M+H⁺-C₃H₅) 186.9558, found 186.9551.

1-Bromo-4-fluoro-2-(2-methylallyl)benzene (S3c): Prepared according to general procedure B from 2-bromopropene (1.09 g, 9.00 mmol) and S2c (1.45 g, 5.40 mmol, 0.600 equiv). The crude product was purified by flash column chromatography (98:2 Hex:EtOAc) to yield S3c (0.425 g, 1.86 mmol, 34%) as a yellow oil. ¹H NMR

(CDCl₃, 400 MHz): δ 1.76 (s, 3H), 3.43 (s, 2H), 4.64 (s, 1H), 4.90 (s, 1H), 6.83 (ddd, J = 9.6, 8.8, 3.2 Hz, 1H), 6.97 (dd, J = 9.6, 3.2 Hz, 1H), 7.50 (dd, J = 8.8, 5.2 Hz, 1H). ¹³C NMR (CDCl₃, 100 MHz): δ 22.6, 44.1, 113.2, 115.1 (d, J = 22.4 Hz), 117.6 (d, J = 22.8 Hz), 119.2 (d, J = 3.0 Hz), 133.9 (d, J = 7.8 Hz), 141.4 (d, J = 7.6 Hz), 142.9, 162.1 (d, J = 245.2 Hz). ¹⁹F NMR (CDCl₃, 376 MHz): δ -116.0 (m, 1F). HRMS (ESI) calcd. for C₇H₅BrF (M+H⁺-C₃H₅) 186.9558, found 186.9549.

1-Bromo-4-chloro-2-(2-methylallyl)benzene (S3d): Prepared according to general procedure B from 2-bromopropene (2.42 g, 20.0 mmol) and S2d (2.28 g, 8.00 mmol). The crude product was purified by flash column chromatography (100% hexanes) to yield S3d (1.25 g, 5.10 mmol, 64%) as a yellow oil. ¹H NMR (CDCl₃, 400 MHz): δ

1.75 (s, 3H), 3.41 (s, 2H), 4.62 (s, 1H), 4.89 (s, 1H), 7.06 (dd, J = 8.4, 2.8 Hz, 1H), 7.21 (d, J = 2.8 Hz, 1H), 7.47 (d, J = 8.4 Hz, 1H). ¹³C NMR (CDCl₃, 100 MHz): δ 22.9, 43.8,

113.1, 127.4, 127.9, 130.6, 133.3, 133.8, 140.9, 142.7. HRMS (ESI) calcd. for $C_{10}H_{10}BrCl (M+H^+-C_3H_5) 202.9263$, found 202.9260.

1-Bromo-4-methoxy-2-(2-methylallyl)benzene (S3e): Prepared according to general procedure B from 2-bromopropene (2.06 g, 17.0 mmol) and S2e (2.86 g, 10.2 mmol). The crude product was purified by flash column chromatography (100% hexanes) to yield S3e (1.55 g, 6.41 mmol, 63%) as a yellow oil. ¹H NMR (CDCl₃, 400 MHz): δ 1.78 (s, 3H), 3.43 (s, 2H), 3.78 (s, 3H), 4.65 (s, 1H), 4.89 (s, 1H), 6.66 (dd, J = 8.8, 3.0 Hz, 1H), 6.81 (d, J = 3.0 Hz, 1H), 7.45 (d, J = 8.8 Hz, 1H). ¹³C NMR (CDCl₃, 100 MHz): 8 22.6, 44.2, 55.4, 112.6, 113.6, 115.7, 116.5, 133.3, 140.2, 143.4, 159.0. HRMS (ESI) calcd. for $C_{11}H_{13}BrO$ (M+H⁺-C₃H₅) 198.9759, found 198.9753.

1-Bromo-2-(2-methylenepentyl)benzene (S3g): Prepared according to general procedure B from 2-bromopent-1-ene (2.09 g. 14.0 mmol) and 2-bromobenzylbromide (2.10 g, 8.40 mmol). The crude product was purified by flash column chromatography (100% hexanes) to yield S3g (0.681 g, 2.85 mmol, 34%) as a colorless oil.

¹H NMR (CDCl₃, 400 MHz): δ 0.94 (t, J = 7.6, 3H), 1.54 (m, 2H), 2.05 (t, J = 7.6 Hz, 2H), 3.47 (s, 2H), 4.58 (s, 1H), 4.88 (s, 1H), 7.03-7.09 (m, 1H), 7.20-7.26 (m, 2H), 7.55 (dd, J = 7.2, 0.8 Hz, 1H). ¹³C NMR (CDCl₃, 100 MHz): δ 14.0, 21.0, 38.4, 42.4, 111.6, 125.3, 127.3, 127.8, 131.1, 132.9, 139.4, 147.4. HRMS (ESI) calcd. for C₁₂H₁₅Br (M+H⁺-C₅H₉) 168.9653, found 168.9645.

S3h

1-Bromo-2-(2-phenylallyl)benzene (S3h): Prepared according to general procedure B from α -bromostyrene (3.66 g, 20.0 mmol) and 2bromobenzylbromide (2.99 g, 12.0 mmol). The crude product was purified by flash column chromatography (100% hexanes) to yield S3h

(1.70 g, 6.23 mmol, 52%) as a pale yellow oil which contained 10% of prop-2-ene-1,2-divldibenzene. ¹H NMR (CDCl₃, 400 MHz): δ 3.93 (s, 2H), 4.86 (s, 1H), 5.52 (s, 1H), 7.07 (ddd, J = 8.0, 2.4, 1.6 Hz, 1H), 7.18-7.34 (m, 5H), 7.47 (m, 2H), 7.56 (dd, J = 8.0, 1.0 Hz, 1H). ¹³C NMR (CDCl₃, 100 MHz): δ 41.5, 114.8, 125.3, 126.1, 127.5, 127.8, 128.0, 128.5, 131.1, 132.9, 139.1, 140.8, 145.6. HRMS (ESI) calcd. for $C_{15}H_{13}Br (M+H^+-C_8H_7) 168.9653$, found 168.9647.

1-Allyl-2-bromobenzene^{14,15} (S30): Prepared according to a modified version of general procedure B from vinylmagnesium bromide (12.0 mL of a 1.00 M solution, 12.00 mmol) and 2-bromobenzylbromide (1.80 g, 7.20 mmol). The crude product was purified by flash column chromatography (100% hexanes) to yield **S30** (0.880 g, 4.46 mmol, 37%) as a colorless oil.

¹H NMR (CDCl₃, 400 MHz): δ 3.52 (d, J = 6.4 Hz, 2H), 5.05-5.14 (m, 2H), 5.98 (ddt, J = 16.8, 10.0, 6.4 Hz, 1H), 7.05 - 7.11 (m, 1H), 7.15 - 7.32 (m, 2H), 7.55 (dd, J = 8.4, 0.8 Hz, 1H). ¹³C NMR (CDCl₃, 100 MHz): δ 40.3, 116.7, 124.7, 127.6, 128.0, 130.6, 132.9, 135.7. 139.6.

1-Bromo-2-(but-2-en-1-yl)benzene¹⁶ (S7): Prepared according to a modified version of general procedure B from 1-propenylmagnesium bromide (24.0 mL of a 0.5 M solution, 12.00 mmol) and 2-bromobenzylbromide (1.80 g, 7.20 mmol). The crude product was

purified by flash column chromatography (100% hexanes) to yield S7 as a mixture of isomers (E:Z = 1.6:1.0) (1.38 g, 6.53 mmol, 54%) as a colorless oil. Spectral data is consistent with previous reports.¹⁶

General Procedure C: Synthesis of ortho-Allylbenzaldehydes 1a-1e, 1g-h, 1o, d-1a, 7

To a solution of the appropriate *ortho*-allylbromobenzene derivative **S3a-S3e**, **S3g-S3h**, **S3o** and **S7** (1.00 equiv) in THF at -78 °C was added *n*-BuLi (1.00-1.10 equiv of 1.10-1.80M solutions in hexanes), dropwise. This solution was kept at -78 °C for 1 hour, warmed to room temperature for 30 minutes, and then cooled back to -78 °C for 10 minutes before DMF (1.50-3.00 equiv) was added dropwise. The solution was allowed to warm to room temperature overnight before it was quenched by the addition of a sat. NH₄Cl solution. The reaction mixture was extracted with Et₂O (3x). The combined organic layers were dried over Na₂SO₄, filtered, and concentrated under reduced pressure. The crude product was purified by flash column chromatography (hexanes:EtOAc) to yield the appropriate *ortho*-allylbenzaldehyde **1a-1e**, **1g-h**, **1o**, *d*-1a, and 7.

2-(2-Methylallyl)benzaldehyde^{14,15} (1a): Prepared according to general procedure C from S3a (1.27 g, 6.00 mmol), *n*-BuLi (5.08 mL of a 1.30 M solution in hexanes, 1.10 equiv) and DMF (1.34 mL, 3.00 equiv). The crude product was purified by flash column chromatography (90:10 Hex:EtOAc) to yield 1a (0.779 g, 4.86 mmol, 81%) as a yellow oil. ¹H

NMR (CDCl₃, 400 MHz): δ 1.78 (s, 3H), 3.73 (s, 2H), 4.45 (s, 1H), 4.84 (s, 1H), 7.28 (dd, J = 7.6, 1.2 Hz, 1H), 7.40 (ddd, J = 7.6, 7.6, 1.2 Hz, 1H), 7.53 (ddd, J = 7.6, 7.6, 1.6 Hz, 1H), 7.87 (dd, J = 7.6, 1.6 Hz, 1H), 10.25 (s, 1H). ¹³C NMR (CDCl₃, 100 MHz): δ 23.1, 40.3, 112.6, 127.1, 130.7, 131.8, 134.0, 134.4, 142.2, 145.4, 192.2.

5-Fluoro-2-(2-methylallyl)benzaldehyde (1b): Prepared according to general procedure C from **S3b** (0.401 g, 1.75 mmol), *n*-BuLi (1.41 mL of a 1.30 M solution in hexanes, 1.05 equiv) and DMF (0.20 mL, 1.50 equiv). The crude product was purified by flash column chromatography (90:10 Hex:EtOAc) to yield **1b** (0.093 g, 0.522 mmol, 30%) as a yellow oil. ¹H NMR (CDCl₃, 400 MHz): δ 1.78 (s, 3H), 3.68 (s, 2H), 4.44 (s, 1H), 4.86 (s, 1H), 7.20-7.28 (m, 2H), 7.57

(dd, J = 8.8, 1.2 Hz, 1H), 10.2 (s, 1H). ¹³C NMR (CDCl₃, 100 MHz): δ 22.9, 39.5, 112.9,

115.8 (d, J = 35.7), 121.0 (d, J = 21.6 Hz), 133.5 (d, J = 7.0 Hz), 135.8 (d, J = 6.0 Hz), 137.9 (d, J = 3.2 Hz), 145.2, 161.8 (d, J = 246.0), 190.5. ¹⁹F NMR (CDCl₃, 376 MHz): δ - 115.9 (m, 1F). HRMS (ESI) calcd. for C₁₁H₁₁FO (M+H⁺) 179.0867, found 179.0860.

4-Fluoro-2-(2-methylallyl)benzaldehyde (1c): Prepared according to general procedure C from **S3c** (0.401 g, 1.75 mmol), *n*-BuLi (1.41 mL of a 1.30 M solution in hexanes, 1.05 equiv) and DMF (0.20 mL, 1.50 equiv). The crude product was purified by flash column chromatography (90:10 Hex:EtOAc) to yield **1c** (0.164 g, 0.92 mmol, 53%) as a yellow oil.¹H NMR (CDCl₃, 400 MHz): δ 1.78 (s, 3H), 3.73

(s, 2H), 4.50 (s, 1H), 4.88 (s, 1H), 6.99 (dd, J = 9.6, 2.8 Hz, 1H), 7.07 (ddd, J = 9.6, 8.4, 2.8 Hz, 1H), 7.89 (dd, J = 8.4, 6.0 Hz, 1H), 10.17 (s, 1H). ¹³C NMR (CDCl₃, 100 MHz): δ 22.9, 40.1, 113.2, 114.4 (d, J = 22.0 Hz), 118.4 (d, J = 22.0 Hz), 131.0 (d, J = 2.6 Hz), 133.6 (d, J = 10.0 Hz), 144.4, 145.6 (d, J = 9.0 Hz), 166.0 (d, J = 255.0 Hz), 190.4. ¹⁹F NMR (CDCl₃, 376 MHz): δ -104.9 (m, 1F). HRMS (ESI) calcd. for C₁₁H₁₁FO (M+H⁺) 179.0867, found 179.0863.

4-Chloro-2-(2-methylallyl)benzaldehyde (1d): Prepared according to general procedure C from **S3d** (0.908 g, 3.70 mmol), *n*-BuLi (3.13 mL of a 1.30 M solution in hexanes, 1.10 equiv) and DMF (0.86 mL, 3.00 equiv). The crude product was purified by flash column chromatography (90:10 Hex:EtOAc) to yield **1d** (0.219 g, 1.12 mmol, 30%) as a yellow oil.¹H NMR (CDCl₃, 400 MHz): δ 1.78 (s,

3H), 3.70 (s, 2H), 4.48 (s, 1H), 4.88 (s, 1H), 7.28 (d, J = 2.0 Hz, 1H), 7.37 (dd, J = 8.2, 2.0 Hz, 1H), 7.81 (d, J = 8.2 Hz, 1H), 10.18 (s, 1H). ¹³C NMR (CDCl₃, 100 MHz): δ 23.0, 40.0, 113.3, 127.5, 131.6, 132.0, 132.8, 140.3, 144.0, 144.5, 190.8. HRMS (ESI) calcd. for C₁₁H₁₁ClO (M+H⁺) 195.0571, found 195.0568.

4-Methoxy-2-(2-methylallyl)benzaldehyde (1e): Prepared according to general procedure C from S3e (1.09 g, 4.50 mmol), *n*-BuLi (3.46 mL of a 1.30 M solution in hexanes, 1.00 equiv) and DMF (0.520 mL, 1.50 equiv). The crude product was purified by flash column chromatography (90:10 Hex:EtOAc) to yield 1e

(0.703 g, 3.70 mmol, 82%) as a yellow oil. ¹H NMR (CDCl₃, 400 MHz): δ 1.70 (s, 3H), 3.64 (s, 2H), 3.79 (s, 3H), 4.44 (s, 1H), 4.77 (s, 1H), 6.70 (d, J = 2.4 Hz, 1H), 6.80 (dd, J = 8.8, 2.4 Hz, 1H), 7.75 (d, J = 8.8 Hz, 1H), 10.01 (s, 1H). ¹³C NMR (CDCl₃, 100 MHz): δ 22.9, 40.4, 55.5, 112.1, 112.5, 116.8, 128.0, 133.5, 144.7, 144.9, 163.6, 190.6. HRMS (ESI) calcd. for C₁₂H₁₄O₂ (M+H⁺) 191.1067, found 191.1065.

2-(2-Methylenepentyl)benzaldehyde (1g): Prepared according to general procedure C from **S3g** (0.957 g, 4.00 mmol), *n*-BuLi (2.33 mL of a 1.80 M solution in hexanes, 1.05 equiv) and DMF (0.93 mL, 3.00 equiv). The crude product was purified by flash column chromatography (90:10 Hex:EtOAc) to yield **1g** (0.296 g, 1.57 mmol, 39%) as a yellow oil. ¹H NMR (CDCl₃, 400 MHz): δ 0.89 (t,

J = 7.6 Hz, 3H), 1.41 - 1.53 (m, 2H), 2.01 (t, J = 7.2 Hz, 2H), 3.68 (s, 2H), 4.36 (s, 1H),

4.80 (s, 1H), 7.22 (dd, J = 7.6, 1.0 Hz, 1H), 7.33 (ddd, J = 7.6, 7.6, 1.0 Hz, 1H), 7.46 (ddd, J = 7.6, 7.6, 1.2 Hz, 1H), 7.82 (dd, J = 7.6, 1.2 Hz, 1H), 10.18 (s, 1H). ¹³C NMR (CDCl₃, 100 MHz): δ 13.8, 20.9, 38.7, 38.7, 111.7, 126.9, 130.4, 131.8, 133.8, 134.4, 142.2, 149.3, 192.0. HRMS (ESI) calcd. for C₁₃H₁₆O (M+H⁺) 189.1274, found 189.1271.

2-(2-Phenylallyl)benzaldehyde^{7,17} (**1h**): Prepared according to general procedure C from **S3h** (1.09 g, 4.00 mmol), *n*-BuLi (2.33 mL of a 1.80 M solution in hexanes, 1.05 equiv) and DMF (0.93 mL, 3.00 equiv). The crude product was purified by flash column chromatography (90:10 Hex:EtOAc) to yield **1h** (0.332 g, 1.49 mmol, 37%) as a yellow oil. ¹H NMR (CDCl₃, 400 MHz): δ 4.18 (s, 2H), 4.66 (d, *J* = 1.2 Hz,

1H), 5.41 (d, J = 1.2 Hz, 1H), 7.16-7.34 (m, 5H), 7.40-7.44 (m, 3H), 7.80 (dd, J = 6.4, 1.2 Hz, 1H), 10.16 (s, 1H). ¹³C NMR (CDCl₃, 100 MHz): δ 37.6, 114.9, 126.0, 127.0, 127.8, 128.4, 131.5, 131.6, 133.9, 134.2, 140.9, 141.7, 147.5, 192.3. HRMS (ESI) calcd. for C₁₆H₁₄O (M+Na⁺) 245.0937, found 245.0935.

2-Allylbenzaldehyde^{14,15} (10): Prepared according to general procedure C from **S30** (0.788 g, 4.00 mmol), *n*-BuLi (4.00 mL of a 1.10 M solution in hexanes, 1.10 equiv) and DMF (0.93 mL, 3.00 equiv). The crude product was purified by flash column chromatography (90:10 Hex:EtOAc) to yield **10** (0.344 g, 2.36 mmol, 59%) as a yellow oil. ¹H NMR (CDCl₃, 400 MHz): δ 3.82 (d, J = 6.4 Hz, 2H), 4.98 (dd, J = 17.2, 1.8 Hz, 1H), 5.09 (dd, J = 10 M s a statement of the st

10.2, 1.8 Hz, 1H), 6.05 (ddt, J = 17.2, 10.2, 6.4, 1H), 7.30 (dd, J = 7.6, 0.8 Hz, 1H), 7.40 (ddd, J = 7.6, 7.6, 0.8 Hz, 1H), 7.55 (ddd, J = 7.6, 7.6, 0.8 Hz, 1H), 7.85 (dd, J = 7.6, 0.8 Hz 1H), 10.26 (s, 1H). ¹³C NMR (CDCl₃, 100 MHz): δ 36.5, 116.4, 126.9, 131.6, 131.6, 133.8, 133.9, 136.9, 142.2, 192.3.

*d*₁-2-(2-Methylallyl)benzaldehyde (*d*-1a): Prepared according to a modified version of general procedure C from S3a (0.866 g, 4.10 mmol), *n*-BuLi (1.87 mL of a 2.30 M solution in hexanes, 1.05 equiv) and DMF-*d*₇ (0.957 mL, 3.00 equiv). The crude product was purified by flash column chromatography (90:10 Hex:EtOAc) to yield *d*-1a (0.414 g, 2.57 mmol, 63%) as a pale yellow oil. ¹H NMR (CDCl₃, 400 MHz): δ 1.78 (s, 3H), 3.72 (s, 2H), 4.45 (s, 1H), 4.84 (s, 1H), 7.28 (dd, *J* = 7.6, 0.8 Hz, 1H), 7.39

(ddd, J = 7.6, 7.6, 0.8 Hz, 1H), 7.53 (ddd, J = 8.0, 7.6, 0.8 Hz, 1H), 7.87 (dd, 8.0, 0.8 Hz, 1H). ¹³C NMR (CDCl₃, 100 MHz): δ 23.0, 40.3, 112.6, 127.1, 130.6, 131.7, 134.0, 134.3 (t, J = 3.0 Hz), 142.2, 145.4, 191.9 (t, J = 26.4 Hz). HRMS (ESI) calcd. for C₁₁H₁₁DO (M+H⁺) 162.1024, found 162.1021.

2-(But-2-en-1-yl)benzaldehyde¹⁸ (7): Prepared according to general procedure C from S7 (1.37 g, 6.50 mmol), *n*-BuLi (2.83 mL of a 2.30 M solution in hexanes, 1.00 equiv) and DMF (1.50 mL, 3.00 equiv). The crude product was purified by flash column chromatography (90:10 Hex:EtOAc) to yield 7 (0.797 g, 4.97 mmol, 76%) as a yellow oil (E:Z =

1.3:1). Spectral data is consistent with previous reports.¹⁸

Synthesis of 6-(2-Methylallyl)benzo[d][1,3]dioxole-5-carbaldehyde 1f

0

1f

6-(2-Methylallyl)benzo[*d*][1,3]dioxole-5-carbaldehyde (1f): To an oven-dried schlenk flask equipped with a stir bar and under nitrogen atmosphere was added Mg turnings (0.182 g, 7.50 mmol, 1.50 equiv), a few crystals of I₂ and anhydrous THF (20 mL). In a separate oven-dried round bottom flask, a solution of 5-bromo-6n-2-vl)benzo[*d*][1,3]dioxole (1.37 g, 5.00 mmol, 1.00 equiv) in anhydrous

(1,3-dioxolan-2-yl)benzo[d][1,3]dioxole (1.37 g, 5.00 mmol, 1.00 equiv) in anhydrous THF (8 mL) was prepared. An initial volume of 1 mL of the solution of 5-bromo-6-(1,3dioxolan-2-yl)benzo[d][1,3]dioxole was added to the Mg suspension via syringe and the mixture was heated gently with a heat gun to initiate the formation of the Grignard reagent. The remaining solution of 5-Bromo-6-(1,3-dioxolan-2-yl)benzo[d][1,3]dioxole was added slowly while keeping the solution of the Grignard reagent at reflux. The reaction mixture was refluxed for an additional 2 hours and cooled to room temperature. To an oven-dried 100 mL round bottom flask was added 3-chloro-2-methylprop-1-ene (0.734 mL, 7.50 mmol, 1.50 equiv), CuI (0.143 g, 0.750 mmol, 0.100 equiv) and dry THF (10 mL), and the mixture was cooled to 0 °C. The solution of the Grignard reagent was slowly transferred to this mixture via cannula. The combined reaction mixture was stirred overnight and allowed to warm to room temperature. The reaction was quenched by the addition of sat. NH_4Cl solution and extracted with CH_2Cl_2 (3x). The combined organic layers were dried over Na₂SO₄ and concentrated under reduced pressure. The crude product was refluxed for 2 h following the addition of 20 mL H₂O, 20 mL acetone and PTSA (150 mg). Upon cooling to room temperature, the product was extracted with CH_2Cl_2 (3x), dried over Na₂SO₄ and concentrated under reduced pressure. The crude product was purified by flash column chromatography (90:10 Hex:EtOAc) to yield 1f (0.209 g, 1.02 mmol, 20%) as a yellow oil. ¹H NMR (CDCl₃, 400 MHz): δ 1.76 (s, 3H), 3.63 (s, 2H), 4.52 (s, 1H), 4.86 (s, 1H), 6.03 (s, 2H), 6.71 (s, 1H), 7.35 (s, 1H), 10.1 (s, 1H). ¹³C NMR (CDCl₃, 100 MHz): δ 22.8, 40.0, 102.0, 108.0, 111.1, 112.9, 129.1, 139.8, 145.2, 147.2, 152.6, 189.6. HRMS (ESI) calcd. for $C_{12}H_{12}O_3$ (M+H⁺) 205.0859, found 205.0859.

General Procedure D: Synthesis of ortho-Allylbenzaldehydes 1i-1n

Compounds **1i-1n** were prepared according to a procedure reported by Glorius *et al.*⁷ To an oven dried Schlenk flask was added $Pd(PPh_3)_4$ (0.050-0.100 mmol, 0.05 equiv), the appropriate arylboronic acid (1.20-3.00 mmol, 1.50 equiv), 1.6-4.0 mL of a 2M solution of aqueous Na₂CO₃, 2-(2-bromoallyl)benzaldehyde (0.800-2.00 mmol, 1.00 equiv) and 4-10 mL of 1,4-dioxane. The flask was evacuated and backfilled with nitrogen three times and stirred for 16 hours at 60 °C. The reaction was quenched with 10 mL of water and extracted with 20 mL EtOAc (3x). The combined organic layers were dried over Na₂SO₄ and concentrated under reduced pressure. The crude product was purified by flash column chromatography (Hex:EtOAc) to yield *ortho*-allylbenzaldehydes **1i-1n**.

2-(2-(4-Chlorophenyl)allyl)benzaldehyde (1i): Prepared according to general procedure D from $Pd(PPh_3)_4$ (116 mg, 0.100 mmol, 0.05 equiv), 4-chlorophenylboronic acid (469 mg, 3.00 mmol, 1.50 equiv), 4 mL of a 2M aqueous Na₂CO₃ solution, 2-(2-bromoallyl)benzaldehyde (450 mg, 2.00 mmol, 1.00 equiv) and 10 mL 1,4-dioxane. The crude product was

purified by flash column chromatography (90:10 Hex:EtOAc) to yield **1i** (0.378 g, 1.47 mmol, 74%) as a pale yellow oil. ¹H NMR (CDCl₃, 400 MHz): δ 4.23 (s, 2H), 4.75 (s, 1H), 5.44 (s, 1H), 7.27-7.31 (m, 3H), 7.38-7.45 (m, 3H), 7.52 (ddd, J = 7.6, 7.6, 1.6 Hz, 1H), 7.84 (dd, J = 7.6, 1.6 Hz, 1H), 10.2 (s, 1H). ¹³C NMR (CDCl₃, 100 MHz): δ 37.8, 115.4, 127.3, 127.5, 128.6, 131.6, 132.5, 133.6, 134.0, 134.2, 139.4, 141.4, 146.4, 192.6. HRMS (ESI) calcd. for C₁₆H₁₃ClO (M+H⁺) 257.0728, found 257.0723.

2-(2-(4-(Trifluoromethyl)phenyl)allyl)benzaldehyde⁷ (1j): Prepared according to general procedure D from Pd(PPh₃)₄ (116 mg, 0.100 mmol, 0.05 equiv), 4-(trifluoromethyl)phenylboronic acid (570 mg, 3.00 mmol, 1.50 equiv), 4 mL of a 2M aqueous Na₂CO₃ solution, 2-(2bromoallyl)benzaldehyde (450 mg, 2.00 mmol, 1.00 equiv)

and 10 mL 1,4-dioxane. The crude product was purified by flash column chromatography (90:10 Hex:EtOAc) to yield **1j** (0.432 g, 1.49 mmol, 74%) as a yellow oil. ¹H NMR (CDCl₃, 400 MHz): δ 4.26 (s, 2H), 4.83 (s, 1H), 5.50 (s, 1H), 7.31 (dd, *J* = 7.6, 0.8 Hz, 1H), 7.40 (ddd, *J* = 7.6, 7.2, 0.8 Hz, 1H), 7.53 (ddd, *J* = 7.6, 7.2, 1.2 Hz, 1H), 7.58 (s, 4H), 7.87 (dd, *J* = 7.6, 1.2 Hz, 1H), 10.2 (s, 1H).¹³C NMR (CDCl₃, 100 MHz): δ 37.8, 116.6, 124.3 (q, *J* = 270.5 Hz), 125.5 (q, *J* = 3.8 Hz), 126.5, 127.4, 129.8 (q, *J* = 32.4 Hz), 131.7, 133.0, 134.0, 134.2, 141.0, 144.6 (q, *J* = 1.4 Hz), 146.5, 192.7.¹⁹F NMR (CDCl₃, 376 MHz): δ -62.5 (s, 1F). HRMS (ESI) calcd. for C₁₇H₁₃F₃O (M+H⁺) 291.0991, found 291.0995.

2-(2-(4-Methoxyphenyl)allyl)benzaldehyde⁷ (1k): Prepared according to general procedure D from Pd(PPh₃)₄ (116 mg, 0.100 mmol, 0.05 equiv), 4-methoxyphenylboronic acid (456 mg, 3.00 mmol, 1.50 equiv), 4 mL of a 2M aqueous Na₂CO₃ solution, 2-(2-bromoallyl)benzaldehyde (450 mg, 2.00 mmol, 1.00 equiv) and 10 mL 1,4-dioxane. The crude product was

purified by flash column chromatography (90:10 Hex:EtOAc) to yield **1k** (0.324 g, 1.28 mmol, 64%) as a yellow oil. ¹H NMR (CDCl₃, 400 MHz): δ 3.81 (s, 3H), 4.22 (s, 2H), 4.64 (s, 1H), 5.41 (s, 1H), 6.86 (d, J = 8.8 Hz, 2H), 7.32 (dd, J = 7.6, 0.8 Hz, 1H), 7.37 – 7.44 (m, 3H), 7.51 (ddd, J = 7.6, 7.6, 1.6 Hz, 1H), 7.87 (dd, J = 7.6, 1.6 Hz, 1H), 10.2 (s, 1H). ¹³C NMR (CDCl₃, 100 MHz): δ 37.8, 55.4, 113.6, 113.8, 127.1, 127.2, 131.5, 131.6, 133.3, 134.0, 134.2, 142.0, 146.7, 159.4, 192.5. HRMS (ESI) calcd. for C₁₇H₁₆O₂ (M+H⁺) 253.1223, found 253.1228.

2-(2-(3-Methoxyphenyl)allyl)benzaldehyde (11): Prepared according to general procedure D from Pd(PPh₃)₄ (116 mg, 0.100 mmol, 0.05 equiv), 3-methoxyphenylboronic acid (456 mg, 3.00 mmol, 1.50 equiv), 4 mL of a 2M aqueous Na₂CO₃ solution, 2-(2-bromoallyl)benzaldehyde (450 mg, 2.00 mmol, 1.00 equiv) and 10 mL 1,4-dioxane. The crude product was

purified by flash column chromatography (90:10 Hex:EtOAc) to yield **11** (0.278 g, 1.10 mmol, 55%) as a yellow oil. ¹H NMR (CDCl₃, 400 MHz): δ 3.84 (s, 3H), 4.26 (s, 2H), 4.76 (s, 1H), 5.50 (s, 1H), 6.86 (ddd, J = 8.0, 2.4, 0.8 Hz, 1H), 7.03 (dd, J = 2.4, 2.4 Hz, 1H), 7.10 (ddd, J = 8.0, 1.2, 0.8 Hz, 1H), 7.28 (dd, J = 2.4, 1.2 Hz, 1H), 7.35 (dd, J = 7.6, 0.8 Hz, 1H), 7.44 (ddd, J = 8.0, 7.6, 0.8 Hz, 1H), 7.55 (ddd, J = 8.0, 7.6, 1.6 Hz, 1H), 7.90 (dd, J = 7.6, 1.6 Hz, 1H), 10.3 (s, 1H). ¹³C NMR (CDCl₃, 100 MHz): δ 37.8, 55.4, 112.1, 113.1, 115.3, 118.6, 127.2, 129.5, 131.6, 131.7, 134.0, 134.2, 141.8, 142.5, 147.5, 159.7, 192.5. HRMS (ESI) calcd. for C₁₇H₁₆O₂ (M+H⁺) 253.1223, found 253.1229.

2-(2-(2-Methoxyphenyl)allyl)benzaldehyde (1m): Prepared according to general procedure D from $Pd(PPh_3)_4$ (116 mg, 0.100 mmol, 0.05 equiv), 2-methoxyphenylboronic acid (456 mg, 3.00 mmol, 1.50 equiv), 4 mL of a 2M aqueous Na₂CO₃ solution, 2-(2-bromoallyl)benzaldehyde (450 mg, 2.00 mmol, 1.00 equiv) and 10 mL 1,4-dioxane. The crude product was purified by flash column

chromatography (90:10 Hex:EtOAc) to yield **1m** (0.272 g, 1.08 mmol, 54%) as a yellow oil. ¹H NMR (CDCl₃, 400 MHz): δ 3.86 (s, 3H), 4.17 (s, 2H), 4.81 (q, *J* = 1.6 Hz, 1H), 5.12 (q, *J* = 1.6 Hz, 1H), 6.84-6.92 (m, 2H), 7.08 (dd, *J* = 7.6, 2.0 Hz, 1H), 7.23 – 7.32 (m, 2H), 7.34 (ddd, *J* = 7.6, 7.6, 0.8 Hz, 1H), 7.50 (ddd, *J* = 7.6, 7.2, 1.6 Hz, 1H), 7.80 (dd, *J* = 7.6, 1.6 Hz, 1H), 10.3 (s, 1H). ¹³C NMR (CDCl₃, 100 MHz): δ 38.5, 55.5, 110.7, 116.6, 120.8, 127.1, 128.96, 129.03, 130.2, 131.6, 132.0, 133.9, 134.5, 142.5, 148.9, 156.5, 192.4. HRMS (ESI) calcd. for C₁₇H₁₆O₂ (M+Na⁺) 275.1043, found 275.1046.

2-(2-(Thiophen-3-yl)allyl)benzaldehyde (1n): Prepared according to a modified version of general procedure D from $Pd(PPh_3)_4$ (46.0 mg, 0.050 mmol, 0.063 equiv), 3-thienylboronic acid (154 mg, 1.20 mmol, 1.50 equiv), 1.6 mL of a 2M aqueous Na₂CO₃ solution, 2-(2-bromoallyl)benzaldehyde (180 mg, 0.800 mmol, 1.00 equiv) and 4 mL 1,4-dioxane. The crude product was purified by flash column

chromatography (90:10 Hex:EtOAc) to yield **1n** (94.2 mg, 0.413 mmol, 52%) as a yellow oil. ¹H NMR (CDCl₃, 400 MHz): δ 4.19 (s, 2H), 4.63 (s, 1H), 5.51 (s, 1H), 7.22-7.27 (m, 3H), 7.31 (dd, J = 7.6, 0.8 Hz, 1H), 7.40 (ddd, J = 7.6, 7.6, 0.8 Hz, 1H), 7.50 (ddd, J = 7.6, 7.6, 1.6 Hz, 1H), 7.86 (dd, J = 7.6, 1.6 Hz, 1H), 10.2 (s, 1H). ¹³C NMR (CDCl₃, 100 MHz): δ 37.6, 113.8, 120.9, 125.7, 125.8, 127.2, 131.60, 131.63, 134.0, 134.3, 141.5, 142.0, 142.3, 192.5. HRMS (ESI) calcd. for C₁₄H₁₂OS (M+H⁺) 229.0682, found 229.0685.

General Procedure E: Hydroacylation of ortho-Allylbenzaldehydes 2a-2o

In a nitrogen-filled dry box, the appropriate *ortho*-allylbenzaldehyde **1a-1o** (0.200 mmol, 1.00 equiv), $[Rh(COD)Cl]_2$ (2.5 mg, 0.0050 mmol, 0.025 equiv), (*R*)-DTBM-SEGPHOS (11.8 mg, 0.010 mmol, 0.050 equiv), NaBARF (8.9 mg, 0.010 mmol, 0.050 equiv), and anhydrous 1,4-dioxane (1 mL) were added to a 1-dram vial. The vial was sealed with a PFTE/silicone-lined septum cap and removed from the dry box. The reaction mixture was heated to 100 °C and allowed to stir at this temperature until the reaction was judged to be complete by TLC analysis. The mixture was cooled to rt, filtered through a pad of silica gel (eluting with EtOAc), and concentrated under reduced pressure. CDCl₃ (0.7 mL) was added to dissolve the crude mixture along with CH₂Br₂ (7.0 µL, 0.100 mmol) as an internal standard. Conversion and hydroacylation/alkene isomerization ratio were determined by ¹H NMR spectroscopy of the crude reaction mixture. The crude reaction mixture was purified by flash column silica gel chromatography (hexanes:EtOAc or hexanes:Et₂O) to yield **2a-2o**. Enantiomeric excess was determined by chiral HPLC analysis.

(*R*)-3-Methyl-3,4-dihydronaphthalen-1(2*H*)-one^{1,16,18} (2a):

Prepared according to general procedure E from **1a** (32.0 mg, 0.200 mmol) (reaction time = 12 h). The crude product (hydroacylation:isomerization = 10.7:1) was purified by flash column chromatography (90:10 hexanes:EtOAc) to yield **2a** (27.1 mg, 0.169 mmol, 85%) as a colorless oil. The enantiomeric excess was

determined by HPLC analysis (254 nm, 25 °C) t_R 20.9 min (major); t_R 22.1 min (minor) [Chiracel AS-H (0.46cm x 25cm) (from Daicel Chemical Ind., Ltd.) hexane/ⁱPrOH, 93:7, 0.3 mL/min] to be 98% ee. Lit:^{1,2} $[\alpha]_D^{25} = -32.2^\circ$ (c 6.10, EtOH), found $[\alpha]_D^{25} = -36.7^\circ$ (c 0.98, EtOH), $[\alpha]_D^{25} = -32.9^\circ$ (c 0.85, CHCl₃). ¹H NMR (CDCl₃, 400 MHz): δ 1.14 (d, J = 6.0 Hz, 3H), 2.27-2.34 (m, 2H), 2.65-2.75 (m, 2H), 2.97 (dd, J = 16.4, 3.2 Hz, 1H), 7.24 (dd, J = 7.6, 0.8 Hz, 1H), 7.30 (ddd, J = 7.6, 7.6, 0.8 Hz, 1H), 7.47 (ddd, J = 8.0, 7.6, 0.8 Hz, 1H), 8.02 (dd, J = 8.0, 0.8 Hz, 1H). ¹³C NMR (CDCl₃, 100 MHz): δ 21.5, 30.6, 38.2, 47.3, 126.7, 127.1, 129.0, 132.3, 133.6, 143.9, 198.7.

(*R*)-7-Fluoro-3-methyl-3,4-dihydronaphthalen-1(2*H*)-one (2b): Prepared according to general procedure E from 1b (35.6 mg, 0.200 mmol) (reaction time = 24 h). The crude product (hydroacylation:isomerization = 9:1) was purified by flash column chromatography (90:10 hexanes:EtOAc) to yield 2b (21.3 mg, 0.120 mmol, 60%) as a yellow oil that solidified on standing. The

enantiomeric excess was determined by HPLC analysis (254 nm, 25 °C) t_R 31.5 min (major); t_R 32.8 min (minor) [Chiracel AS-H+OJ-H (0.46cm x 25cm) (from Daicel Chemical Ind., Ltd.) hexane/¹PrOH, 99:1, 0.5 mL/min] to be 98% ee. $[\alpha]_D^{25}$ = -32.4° (c 0.68, CHCl₃) ¹H NMR (CDCl₃, 400 MHz): δ 1.15 (d, J = 6.4 Hz, 3H), 2.25-2.39 (m, 2H), 2.64 (dd, J = 16.4, 9.2 Hz, 1H), 2.74 (dd, J = 13.2, 2.0 Hz, 1H), 2.96 (dd, J = 16.4, 3.2 Hz, 1H), 7.18 (ddd, J = 9.2, 8.4, 2.8 Hz, 1H), 7.23 (dd, J = 8.4, 5.2 Hz, 1H), 7.68 (dd, J = 9.2, 2.8 Hz, 1H). ¹³C NMR (CDCl₃, 100 MHz): δ 21.4, 30.7, 37.4, 46.9, 113.0 (d, J = 22.0, Hz), 120.9 (d, J = 22.0 Hz), 130.7 (d, J = 7.0 Hz), 133.9 (d, J = 6.0 Hz), 139.6 (d, J = 3.0 Hz), 161.7 (d, J = 244.6 Hz), 197.6. ¹⁹F NMR (CDCl₃, 376 MHz): δ -116.2 (m, 1F). HRMS (ESI) calcd. for C₁₁H₁₁FO (M+H⁺) 179.0867, found 179.0863.

(*R*)-6-Fluoro-3-methyl-3,4-dihydronaphthalen-1(2*H*)-one (2c): Prepared according to general procedure E from 1c (35.6 mg, 0.200 mmol) (reaction time = 24 h). The crude product (hydroacylation:isomerization = >20:1) was purified by flash column chromatography (90:10 hexanes:EtOAc) to yield 2c (31.6 mg, 0.177 mmol, 88%) as a yellow oil. The enantiomeric excess was determined

by HPLC analysis (254 nm, 25 °C) t_R 12.0 min (major); t_R 15.0 min (minor) [Chiracel AS-H (0.46cm x 25cm) (from Daicel Chemical Ind., Ltd.) hexane/ⁱPrOH, 99:1, 0.5 mL/min] to be 98% ee. $[\alpha]_D^{25}$ = -16.4° (c 1.46, CHCl₃) ¹H NMR (CDCl₃, 400 MHz): δ 1.14 (d, J = 6.4 Hz, 3H), 2.23-2.39 (m, 2H), 2.67 (dd, J = 16.0, 10.0 Hz, 1H), 2.72 (dd, J = 9.6, 1.6 Hz, 1H), 2.95 (dd, J = 16.0, 3.6 Hz, 1H), 6.91 (dd, J = 9.2, 2.4 Hz, 1H), 6.97 (ddd, J = 9.2, 8.8, 2.4, 1H), 8.04 (dd, J = 8.8, 6.0 Hz, 1H). ¹³C NMR (CDCl₃, 100 MHz): δ 21.4, 30.5, 38.2, 47.0, 114.4 (d, J = 22.2), 115.2 (d, J = 21.2 Hz), 129.0 (d, J = 2.8 Hz), 130.2 (d, J = 10.0 Hz), 146.5 (d, J = 9.0 Hz), 165.9 (d, J = 254.4 Hz), 197.1. ¹⁹F NMR (CDCl₃, 376 MHz): δ -105.8 (m, 1F). HRMS (ESI) calcd. for C₁₁H₁₁FO (M+H⁺) 179.0867, found 179.0865.

(*R*)-6-Chloro-3-methyl-3,4-dihydronaphthalen-1(2*H*)-one (2d): Prepared according to general procedure E from 1d (38.9 mg, 0.200 mmol) using 10 mol% catalyst loading (reaction time = 24 h). The crude product (hydroacylation:isomerization = >20:1) was purified by flash column chromatography (90:10 hexanes: EtOAc) to yield 2d (35.4 mg, 0.182 mmol, 91%) as a yellow oil. The enantiomeric

excess was determined by HPLC analysis (254 nm, 25 °C) t_R 14.0 min (major); t_R 15.6

min (minor) [Chiracel AS-H (0.46cm x 25cm) (from Daicel Chemical Ind., Ltd.) hexane/^{*i*}PrOH, 95:5, 0.5 mL/min] to be 97% ee. $[\alpha]_D^{25}$ = -68.3° (c 0.82, CHCl₃) ¹H NMR (CDCl₃, 400 MHz): δ 1.14 (d, *J* = 6.0 Hz, 3H), 2.26-2.39 (m, 2H), 2.67 (dd, *J* = 16.8, 10.4 Hz, 1H), 2.73 (dd, *J* = 13.2, 2.0 Hz, 1H), 2.95 (dd, *J* = 16.8, 3.6 Hz, 1H), 7.25 (d, *J* = 0.8 Hz, 1H), 7.27 (dd, *J* = 8.8, 0.8 Hz, 1H), 7.96 (d, *J* = 8.8 Hz, 1H). ¹³C NMR (CDCl₃, 100 MHz): δ 21.4, 30.5, 37.9, 47.0, 127.3, 128.81, 128.80, 130.8, 139.8, 145.4, 197.4. HRMS (ESI) calcd. for C₁₁H₁₁ClO (M+H⁺) 195.0571, found 195.0566.

(*R*)-6-Methoxy-3-methyl-3,4-dihydronaphthalen-1(2*H*)-one (2e): Prepared according to general procedure E from 1e (38.1 mg, 0.200 mmol) (reaction time = 12 h). The crude product (hydroacylation:isomerization = 19:1) was purified by flash column chromatography (90:10 hexanes:EtOAc) to yield 2e (32.0 mg, 0.168 mmol, 84%) as a white amorphous solid. The enantiomeric excess

was determined by HPLC analysis (254 nm, 25 °C) t_R 23.5 min (major); t_R 25.8 min (minor) [Chiracel AS-H (0.46cm x 25cm) (from Daicel Chemical Ind., Ltd.) hexane/¹PrOH, 90:10, 0.5 mL/min] to be 99% ee. $[\alpha]_D^{25} = -49.4^{\circ}$ (c 0.77, CHCl₃) ¹H NMR (CDCl₃, 400 MHz): δ 1.12 (d, J = 6.4 Hz, 3H), 2.19-2.34 (m, 2H), 2.60-2.70 (m, 2H), 2.92 (dd, J = 16.4, 3.6 Hz, 1H), 3.84 (s, 3H), 6.68 (d, J = 2.4 Hz, 1H), 6.81 (dd, J = 8.4, 2.4 Hz, 1H), 7.98 (d, J = 8.4 Hz, 1H). ¹³C NMR (CDCl₃, 100 MHz): δ 21.5, 30.7, 38.6, 47.0, 55.5, 112.8, 113.1, 126.0, 129.5, 145.4, 163.7, 197.4. HRMS (ESI) calcd. for C₁₂H₁₄O₂ (M+H⁺) 191.1067, found 191.1063.

(*R*)-7-Methyl-7,8-dihydronaphtho[2,3-d][1,3]dioxol-5(6*H*)-one (2f): Prepared according to general procedure E from 1f (40.8 mg, 0.200 mmol) (reaction time = 24 h). The crude product (hydroacylation:isomerization = 9.8:1) was purified by flash column chromatography (90:10 hexanes:EtOAc) to yield 2f (35.0 mg, 0.171 mmol, 85%) as a colorless oil. The enantiomeric excess was

determined by HPLC analysis (254 nm, 25 °C) t_R 26.0 min (major); t_R 28.4 min (minor) [Chiracel AS-H (0.46cm x 25cm) (from Daicel Chemical Ind., Ltd.) hexane/^{*i*}PrOH, 90:10, 0.5 mL/min] to be 99% ee. $[\alpha]_D^{25}$ = -61.3° (c 1.24, CHCl₃) ¹H NMR (CDCl₃, 400 MHz): δ 1.12 (d, *J* = 6.0 Hz, 3H), 2.18-2.35 (m, 2H), 2.59 (dd, *J* = 16.0, 10.4 Hz, 1H), 2.67 (dd, *J* = 12.8, 1.6 Hz, 1H), 2.87 (dd, *J* = 16.0, 3.6, 1H), 6.00 (s, 2H), 6.65 (s, 1H), 7.45 (s, 1H). ¹³C NMR (CDCl₃, 100 MHz): δ 21.4, 30.8, 38.4, 46.8, 101.7, 106.2, 108.1, 127.1, 140.8, 147.0, 152.2, 196.9. HRMS (ESI) calcd. for C₁₂H₁₂O₃ (M+H⁺) 205.0859, found 205.0853.

(*R*)-3-Propyl-3,4-dihydronaphthalen-1(2*H*)-one¹⁹ (2g): Prepared according to general procedure E from 1g (37.7 mg, 0.200 mmol) (reaction time = 24 h). The crude product (hydroacylation:isomerization = >20:1) was purified by flash column chromatography (90:10 hexanes:Et₂O) to yield 2g (33.3 mg, 0.177 mmol, 89%) as a yellow oil. The enantiomeric excess was

determined by HPLC analysis (254 nm, 25 °C) t_R 11.3 min (major); t_R 12.5 min (minor) [Chiracel AS-H (0.46cm x 25cm) (from Daicel Chemical Ind., Ltd.) hexane/^{*i*}PrOH, 95:5,

0.5 mL/min] to be 96% ee. $[\alpha]_D^{25} = -28.1^{\circ}$ (c 1.21, CHCl₃) ¹H NMR (CDCl₃, 400 MHz): δ 0.88-0.96 (m, 3H), 1.35-1.48 (m, 4H), 2.16-2.25 (m, 1H), 2.31 (dd, J = 16.8, 12.0 Hz, 1H), 2.69 (dd, J = 16.4, 10.4 Hz, 1H), 2.77 (ddd, J = 16.8, 3.2, 1.6 Hz, 1H), 2.96-3.05 (m, 1H), 7.24 (dd, J = 7.6, 0.8 Hz, 1H), 7.30 (ddd, J = 7.6, 7.6, 0.8 Hz, 1H), 7.46 (ddd, J = 7.6, 7.6, 1.2 Hz, 1H), 8.01 (dd, J = 7.6, 1.2 Hz, 1H). ¹³C NMR (CDCl₃, 100 MHz): δ 14.2, 19.8, 35.2, 36.3, 38.1, 45.6, 126.7, 127.1, 129.0, 132.6, 133.6, 144.0, 198.9. HRMS (ESI) calcd. for C₁₃H₁₆O (M+H⁺) 189.1274, found 189.1270.

(*R*)-3-Phenyl-3,4-dihydronaphthalen-1(2*H*)-one¹⁷ (2h): Prepared according to general procedure E from 1h (44.5 mg, 0.200 mmol) (reaction time = 24 h). The crude product (hydroacylation:isomerization = >20:1) was purified by flash column chromatography (90:10 hexanes:EtOAc) to yield 2h (37.0 mg, 0.166

mmol, 83%) as a pale brown oil which contained 4% of 2-(2phenylprop-1-en-1-yl)benzaldehyde **3h** (*E*:*Z* = 1:1). The enantiomeric excess was determined by HPLC analysis (254 nm, 25 °C) t_R 10.3 min (major); t_R 22.9 min (minor) [Chiracel AS-H (0.46cm x 25cm) (from Daicel Chemical Ind., Ltd.) hexane/ⁱPrOH, 90:10, 0.5 mL/min] to be 97% ee. $[\alpha]_D^{25} = -5.71^\circ$ (c 1.40, CHCl₃) ¹H NMR (CDCl₃, 400 MHz): δ 2.82 (dd, *J* = 16.4, 12.8 Hz, 1H), 2.93-2.99 (ddd, *J* = 16.4, 4.0, 1.6 Hz, 1H), 3.12-3.27 (m, 2H), 3.40-3.49 (m, 1H), 7.40-7.42 (m, 7H), 7.50 (ddd, *J* = 8.0, 7.6, 1.2 Hz, 1H), 8.07 (d, *J* = 8.0 Hz, 1H). ¹³C NMR (CDCl₃, 100 MHz): δ 37.8, 41.2, 46.1, 126.8, 127.0, 127.1, 127.3, 128.9, 129.0, 132.2, 133.9, 143.4, 143.5, 197.9. HRMS (ESI) calcd. for C₁₆H₁₄O (M+Na⁺) 245.0937, found 245.0934.

(*R*)-3-(4-Chlorophenyl)-3,4-dihydronaphthalen-1(2*H*)-one (2i): Prepared according to general procedure E from 1i (51.3 mg, 0.200 mmol) (reaction time = 24 h). The crude product (hydroacylation:isomerization = >20:1) was purified by flash column chromatography (95:5 hexanes:EtOAc) to yield 2i (38.0 mg, 0.148 mmol, 74%) as a pale yellow oil. The enantiomeric

excess was determined by HPLC analysis (254 nm, 25 °C) t_R 31.9 min (major); t_R 42.9 min (minor) [Chiracel AS-H (0.46cm x 25cm) (from Daicel Chemical Ind., Ltd.) hexane/^{*i*}PrOH, 95:5, 0.5 mL/min] to be 98% ee. $[\alpha]_D^{25} = -4.21^\circ$ (c 1.9, CHCl₃) ¹H NMR (CDCl₃, 400 MHz): δ 2.79 (dd, J = 16.4, 12.8 Hz, 1H), 2.93 (ddd, J = 16.8, 4.4, 1.2 Hz, 1H), 3.10-3.24 (m, 2H), 3.36-3.49 (m, 1H), 7.23 (d, J = 8.4 Hz, 2H), 7.28 (dd, J = 7.6, 0.8 Hz, 1H), 7.31 (d, J = 8.4 Hz, 2H), 7.37 (dd, J = 7.6, 0.8 Hz, 1H), 7.52 (ddd, J = 7.6, 7.6, 1.2 Hz, 1H), 8.07 (dd, J = 7.6, 1.2 Hz, 1H). ¹³C NMR (CDCl₃, 100 MHz): δ 37.7, 40.6, 46.0, 127.2, 127.4, 128.2, 128.97, 129.04, 132.1, 132.8, 134.0, 142.0, 143.1, 197.5. HRMS (ESI) calcd. for C₁₆H₁₃ClO (M+H⁺) 257.0728, found 257.0731.

(*R*)-3-(4-(Trifluoromethyl)phenyl)-3,4-dihydronaphthalen-1(2*H*)-one (2j): Prepared according to general procedure E from 1j (58.1 mg, 0.200 mmol) (reaction time = 24 h). The crude product (hydroacylation:isomerization = >20:1) was purified by flash column chromatography (90:10 hexanes:EtOAc) to yield 2j (45.6 mg, 0.157 mmol, 79%) as a yellow oil. The enantiomeric excess was determined by HPLC analysis (254 nm, 25 °C) t_R 9.75 min (major); t_R 13.5 min (minor) [Chiracel AS-H (0.46cm x 25cm) (from Daicel Chemical Ind., Ltd.) hexane/^{*i*}PrOH, 90:10, 1.0 mL/min] to be 96% ee. $[\alpha]_D^{25} = -2.89^\circ$ (c 2.09, CHCl₃) ¹H NMR (CDCl₃, 400 MHz): δ 2.85 (dd, J = 16.8, 12.8 Hz, 1H), 2.98 (ddd, J = 16.8, 4.0, 1.6 Hz, 1H), 3.14-3.29 (m, 2H), 3.46-3.60 (m, 1H), 7.29 (dd, J = 7.6, 0.8 Hz, 1H), 7.37 (ddd, J = 7.6, 7.6, 0.8 Hz, 1H), 7.42 (d, J = 8.0 Hz, 2H), 7.53 (ddd, J = 7.6, 7.6, 1.2 Hz, 1H), 7.63 (d, J = 8.0 Hz, 2H), 8.09 (dd, J = 7.6, 1.2 Hz, 1H). ¹³C NMR (CDCl₃, 100 MHz): δ 37.4, 41.0, 45.7, 125.9 (q, J = 3.7 Hz), 126.9 (q, J = 270.4 Hz), 127.26, 127.30, 127.4, 129.0, 129.4 (q, J = 32.4 Hz), 132.1, 134.1, 142.9, 147.4, 197.1. ¹⁹F NMR (CDCl₃, 376 MHz): δ -63.46 (s, 1F). HRMS (ESI) calcd. for C₁₇H₁₃F₃O (M+H⁺) 291.0991, found 291.0995.

(*R*)-3-(4-Methoxyphenyl)-3,4-dihydronaphthalen-1(2*H*)one (2k): Prepared according to general procedure E from 1k (50.5 mg, 0.200 mmol) (reaction time = 24 h). The crude product (hydroacylation:isomerization = >20:1) was purified by flash column chromatography (95:5 hexanes:EtOAc) to yield 2k (40.4 mg, 0.160 mmol, 80%) as a pale yellow oil.

The enantiomeric excess was determined by HPLC analysis (254 nm, 25 °C) t_R 20.5 min (major); t_R 29.5 min (minor) [Chiracel AS-H (0.46cm x 25cm) (from Daicel Chemical Ind., Ltd.) hexane/ⁱPrOH, 90:10, 1.0 mL/min] to be 98% ee. $[\alpha]_D^{25} = -7.14^\circ$ (c 1.12, CHCl₃) ¹H NMR (CDCl₃, 400 MHz): δ 2.80 (dd, J = 16.4, 12.8 Hz, 1H), 2.95 (ddd, J = 16.4, 4.4, 1.2 Hz, 1H), 3.11-3.23 (m, 2H), 3.36-3.47 (m, 1H), 3.81 (s, 3H), 6.90 (d, J = 8.4 Hz, 2H), 7.22 (d, J = 8.4 Hz, 2H), 7.28 (dd, J = 7.6, 0.8 Hz, 1H), 7.35 (ddd, J = 7.6, 7.6, 0.8 Hz, 1H), 7.51 (ddd, J = 7.6, 7.6, 1.2 Hz, 1H), 8.08 (dd, J = 7.6, 1.2 Hz, 1H). ¹³C NMR (CDCl₃, 100 MHz): δ 38.1, 40.4, 46.3, 55.4, 114.2, 127.0, 127.3, 127.8, 129.0, 132.2, 133.9, 135.7, 143.6, 158.6, 198.1. HRMS (ESI) calcd. for C₁₇H₁₆O₂ (M+H⁺) 253.1223, found 253.1231.

(*R*)-3-(3-Methoxyphenyl)-3,4-dihydronaphthalen-1(2*H*)one (21): Prepared according to general procedure E from 11 (50.5 mg, 0.200 mmol) (reaction time = 24 h). The crude product (hydroacylation:isomerization = >20:1) was purified by flash column chromatography (95:5 hexanes:EtOAc) to yield 21 (36.2 mg, 0.143 mmol, 72%) as a yellow oil. The

enantiomeric excess was determined by HPLC analysis (254 nm, 25 °C) t_R 13.8 min (major); t_R 16.9 min (minor) [Chiracel AS-H (0.46cm x 25cm) (from Daicel Chemical Ind., Ltd.) hexane/^{*i*}PrOH, 90:10, 1.0 mL/min] to be 98% ee. $[\alpha]_D^{25} = -10.5^\circ$ (c 1.72, CHCl₃) ¹H NMR (CDCl₃, 400 MHz): δ 2.79 (dd, J = 16.4, 13.2 Hz, 1H), 2.94 (ddd, J = 16.4, 4.0, 1.6 Hz, 1H), 3.09-3.24 (m, 2H), 3.35-3.46 (m, 1H), 3.79 (s, 3H), 6.76-6.84 (m, 2H), 6.87 (dd, J = 8.0, 0.8 Hz, 1H), 7.22-7.29 (m, 2H), 7.32 (ddd, J = 8.0, 7.6, 0.8 Hz, 1H), 7.48 (ddd, J = 7.6, 7.6, 1.2 Hz, 1H), 8.05 (dd, J = 7.6, 1.2 Hz, 1H). ¹³C NMR (CDCl₃, 100 MHz): δ 37.7, 41.2, 46.1, 55.3, 112.0, 113.0, 119.1, 127.1, 127.3, 129.0, 130.0, 132.2, 134.0, 143.5, 145.2, 160.0, 197.9. HRMS (ESI) calcd. for C₁₇H₁₆O₂ (M+H⁺) 253.1223, found 253.1227.

(*R*)-3-(2-Methoxyphenyl)-3,4-dihydronaphthalen-1(2*H*)-one (2m): Prepared according to general procedure E from 1m (50.5 mg, 0.200 mmol) (reaction time = 24 h). The crude product (hydroacylation:isomerization = 18:1) was purified by flash column chromatography (95:5 hexanes:EtOAc) to yield 2m (35.4 mg, 0.140 mmol, 70%) as a yellow oil. The enantiomeric excess

was determined by HPLC analysis (254 nm, 25 °C) t_R 21.4 min (major); t_R 27.6 min (minor) [Chiracel AS-H (0.46cm x 25cm) (from Daicel Chemical Ind., Ltd.) hexane/^{*i*}PrOH, 90:10, 0.5 mL/min] to be 97% ee. $[\alpha]_D^{25} = -6.02^\circ$ (c 1.66, CHCl₃) ¹H NMR (CDCl₃, 400 MHz): δ 2.89 (dd, J = 16.4, 12.4 Hz, 1H), 2.97 (ddd, J = 16.4, 4.0, 1.6 Hz, 1H), 3.17 (ddd, J = 16.4, 2.8, 0.8 Hz, 1H), 3.27 (dd, J = 12.4, 0.8 Hz, 1H), 3.80-3.93 (m, 4H), 6.94 (dd, J = 8.4, 0.8 Hz, 1H), 7.00 (ddd, J = 8.0, 7.2, 0.8 Hz, 1H), 7.24-7.34 (m, 3H), 7.37 (ddd, J = 7.6, 7.2, 0.8 Hz, 1H), 7.53 (ddd, J = 7.6, 7.2, 1.2 Hz, 1H), 8.12 (dd, J = 7.6, 1.2 Hz, 1H). ¹³C NMR (CDCl₃, 100 MHz): δ 35.1, 36.0, 44.8, 55.4, 110.7, 120.8, 126.79, 126.83, 127.3, 128.0, 129.0, 131.6, 132.3, 133.7, 144.3, 157.1, 198.7. HRMS (ESI) calcd. for C₁₇H₁₆O₂ (M+H⁺) 253.1223, found 253.1225.

(*R*)-3-(Thiophen-3-yl)-3,4-dihydronaphthalen-1(2*H*)-one (2n): Prepared according to general procedure E from 1n (45.7 mg, 0.200 mmol) (reaction time = 24 h). The crude product (hydroacylation:isomerization = >20:1) was purified by flash column chromatography (95:5 hexanes:EtOAc) to yield 2n (22.6 mg, 0.099 mmol, 49%) as a yellow oil. The enantiomeric excess was

determined by HPLC analysis (254 nm, 25 °C) t_R 13.5 min (major); t_R 17.3 min (minor) [Chiracel AS-H (0.46cm x 25cm) (from Daicel Chemical Ind., Ltd.) hexane/ⁱPrOH, 90:10, 1.0 mL/min] to be 98% ee. $[\alpha]_D^{25} = -17.6^\circ$ (c 1.02, CHCl₃) ¹H NMR (CDCl₃, 400 MHz): δ 2.80 (dd, J = 16.4, 12.4 Hz, 1H), 3.05 (ddd, J = 16.4, 3.6, 1.6 Hz, 1H), 3.17 (dd, J = 16.4, 10.8 Hz, 1H), 3.28 (ddd, J = 16.4, 2.8, 1.6 Hz, 1H), 3.52-3.62 (m, 1H), 7.07 (m, 2H), 7.26-7.40 (m, 3H), 7.51 (ddd, J = 7.6, 7.6, 1.2 Hz, 1H), 8.07 (dd, J = 7.6, 0.8 Hz, 1H). ¹³C NMR (CDCl₃, 100 MHz): δ 36.4, 37.2, 45.8, 120.0, 126.2, 126.4, 127.0, 127.2, 128.9, 132.1, 133.8, 143.1, 144.5, 197.6. HRMS (ESI) calcd. for C₁₄H₁₂OS (M+H⁺) 229.0682, found 229.0685.

3,4-Dihydronaphthalen-1(2*H***)-one²⁰ (20):** Prepared according to general procedure E from **1o** (29.2 mg, 0.200 mmol) (reaction time = 10 h). The crude product (hydroacylation:isomerization = >20:1) was purified by flash column chromatography (90:10 hexanes:Et₂O) to yield **2o** (21.2 mg, 0.145 mmol, 73%) as a pale yellow oil. ¹H NMR (CDCl₃, 400 MHz): δ 2.14 (m,

2H), 2.66 (t, J = 6.4 Hz, 2H), 2.97 (t, J = 6.0 Hz, 2H), 7.25 (dd, J = 8.0 Hz, 0.8 Hz, 1H), 7.31 (ddd, J = 8.0, 7.6, 0.8 Hz, 1H), 7.47 (ddd, J = 8.0, 7.6, 1.0 Hz, 1H), 8.03 (dd, J = 8.0, 1.0 Hz, 1H). ¹³C NMR (CDCl₃, 100 MHz): δ 23.4, 29.8, 39.3, 126.8, 127.3, 128.9, 132.7, 133.5, 144.6, 198.5.

Rh-catalyzed Hydroacylation of d-1a

3-Methyl-3,4-dihydronaphthalen-1(2H)-one-3-d (*d*-2a): Prepared according to a modified version of general procedure D using rac-Binap from d-1a (32.2 mg, 0.200 mmol) (reaction time = 16 h). The crude product was purified by flash column chromatography (95:5 hexanes: EtOAc) to yield *d*-2a (25.2 mg, 0.156 mmol, 79%) as a colorless oil. ¹H NMR (CDCl₃, 400 MHz): δ 1.13 (s, 3H), 2.30 (d, J = 16.8 Hz,

1H), 2.68 (d, J = 16.4 Hz, 1H), 2.72 (d, J = 16.8 Hz, 1H), 2.96 (d, J = 16.4, 1H), 7.24 (dd, J = 7.6, 0.8 Hz, 1H), 7.30 (ddd, J = 7.6, 7.6, 0.8 Hz, 1H), 7.47 (ddd, J = 7.6, 7.2, 0.8 Hz, 1H), 8.01 (dd, J = 7.2, 0.8 Hz, 1H). ¹³C NMR (CDCl₃, 100 MHz): δ 21.4, 30.2 (t, J = 19.4Hz), 38.0, 47.2, 126.7, 127.1, 129.0, 132.3, 133.6, 143.9, 198.8. HRMS (ESI) calcd. for $C_{11}H_{11}DO (M+H^+)$ 162.1024, found 162.1020.

d-3

 d_1 -2-(2-Methylprop-1-en-1-yl)benzaldehyde (d-3): Prepared according to a modified version of general procedure D using rac-Binap from d-1a (32.2 mg, 0.200 mmol) (reaction time = 16 h). The crude product was purified by flash column chromatography (95:5 hexanes: EtOAc) to yield d-**3** (5.9 mg, 0.037 mmol, 19%) as a colorless oil. ¹H NMR (CDCl₃, 400 MHz): δ 1.65 (s, 3H), 1.96 (s, 3H), 6.58 (s, 1H), 7.23 (dd, J = 7.6, 0.8 Hz, 1H), 7.36 (ddd, J = 7.6, 7.6, 0.8 Hz, 1H), 7.54 (ddd, J = 7.6, 7.6, 0.8 Hz, 1H), 7.89 (dd, J = 7.6, 0.8 Hz, 1H). ¹³C NMR (CDCl₃, 100 MHz): δ 19.6, 26.2, 121.3,

126.9, 128.1, 130.9, 133.7, 133.8 (t, J = 3.7 Hz), 139.5, 142.4, 192.6 (t, J = 26.6). HRMS (ESI) calcd. for $C_{11}H_{11}DO(M+H^+)$ 162.1024, found 162.1023.

Kinetic Isotope Effect for 1a Versus d-1a

The kinetic isotope effect was determined by measuring the initial rate constants for two independent experiments for the hydroacylation of 1a and d-1a. The reactions were monitored by ¹H NMR spectroscopy (T = 373K) using 1,3,5-trimethoxybenzene as an internal standard. Reaction mixtures were prepared as follows: In a nitrogen-filled dry box, **1a** or *d*-**1a** (16.0 mg, 0.100 mmol, 1.00 equiv), [Rh(COD)Cl]₂ (1.23 mg, 0.0025 mmol, 0.025 equiv), (*R*)-DTBM-SEGPHOS (5.90 mg, 0.005 mmol, 0.050 equiv), NaBARF (4.43 mg, 0.005 mmol, 0.050 equiv), 1,3,5-trimethoxybenzene (5.61 mg, 0.033 mmol, 0.333 equiv), and anhydrous 1,4-dioxane-*d*₈ (0.5 mL) were added to a 1-dram vial. The vial was agitated to dissolve all solids and the solution was transferred to a dry J-Young NMR tube, sealed and immediately subjected to ¹H NMR analysis (T = 373K). Data points were collected every 3 minutes and the initial rate constants were determined from the first 5% of the reaction data. The following initial rate constants were measured based on the slope of the first order kinetics plots (Figure S1 and Figure S2): $k_{\rm H} = (1.826 \pm 0.10) \times 10^{-4} \text{ sec}^{-1}$; $k_{\rm D} = (1.535 \pm 0.06) \times 10^{-4} \text{ sec}^{-1}$. The KIE was found to be 1.19 based on the initial rate constants $k_{\rm H}$ and $k_{\rm D}$. Figure S3 and Figure S4 show [**1a**] and [*d*-**1a**] vs time through the 3rd half-life of the reaction and support first order dependence on **1a** and *d*-**1a** for the overall reaction.

Figure S1: Plot of ln([1a]) with time for the first 5% of total reaction time.

Figure S2: Plot of ln([*d*-1a]) with time for the first 5% of total reaction time.

Figure S3: Plot of **[1a]** vs time through 3rd half-life of the reaction.

Figure S4: Plot of [*d*-1a] vs time through 3rd half-life of the reaction.

Rh-Catalyzed Hydroacylation of 5-Phenylhex-5-enal 5

In a nitrogen-filled dry box, 5-phenylhex-5-enal **5** (0.200 mmol, 1.00 equiv), $[Rh(COD)Cl]_2$ (2.5 mg, 0.0050 mmol, 0.025 equiv), (*R*)-DTBM-SEGPHOS (11.8 mg, 0.010 mmol, 0.050 equiv), NaBARF (8.9 mg, 0.010 mmol, 0.050 equiv), and anhydrous 1,4-dioxane (1 mL) were added to a 1-dram vial. The vial was sealed with a

PFTE/silicone-lined septum cap and removed from the dry box. The reaction mixture was heated to 100 °C and allowed to stir at this temperature until the reaction was judged to be complete by TLC analysis. The mixture was cooled to rt, filtered through a pad of silica gel (eluting with EtOAc), and concentrated under reduced pressure. CDCl₃ (0.7 mL) was added to dissolve the crude mixture along with CH₂Br₂ (7.0 μ L, 0.100 mmol) as an internal standard. Compound **6** was not isolated. The ¹H NMR spectrum of the crude reaction mixture is shown below, integrated relative to the CH₂Br₂ standard.

Rh-Catalyzed Hydroacylation of 7

In a nitrogen-filled dry box, 2-(but-2-en-1-yl)benzaldehyde 7 (0.200 mmol, 1.00 equiv), $[Rh(COD)Cl]_2$ (2.5 mg, 0.0050 mmol, 0.025 equiv), (*R*)-DTBM-SEGPHOS (11.8 mg, 0.010 mmol, 0.050 equiv), NaBARF (8.9 mg, 0.010 mmol, 0.050 equiv), and anhydrous 1,4-dioxane (1 mL) were added to a 1-dram vial. The vial was sealed with a PFTE/silicone-lined septum cap and removed from the dry box. The reaction mixture was heated to 100 °C and allowed to stir at this temperature until the reaction was judged to be complete by TLC analysis. The mixture was cooled to rt, filtered through a pad of

silica gel (eluting with EtOAc), and concentrated under reduced pressure. CDCl₃ (0.7 mL) was added to dissolve the crude mixture along with CH₂Br₂ (7.0 μ L, 0.100 mmol) as an internal standard. The crude product was purified by flash column chromatography (90:10 hexanes:EtOAc) to yield **8** (12.3 mg, 0.077 mmol, 38%) as a light yellow oil. The enantiomeric excess was determined by HPLC analysis (254 nm, 25 °C) t_R 15.3 min; t_R 19.7 min [Chiracel AS-H (0.46cm x 25cm) (from Daicel Chemical Ind., Ltd.) hexane/^{*i*}PrOH, 95:5, 0.5 mL/min] to be 0% ee. ¹H NMR (CDCl₃, 400 MHz): δ 1.01 (t, *J* = 7.2 Hz, 1H), 1.47 – 1.58 (m, 1H), 1.91-2.04 (m, 1H), 2.57 – 2.67 (m, 1H), 2.83 (dd, *J* = 17.2, 4.0 Hz, 1H), 3.32 (dd, *J* = 17.2, 8.0 Hz, 1H), 7.36 (ddd, *J* = 7.6, 7.6, 0.8 Hz, 1H), 7.46 (dd, *J* = 7.6, 0.8 Hz, 1H), 7.58 (ddd, *J* = 7.6, 7.6, 1.2 Hz, 1H), 7.75 (dd, *J* = 7.6, 1.2 Hz, 1H). ¹³C NMR (CDCl₃, 100 MHz): δ 11.8, 24.6, 32.5, 48.9, 124.0, 126.7, 127.4, 134.8, 137.1, 154.0, 209.2. Spectral data for **8** is consistent with previous reports.^{17,21}

References

- 1) Barry, J.; Kagain, H.-B. Tetrahedron 1971, 27, 4737.
- 2) Muerling, A. Chemica Scripta 1987, 27, 349.
- 3) Zhan, F.; Liang, G. Angew. Chem. Int. Ed. 2013, 52, 1266.
- Bałczewski, P.; Koprowski, M.; Bodzioch, A.; Marciniak, B.; Różycka-Sokołowska, E. J. Org. Chem. 2006, 71, 2899.
- 5) Wu, Y.; Zhang, H.; Zhao, Y.; Zhao, J.; Chen, J.; Li, L. Org. Lett. 2007, 9, 1199.
- 6) Pulipaka, A. B.; Bergmeier, S. C. J. Org. Chem. 2008, 73, 1462.
- 7) Janssen-Müller, D.; Schedler, M.; Fleige, M.; Danilius, C. G.; Glorius, F. Angew. Chem. Int. Ed. 2015, Ahead of Print (doi: 10.1002/anie.201412302)
- 8) Yakelis, N. A.; Bergman, R. G. Organometallics 2005, 24, 3579.
- 9) Neumann, E.; Pfaltz, A. Organometallics, 2005, 24, 2008.
- 10) Spring, D. R.; Krishnan, S.; Blackwell, H. E.; Schreiber, S. L. J. Am. Chem. Soc. **2002**, *124*, 1354.
- 11) Kukosha, T.; Trufilkina, N.; Katkevics, M. Synlett 2011, 17, 2525.
- 12) Hung, H.-H.; Liao, Y.-C.; Liu, R.-S. Adv. Synth. Catal. 2013, 355, 1545.
- 13) Mello, J. V.; Finney, N. S. J. Am. Chem. Soc. 2005, 127, 10124.
- 14) Watson, I. D. G.; Ritter, S.; Toste, D. F J. Am. Chem. Soc. 2009, 131, 2056.
- 15) Knight, J.; Parsons, P. J. J. Chem. Soc. Perkins Trans I 1989, 979.
- 16) Kudirka, R.; Van Vraken, D. L. J. Org. Chem. 2008, 73, 3585.
- 17) Beletskiy, E. V.; Sudheer, C.; Douglas, C. J. J. Org. Chem. 2012, 77, 5884.
- 18) Cui, L.-Q.; Dong, Z.-L.; Liu, K.; Zhang, C. Org. Lett. 2011, 13, 6488.
- 19) Zhang, L.; Kozmin, S. A. J. Am. Chem. Soc. 2004, 126, 10204.
- 20) Zhao, Y.; Yeung Y.-Y. Org. Lett. 2010, 12, 2128.
- 21) Adamczyk, M.; Watt, D.; Netzel, D. J. Org. Chem., 1984, 49, 4226.

S-24

Solvent Temperature Pulse Sequence Experiment Probe Number of Scans Receiver Gain Relaxation Delay Pulse Width Acquisition Time Spectrometer Frequer	cdcl3 32.0 s2pul 1D OneNMR_W024 48 30 1.0000 2.7500 1.2845 ncy 100.51	~ 162.246 ~ 159.772	- 143.380 - 143.380 - 135.097 - 131.591 - 131.591 - 124.988 - 1124.896 - 1124.988 - 1124.9888 - 1124.988 - 1124.988 - 1124.9888 - 1124.9888 - 1124.9888 -	43.191	8-25 ⁻²⁵⁹
Spectral width Nucleus	23510.2 13C				
F S3b	Ļ				
na na na na na falo sa sa na	ndy k denen ten fer som den gåle syster av konserten som en s			ng bin mi da ba da manga sa ba sa sa bin ya sa bin	n feder men efter sjøler og skøler og skøler og sen kan sjøler det skølet undet skølet som en skøler en skøler
		- 100 - 1		· · · · · · · · · · · · · · · · · · ·	

f1 (ppm)

Solvent	cdcl3
Temperature	32.0
Pulse Sequence	s2pul
Experiment	1D
Probe	OneNMR_W024
Number of Scans	16
Receiver Gain	30
Relaxation Delay	1.0000
Pulse Width	2.3667
Acquisition Time	0.7340
Spectrometer Frequency	376.05
Spectral Width	89285.7
Nucleus	19F

F

S3b

30 20 10 0 -10 -20 -30 -40 -50 -60 -70 -80 -90 -100 -110 -120 -130 -140 -150 -160 -170 -180 -190 -200 f1 (ppm)

		53.318 50.865	42.891 41.475 33.947 33.869 33.869 19.270 19.270 19.239 17.803 17.576	13.198		4.139	S-28
Solvent	cdcl3	1 1 \ /				4 0	v
Temperature	32.0		יז די אורר			I	I
Pulse Sequence	s2pul						
Experiment	1D						
Probe	OneNMR_W024						
Number of Scans	80						
Receiver Gain	30						
Relaxation Delay	1.0000						
Pulse Width	2.7500						
Acquisition Time	1.2845						
Spectrometer Frequency	100.51						
Spectral Width	25510.2						
Nucleus	13C						
F S3c							
a na da alitika nil kalan ajant 1. ga kula na sa sa sa da dina diku dina iku kusi kusi	an sin in 11 standardel 14 11 statutens, at the statistic	a dilada di mini u manteri	ي من	ومرتفا اعتار والعراق والعراق ومحمد ومعرومها والمحمد ومعارفها والعراق والعراق والعراق	if any fight with the structure states of the	en bladd blan e son a blade starter , de la st. de la	(ชนะเฟนป มาให้ม.). มีก
- i - i - i - i - i - i - i - i - i - i							

230 220 210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -10 f1 (ppm)

cdcl3
32.0
s2pul
1D
OneNMR_W024
16
60
1.0000
2.3667
0.7340
376.05
89285.7
19F

S3c

30 20 10 0 -10 -20 -30 -40 -50 -60 -70 -80 -90 -100 -110 -120 -130 -140 -150 -160 -170 -180 -190 -200 f1 (ppm)

		2.807 1.064 3.871 3.389 3.389 3.080 3.080	3.221	160	924	616	S-31
Solvent	cdcl3		-11	- 77.	43	-22.	
Temperature	25.0						
Pulse Sequence	s2pul						
Experiment	1D						
Probe	OneNMR_W024						
Number of Scans	48						
Receiver Gain	30						
Relaxation Delay	1.0000						
Pulse Width	3.2000						
Acquisition Time	1.2845						
Spectrometer Frequer	ncy 100.51						
Spectral Width	25510.2						
Nucleus	13C						

CI S3d

230 220 210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -10 f1 (ppm)

Solvent Temperature Pulse Sequence Experiment Probe Number of Scans Receiver Gain Relaxation Delay Pulse Width Acquisition Time Spectrometer Frequence Spectral Width Nucleus	cdcl3 32.0 s2pul 1D OneNMR_W024 48 30 1.0000 2.7500 1.2845 29 100.51 25510.2 13C	—158.977	~143.453 ~140.179 ~133.290	116.509 115.709 113.559 112.637		—55.446	 	S-33
MeO S3e					90 80 70	60 5		

Solvent	cdcl3	147.398	139.393 132.851 131.140 127.822 127.330 125.292 125.292	111.589	42.456	38.405	21.003	926 5-35
Temperature	32.0		$\leq - \leq < < < < < < < < < < < < < < < < < $					
Pulse Sequence	s2pul							
Experiment	1D							
Probe	OneNMR_W024							
Number of Scans	64							
Receiver Gain	30							
Relaxation Delay	1.0000							
Pulse Width	2.7500							
Acquisition Time	1.2845							
Spectrometer Frequency	100.51							
Spectral Width	25510.2							
Nucleus	13C							
S3g	\sim							

230 220 210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -10 f1 (ppm)

					tOAc		tOAc	20 tOAc	S-36	
	20 27 27 20 27 20 27	2000 60781 6078	223 84 83 722 84 81 72	60 245 64 64 64 64 64 64 64 64 64 64 64 64 64	29 EI 32	36	43 EI	22 H 57 Ef		
Solvent	с (с (13 – – – – – – – – – – – – – – – – – – –			-4.8	-4.1 -3.9	-3.0	-2.0	-1.5 -1.2		
Temperature	32.0		n in innihi ar		1 (I	I			
Pulse Sequence	s2pul									
Experiment	1D									
Probe	OneNMR W024									
Number of Scans	8			[[
Receiver Gain	30			, , , , , , , , , , , , , , , , , , ,	J	ر				
Relaxation Delay	1.0000									
Pulse Width	2.7000									
Acquisition Time	2.5559									
Spectrometer Freque	ncv 399.69									
Spectral Width	6410.3									
Nucleus	1H									
S3h	`Ph									
						۲0- ۲0-				
			1.0	0.1	1.5	0.2	, ,			
13 12	11 10	9	8 7	6 5 f1 (ppm)	4	3	2	1	0 -1	-7

	—190.497		$ \begin{array}{c} 145.192 \\ 137.980 \\ 137.948 \\ 135.863 \\ 133.864 \\ 133.462 \\ 1133.462 \\ 1133.462 \\ 115.866 \\ 1112.870 \\ 1112.870 \\ 1112.870 \\ \end{array} $	—39.487	—22.874	S-39
Solvent	cdcl3					
Temperature	32.0					
Pulse Sequence	s2pul					
Experiment	1D					
Probe	OneNMR_W024					
Number of Scans	192					
Receiver Gain	30					
Relaxation Delay	1.0000					
Pulse Width	2.7500					
Acquisition Time	1.2845					
Spectrometer Frequen	cy 100.51					
Spectral Width	25510.2					
Nucleus	13C					
F 1b						
		11				
Anne 1997 - 1997	00 190 180 17	0 160		40	30 20	10 0 -10

cdcl3
32.0
s2pul
1D
OneNMR_W024
16
48
1.0000
2.3667
0.7340
376.05
89285.7
19F

1b

F

30 20 10 0 -10 -20 -30 -40 -50 -60 -70 -80 -90 -100 -110 -120 -130 -140 -150 -160 -170 -180 -190 -200 f1 (ppm)

			 		L		 		·	 	
F Ic	~										
Solvent Temperature Pulse Sequence Experiment Probe Number of Scans Receiver Gain Relaxation Delay Pulse Width Acquisition Time Spectrometer Freque Spectral Width Nucleus	cdcl3 32.0 s2pul 1D OneNMR 8 30 1.0000 3.4000 2.5559 6410.3 1H	91.01 	7.914 7.899 7.893 7.878	7.094	7.052 7.046 7.003 - 7.003 - 6.979 - 6.979			-1.778		S-42	

$ \begin{array}{c} -190.464 \\ -190.464 \\ \hline \\ -164.716 \\ \hline \\ 164.716 \\ \hline \\ 133.696 \\ \hline \\ 1131.014 \\ 1331.040 \\ \hline \\ 1131.014 \\ 1131.014 \\ \hline \\ 1131.004 \\ \hline$	40.102		S-43
--	--------	--	------

Solvent	cdcl3
Temperature	32.0
Pulse Sequence	s2pul
Experiment	1D
Probe	OneNMR_W024
Number of Scans	128
Receiver Gain	30
Relaxation Delay	1.0000
Pulse Width	2.7500
Acquisition Time	1.2845
Spectrometer Frequency	100.51
Spectral Width	25510.2
Nucleus	13C

F 1c

230 220 210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -10 f1 (ppm)

Solvent	cdcl3
Temperature	32.0
Pulse Sequence	s2pul
Experiment	1D
Probe	OneNMR_W024
Number of Scans	16
Receiver Gain	52
Relaxation Delay	1.0000
Pulse Width	2.3667
Acquisition Time	0.7340
Spectrometer Frequency	376.05
Spectral Width	89285.7
Nucleus	19F

30 20 10 0 -10 -20 -30 -40 -50 -60 -70 -80 -90 -100 -110 -120 -130 -140 -150 -160 -170 -180 -190 -200 f1 (ppm)

Solvent Temperature Bulse Sequence	cdcl3 32.0	7.280 7.280 7.378 7.378 7.357 7.285 7.285	4.880 4.486 3.701	— — 1.782	S-45
Experiment	1D		(
Probe	OneNMR_W024	/			
Number of Scans	16				
Receiver Gain	30	∫			
Relaxation Delay	1.0000	J J)	j j j)	
Pulse Width	3.4000				
Acquisition Time	2.5559				
Spectrometer Frequen	icy 399.69				
Spectral width	6410.3 1L				
Cl 1d					
	10.96.0	1.00 년 1.67 년 1.67 년	1.13 1.07 2.04 1.07	2.98⊥	
14 13 12	11 10	9 8 7 6 f1 (ppr	n)	2 1	0 -1

	0.011	.765 .743 .817 .795 .706 .700	.769 .442 .785 .638	.704	S-47
Solvent	cdcl3		4 4 M M	1	
Temperature	32.0	""	((
Pulse Sequence	s2pul				
Experiment	1D				
Probe	OneNMR_W024				
Number of Scans	16				
Receiver Gain	0	[] [
Relaxation Delay	1.0000				
Pulse Width	3.4000	, , , ,		1	
Acquisition Time	2.5559				
Spectrometer Freque	ncy 399.69				
Spectral Width	6410.3				
Nucleus	1H				

MeO 1e

	591	883	891 714	549 975	784 540 147	06	61	73	S-48
	190.	163.	144. 144.	133. 127.	116. 112. 112.	55.4	40.3	22.8	
			\checkmark		$\langle \cdot \rangle$				
Solvent	cdcl3								
Temperature	32.0								
Pulse Sequence	s2pul								
Experiment	1D								
Probe	OneNMR_W024								
Number of Scans	48								
Receiver Gain	30								
Relaxation Delay	1.0000								
Pulse Width	2.7500								
Acquisition Time	1.2845								
Spectrometer Frequency	/ 100.51								
Spectral Width	25510.2								
Nucleus	13C								

MeO 1e

230 220 210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -10 f1 (ppm)

		10.181	7.834 7.831 7.815 7.812 7.486 7.483 7.467	7.464 7.445 7.347 7.328 7.310 7.310 7.226 7.226 7.208	4.803	4.363	3.680	2.034 2.015 1.995 1.524 1.487 1.449 1.431 0.897 0.878 0.878 0.860	S-49
Solvent	cdcl3				ĺ	ĺ			
Temperature	32.0								
Pulse Sequence	s2pul								
Experiment	1D							1	
Probe	OneNMR_	_W024					(
Number of Scans	16			1					
Receiver Gain	18	([[[]					
Relaxation Delay	1.0000								
Pulse Width	3.4000)	,)	,	/	, , , ,	
Acquisition Time	2.5559								
Spectrometer Frequency	y 399.69								
Spectral Width	6410.3								
Nucleus	1H								

—191.968	-149.260 -142.228 $\int 134.365$ $\int 133.777$ 131.764 130.378 -111.720 -111.720	A 28.718 A 38.718 A 38.652 A 38.652 - 20.867 - 13.843 05-5
----------	--	--

Solvent	cdcl3
Temperature	32.0
Pulse Sequence	s2pul
Experiment	1D
Probe	OneNMR_W024
Number of Scans	64
Receiver Gain	30
Relaxation Delay	1.0000
Pulse Width	2.7500
Acquisition Time	1.2845
Spectrometer Frequency	100.51
Spectral Width	25510.2
Nucleus	13C

0 1g

· 1	· ·		'	'		'	'	'	'	'	'	'	·	· ·							'	' '	1 1	1	·
23	30	220	210	200	190	180	170	160	150	140	130	120 f	110 1 (ppm	100 1)	90	80	70	60	50	40	30	20	10	0	-10

	0.101	351 260	711	037	857 522	632	761
Solvent	cdcl3 ¹	, , , , , ,	<u> </u>	0.	 		
Temperature	32.0	11	I	I	1 1	I	ĺ
Pulse Sequence	s2pul						
Experiment	1D			1		1	
Probe	OneNMR_W024						
Number of Scans	32						
Receiver Gain	46	((
Relaxation Delay	1.0000						
Pulse Width	3.4000	/	1))))	/
Acquisition Time	2.5559						
Spectrometer Frequenc	y 399.69						
Spectral Width	6410.3						
Nucleus	1H						

	~	~			.	~	~ ı	~ ~			+	~
	608	408	36	40	186	66	628	4 9 9 9 9 9	59	45	282	386
	.92.	46.	41.	39.	34.	E.	с Э	2 r 1 r	$\frac{1}{2}$	22	27.	.15.
		-			-		5		~		7	
Solvent	cdcl3											
Temperature	25.0											
Pulse Sequence	s2pul											
Experiment	1D											
Probe	OneNMR_W024											
Number of Scans	80											
Receiver Gain	30											
Relaxation Delay	1.0000											
Pulse Width	3.2000											
Acquisition Time	1.2845											
Spectrometer Frequency	100.51											
Spectral Width	25510.2											
Nucleus	13C											

1i

CI

-77.160

S-56

· I	· · ·	· · · ·	·	1	· I	'	· .	' '				'	· · · ·						· · ·	'		1 1	1	· · · ·
230	220	210	200	190	180	170	160	150	140	130	120 f	110 1 (ppm	100)	90	80	70	60	50	40	30	20	10	0	-10

e fitte

		146.512 144.621 144.607 141.042 134.188 134.018 134.018 132.965 130.278 129.945	125.620 129.302 128.328 128.328 128.328 128.483 125.544 125.506 125.468 125.468		-37.783	S-58
Solvent	cdcl3					
Temperature	25.0					
Pulse Sequence	s2pul					
Experiment	1D					
Probe	OneNMR W	024				
Number of Scans	544					
Receiver Gain	30					
Relaxation Delay	1.0000					
, Pulse Width	3.2000					
Acquisition Time	1.2845					
Spectrometer Frequer	ncy 100.51					
Spectral Width	25510.2					
Nucleus	13C		1			
	CF3					
230 220 210 20	00 190 180) 170 160 150 140		0 90 80 70	60 50 40	

f1 (ppm)

Solvent	cdcl3
Temperature	25.0
Pulse Sequence	s2pul
Experiment	1D
Probe	OneNMR_W024
Number of Scans	16
Receiver Gain	54
Relaxation Delay	1.0000
Pulse Width	3.4333
Acquisition Time	0.7340
Spectrometer Frequency	376.05
Spectral Width	89285.7
Nucleus	19F

_____ L____

S-59

30 20 10 0 -10 -20 -30 -40 -50 -60 -70 -80 -90 -100 -110 -120 -130 -140 -150 -160 -170 -180 -190 -200 f1 (ppm)

---62.542

	—192.520	—159.393	-146.731 -142.053 1342.45 133.991 133.347 131.636	L127.189 L127.189 L113.837 L113.559	-77.160	-55.421	—37.784	S-61
Solvent Temperature Pulse Sequence Experiment Probe Number of Scans Receiver Gain Relaxation Delay Pulse Width Acquisition Time	cdcl3 25.0 s2pul 1D OneNMR_W024 128 30 1.0000 3.2000 1.2845							
Spectrometer Frequer Spectral Width Nucleus	ncy 100.51 25510.2 13C OMe							
le sa fanalalis le donañ negerinek e zarren e an ferindez e se se an	tarrana ila mili mattina dan anda da da katariya an adalar La yan Sisyangya panya api api api api ana ada da yan yayapi yanga katariya ya	k dan dan kasila ka salah ya Mangan yang salah ya	shift of a second of the second se	hadra poseta poseta (no na da terra de pos da pos da pos de poste na de poste de poste de poste de poste de pos	maar fan skalen is beste fan is beste fan de asterik fan de skelen is de skelen is de skelen is de skelen is b Neder is de skelen is beste fan de skelen is d Neder is de skelen i	na gibura da sa anti dang at kita ba pasiha ang manang kangang tang sa pangang	ska forstoren forstand jil stanska sveda sveda v V stanska sveda	haden fand och mennede det jochenis konferentikken helfte andere helfte en sekerende d Innge pæskende fan det nye generede forster forster forster fan de sekerende in
230 220 210 2	00 190 180 170	160	150 140 130	120 110 100 f1 (ppm)	90 80 70	60 50	40 30	20 10 0 -10

	7.108	7.088 6.877.033 6.877.033 7.0488 6.877.033 7.033 7.0388 7.033 7.0388 7.033 7.0488 7.033 7.0488 7.033 7.0488 7.033 7.0488 7.033 7.0488 7.0487 7.0487 7.0487 7.0487 7.0487 7.0487 7.0487 7.0487 7.0487 7.0487 7.0487 7.0487 7.0497 7	6.850 6.849 	4.75	-4.26.	S-62
Solventcdcl3Temperature25.0Pulse Sequences2pulExperiment1DProbeOneNMR_WNumber of Scans8Receiver Gain30Relaxation Delay1.0000Pulse Width3.4000Acquisition Time2.5559Spectrometer Frequency399.69	024					
Spectral Width 6410.3 Nucleus 1H						
11						L.d L.d
	+ 0.81 0.81	0.992 0.999 0.96 0.98 0.91 0.91 0.91		0.98	1.90 [⊥] 2.84 [⊥]	

347 92 88 72	115 115 115 115 115 115 115 115 115 115	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	221 221 221 221 221 221 233 116 67 67 51 EtOAc 33 EtOAc 97 EtOAc	04 49 EtOAc	80 EtoAc 62 EtoAc 44 EtoAc	S-64	
Solvent Temperature Pulse Sequence Experiment Probe Number of Scans Receiver Gain Relaxation Delay Pulse Width Acquisition Time Spectrometer Frequ Spectral Width Nucleus	cdcl3 25.0 s2pul 1D OneNMR_W024 8 30 1.0000 3.4000 2.5559 uency 399.69 6410.3 1H			·č -			
1m	0.86-	0.92 0.99 1.06 2.33 2.02 2.02	1.00 -= 1.02 -= 1.95 -= 3.09 -=			· · · · · · · · · · · · · · · · · · ·	
.4 13 12	2 11 10 9	9 8 7 6 f1(p	5 4 pm)	3 2	1	0 -1	_

4	2	0	04 V 4 4 V 0 O 0 H V W				
∞	4	9	80 / N M / N M / N M / N M / N M / N M / N M / N M / N M / N M / N M / N M / N M / N M / N M / N M / N M / N M	0	2	7	
4	ъ	8	449094090740	9	ŝ	2	
	'.	~			ъ	ъ	
26	in i	¥		~	i.	ς.	
1	-i	É.		~	5	ñ	
					Ī		

Solvent	cdcl3
Temperature	25.0
Pulse Sequence	s2pul
Experiment	1D
Probe	OneNMR_W024
Number of Scans	128
Receiver Gain	30
Relaxation Delay	1.0000
Pulse Width	3.2000
Acquisition Time	1.2845
Spectrometer Frequency	100.51
Spectral Width	25510.2
Nucleus	13C

	-192.531	142.280 141.977 141.537 141.537 134.038 134.038 131.601 127.253 125.821 125.721 113.826 113.826	-77.160	-37.646	S-67
Solvent	cdcl3	חו זררדר ר	I	I	
Temperature	25.0				
Pulse Sequence	s2pul				
Experiment	1D				
Probe	OneNMR W024				
Number of Scans	128				
Receiver Gain	30				
Relaxation Delay	1.0000				
, Pulse Width	3.2000				
Acquisition Time	1.2845				
Spectrometer Freque	ncy 100.51				
Spectral Width	25510.2				
Nucleus	13C				
	\$				
				I	
an a a transistika (k. k. k. a transistika) ja kun a antaria (k. k. a transistika) 1 m m m m m m m m m m m m m m m m m m m	n se a fan in fan de fan fan fan fan fan fan fan fan de fan de fan de fan fan fan fan de fan fan fan fan fan f Gerffenningen fan fan fan fan fan fan fan fan fan fa	na sen a na manana kana manana kana kana na ana kana k	n e se a se ne se ne L'anne conserve de la conserve de la se ne se	a ta kan ka ka da kan ka kan kan ka kan ka ka da kan dan na ka ka da kan kan kan kan kan kan kan kan kan ka	er den sen forsen en en den en besekter en den en den en den en den en den en er den den den den den en er den Men og per pensjonen den er besekter en den er en den er en den er den en den en den en den en den er den er de
230 220 210 2	00 190 180 170 16	50 150 140 130 120 110 100	90 80 70 60) 50 40 30	20 10 0 -10

Solvent	cdcl3
Temperature	25.0
Pulse Sequence	s2pul
Experiment	1D
Probe	OneNMR_W0
Number of Scans	8
Receiver Gain	30
Relaxation Delay	1.0000
Pulse Width	3.4000
Acquisition Time	2.5559
Spectrometer Frequency	399.69
Spectral Width	6410.3
Nucleus	1H

.4

			$ \begin{array}{c} 133.631 \\ 132.337 \\ 128.961 \\ 127.132 \\ 126.745 \end{array} $				-47.319		—30.642	—21.529	S-69	
Solvent Temperature Pulse Sequence Experiment Probe Number of Scans Receiver Gain Relaxation Delay Pulse Width Acquisition Time Acquisition Date Spectrometer Frequence Spectral Width Nucleus	cdcl3 32.0 s2pul 1D OneNMR_W024 256 30 1.0000 0.0000 1.2845 2014-07-07T16:30:51 / 100.51 25510.2 13C											
e e stan land men e men janje stala a sjene stala stala Na stala s Na stala s	પીકર અધિને તે તે તે કે એક દરે તે તુવાર કે પ્રેમ્બર એક વસ્ત્ર કે તેવી તે કે એક અન્ય પ્રાપ્ય છો પ્રાપ્ય બન્ની જુ કે તે કે પ્રા મે 1 પ્રાણ છું જ્યાં પ્રાણ છે. જ કે પ્રીણ પર 2 જાણ ને સ્વય પ્રાપ્ય અન્ય પ્રાથમ બાણ મુખ્ય કે છું કે પ્રાપ્ય છું પ	१ वर्षणे अध्यक्ष अध्यक्ष स्वार्थन्त्र स्वार्थन्त् । १ मृत्यान् स्वर्थन्त्र स्वार्थन्त् वर्ष्य स्वार्थन्त्		na balikaké da kan para ana padikal ng ba Nation kan pada Pang Mananapan pada	ta helio a differenti da de de de de de de segundo de segundo de segundo de segundo de segundo de posejo de se Na tarte en esta que de segundo de segundo de posejo de segundo de posejo de segundo de posejo de segundo de pos	tal manaka politika na saka kata kata kata kata kata kata kat	helen om de die sol die	alorshaved to be and to be a set of the set	ույն է ենդերություն։ Դույն է ենդերություն։	n chaile an taine alband die. Gragen of a taine alband die die Gragen of a taine alband die die die die die die die die die di	lith as an a far a f The far a	istan in di di Kalika, ang kang di
230 220 210 200	190 180 170 160	150 140	0 130 120 f	110 100 1 (ppm)	90 80	70 60	50	40	30	20	10 0	-10

Injection Summary Report

SAMPLE INFORMATION

Sample Name:	
Sample Type:	Unknown
Vial:	47
Injection #:	1
Injection Volume:	10.00 ul
Run Time:	30.0 Minutes

Acquired By:SystemSample Set NameKirsten062015Acq. Method Set:2_ASH 93_7 0pt3mpmProcessing MethodKirstenChannel Name:W2489 ChAProc. Chnl. Descr.:W2489 ChA 254nm

Date Acquired:6/20/2015 11:26:45 AM CDTDate Processed:6/21/2015 2:33:25 PM CDT

Channel: W2489 ChA; Processed Channel: W2489 ChA 254nm; Result Id: 14442; Processing Method: Kirsten

	Processed Channel Descr.	RT	Area	% Area	Height					
1	W2489 ChA 254nm	21.821	1185883	48.10	38391					
2	W2489 ChA 254nm	22.736	1279445	51.90	37493					

Processed Channel Descr.: W2489 ChA 254nm

Reported by User: System Report Method: Injection Summary Repor Report Method II 1002

Page: 1 of 1

Project Name: Stanley_1\Stanley3

Date Printed:

6/21/2015

2:34:11 PM US/Central

Injection Summary Report

SAMPLE INFORMATION

Sample Name:	KJ_3-9_ASH_93to7_0pt3mpm	Acquired By:	System
Sample Type:	Unknown	Sample Set Name	Kirsten061715
Vial:	29	Acq. Method Set:	2_ASH 93_7 0pt3mpm
Injection #:	1	Processing Method	Kirsten
Injection Volume:	10.00 ul	Channel Name:	W2489 ChA
Run Time:	30.0 Minutes	Proc. Chnl. Descr.:	W2489 ChA 254nm

Date Acquired:6/17/2015 10:04:06 PM CDTDate Processed:6/19/2015 10:37:12 AM CDT

Channel: W2489 ChA; Processed Channel: W2489 ChA 254nm; Result Id: 14312; Processing Method: Kirsten

	Processed Channel Descr.	RT	Area	% Area	Height
1	W2489 ChA 254nm	21.768	45896516	99.54	1291571
2	W2489 ChA 254nm	24.162	211794	0.46	5955

Processed Channel Descr.: W2489 ChA 254nm

Reported by User: System Report Method: Injection Summary Repor Report Method II 1002

Page: 1 of 1

Project Name: Stanley_1\Stanley3

Date Printed:

6/19/2015

10:38:09 AM US/Central

cdcl3
50.0
s2pul
1D
OneNMR_W024
16
46
1.0000
2.3667
0.7340
376.05
89285.7
19F

-116.216 -116.238 -116.238 -116.254 -116.275

30 20 10 0 -10 -20 -30 -40 -50 -60 -70 -80 -90 -100 -110 -120 -130 -140 -150 -160 -170 -180 -190 -200 f1 (ppm)

SAMPLE INFORMATION

Sample Name:	
Sample Type:	Unknown
Vial:	60
Injection #:	1
Injection Volume:	10.00 ul
Run Time:	60.0 Minutes

Acquired By:SystemSample Set NameKirsten063014Acq. Method Set:2_ASH 99_1 0pt5mpmProcessing MethodKirstenChannel Name:W2489 ChAProc. Chnl. Descr.:W2489 ChA 254nm

Date Acquired:6/30/2014 5:58:33 PM CDTDate Processed:2/21/2015 1:04:29 PM CST

Channel: W2489 ChA; Processed Channel: W2489 ChA 254nm; Result Id: 9605; Processing Method: Kirsten

Processed Channel Descr.: W2	2489 ChA 254nm
------------------------------	----------------

	Processed Channel Descr.	RT	Area	% Area	Height
1	W2489 ChA 254nm	31.411	2515190	49.96	83759
2	W2489 ChA 254nm	32.751	2519187	50.04	81077

Reported by User: System Report Method: Injection Summary Repor Report Method II 1002

Page: 1 of 1

Project Name: Stanley_1\Stanley3

Date Printed:

2/21/2015

1:04:57 PM US/Central

SAMPLE INFORMATION

Sample Name:	
Sample Type:	Unknown
Vial:	61
Injection #:	1
Injection Volume:	10.00 ul
Run Time:	45.0 Minutes

Acquired By:SystemSample Set NameKirsten063014Acq. Method Set:2_ASH 99_1 0pt5mpmProcessing MethodKirstenChannel Name:W2489 ChAProc. Chnl. Descr.:W2489 ChA 254nm

Date Acquired:6/30/2014 6:59:15 PM CDTDate Processed:2/21/2015 1:05:44 PM CST

Channel: W2489 ChA; Processed Channel: W2489 ChA 254nm; Result Id: 9609; Processing Method: Kirsten

Processed Channel Descr.: W2489 ChA 254nm

	Processed Channel Descr.	RT	Area	% Area	Height
1	W2489 ChA 254nm	31.496	5122456	99.10	159233
2	W2489 ChA 254nm	32.837	46753	0.90	1681

Reported by User: System Report Method: Injection Summary Repor Report Method II 1002

Page: 1 of 1

Project Name: Stanley_1\Stanley3

Date Printed:

2/21/2015

1:06:22 PM US/Central

Solvent	cdcl3
Temperature	50.0
Pulse Sequence	s2pul
Experiment	1D
Probe	OneNMR_W024
Number of Scans	8
Receiver Gain	30
Relaxation Delay	1.0000
Pulse Width	3.4000
Acquisition Time	2.5559
Spectrometer Frequency	399.69
Spectral Width	6410.3
Nucleus	1H

— 197.103	~167.175 ~164.634	$< ^{146.998}_{146.906}$	$\begin{pmatrix} 130.253\\ 130.153\\ 129.004\\ 128.975\\ 115.351\\ 114.289\\ 114.289 \end{pmatrix}$	—46.985	—38.216	—30.539	—21.399	S-78
-----------	----------------------	--------------------------	---	---------	---------	---------	---------	------

Solvent	cdcl3
Temperature	50.0
Pulse Sequence	s2pul
Experiment	1D
Probe	OneNMR_W024
Number of Scans	144
Receiver Gain	30
Relaxation Delay	1.0000
Pulse Width	2.7500
Acquisition Time	1.2845
Spectrometer Frequency	100.51
Spectral Width	25510.2
Nucleus	13C

Solvent	cdcl3
Temperature	50.0
Pulse Sequence	s2pul
Experiment	1D
Probe	OneNMR_W024
Number of Scans	16
Receiver Gain	56
Relaxation Delay	1.0000
Pulse Width	2.3667
Acquisition Time	0.7340
Spectrometer Frequency	376.05
Spectral Width	89285.7
Nucleus	19F

0

2c

F

· · · ,

30 20 10 0 -10 -20 -30 -40 -50 -60 -70 -80 -90 -100 -110 -120 -130 -140 -150 -160 -170 -180 -190 -200 f1 (ppm)

SAMPLE INFORMATION

Sample Name:	
Sample Type:	Unknown
Vial:	32
Injection #:	1
Injection Volume:	10.00 ul
Run Time:	35.0 Minutes

Acquired By:SystemSample Set NameKirsten041114Acq. Method Set:2_ASH 99_1 0pt5mpmProcessing MethodKirstenChannel Name:W2489 ChAProc. Chnl. Descr.:W2489 ChA 254nm

Date Acquired:4/11/2014 12:59:37 PM CDTDate Processed:2/21/2015 1:00:24 PM CST

Channel: W2489 ChA; Processed Channel: W2489 ChA 254nm; Result Id: 9597; Processing Method: Kirsten

	Processed Channel Descr.	RT	Area	% Area	Height
1	W2489 ChA 254nm	12.273	11451026	49.81	570531
2	W2489 ChA 254nm	14.999	11536079	50.19	445099

Processed Channel Descr.: W2489 ChA 254nm

Reported by User: System Report Method: Injection Summary Repor Report Method II 1002

Page: 1 of 1

Project Name: Stanley_1\Stanley3

Date Printed:

2/21/2015

1:01:08 PM US/Central

SAMPLE INFORMATION

Sample Name:	
Sample Type:	Unknown
Vial:	33
Injection #:	1
Injection Volume:	10.00 ul
Run Time:	35.0 Minutes

Acquired By:SystemSample Set NameKirsten041114Acq. Method Set:2_ASH 99_1 0pt5mpmProcessing MethodKirstenChannel Name:W2489 ChAProc. Chnl. Descr.:W2489 ChA 254nm

Date Acquired:4/11/2014 3:21:53 PM CDTDate Processed:2/21/2015 1:02:14 PM CST

Channel: W2489 ChA; Processed Channel: W2489 ChA 254nm; Result Id: 9601; Processing Method: Kirsten

	Processed Channel Descr.	RT	Area	% Area	Height
1	W2489 ChA 254nm	11.988	42582120	99.01	1643307
2	W2489 ChA 254nm	14.966	425038	0.99	19811

Processed Channel Descr.: W2489 ChA 254nm

Reported by User: System Report Method: Injection Summary Repor Report Method II 1002

Page: 1 of 1

Project Name: Stanley_1\Stanley3

Date Printed:

2/21/2015

1:03:30 PM US/Central

SAMPLE INFORMATION

Sample Name:	
Sample Type:	Unknown
Vial:	30
Injection #:	1
Injection Volume:	10.00 ul
Run Time:	30.0 Minutes

Acquired By:SystemSample Set NameKirsten061715Acq. Method Set:2_ASH 95_5 0pt5mpmProcessing MethodKirstenChannel Name:W2489 ChAProc. Chnl. Descr.:W2489 ChA 254nm

Date Acquired:6/17/2015 10:54:57 PM CDTDate Processed:6/19/2015 10:34:40 AM CDT

Channel: W2489 ChA; Processed Channel: W2489 ChA 254nm; Result Id: 14315; Processing Method: Kirsten

	Processed Channel Descr.	RT	Area	% Area	Height
1	W2489 ChA 254nm	14.148	19663926	49.94	923242
2	W2489 ChA 254nm	15.417	19710581	50.06	856544

Processed Channel Descr.: W2489 ChA 254nm

Reported by User: System Report Method: Injection Summary Repor Report Method II 1002

Page: 1 of 1

Project Name: Stanley_1\Stanley3

Date Printed:

6/19/2015

10:39:26 AM US/Central

SAMPLE INFORMATION

Sample Name:	KJ_3-13_ASH_95to5_0pt5mpm	Acquired By:	System
Sample Type:	Unknown	Sample Set Name	Kirsten040314
Vial:	43	Acq. Method Set:	2_ASH 95_5 0pt5mpm
Injection #:	1	Processing Method	Kirsten
Injection Volume:	10.00 ul	Channel Name:	W2489 ChA
Run Time:	30.0 Minutes	Proc. Chnl. Descr.:	W2489 ChA 254nm

Date Acquired:4/3/2014 1:21:45 PM CDTDate Processed:2/21/2015 1:10:32 PM CST

Channel: W2489 ChA; Processed Channel: W2489 ChA 254nm; Result Id: 9617; Processing Method: Kirsten

	Processed Channel Descr.	RT	Area	% Area	Height
1	W2489 ChA 254nm	14.046	81228623	98.52	3466481
2	W2489 ChA 254nm	15.587	1219193	1.48	59136

Processed Channel Descr.: W2489 ChA 254nm

Reported by User: System Report Method: Injection Summary Repor Report Method II 1002

Page: 1 of 1

Project Name: Stanley_1\Stanley3

Date Printed:

2/21/2015

1:11:04 PM US/Central

	—197.406	—163.747	—146.397	-129.538 -126.010	$<^{113.063}_{112.834}$			—55.527 —47.061	—38.554	—30.657	—21.489	S-87
Solvent Temperature Pulse Sequence Experiment Probe Number of Scans Receiver Gain Relaxation Delay Pulse Width Acquisition Time Spectrometer Freque Spectral Width Nucleus	cdcl3 35.0 s2pul 1D OneNMR_W024 128 30 1.0000 2.7500 1.2845 ncy 100.51 25510.2 13C											
MeO 2e												
			a min to change a start for a local			(Manufi an athla) (Ma La ro tao						nadlas (1, 2) s. d. s. a. a. anton in deal and rails the
		94449900000000000000000000000000000000		an na shina a shina a shina a shina a shi		ana na fina dia mandri dia kana dia	, <u>, , , , , , , , , , , , , , , , , , </u>		nnag a sharar da la farainn			

Т 230 220 210 200 190 180 170 160 150 140 130 120 110 100 f1 (ppm) -10

-

SAMPLE INFORMATION

Sample Name:	
Sample Type:	Unknown
Vial:	10
Injection #:	1
Injection Volume:	10.00 ul
Run Time:	30.0 Minutes

Acquired By:	System
Sample Set Name	Kirsten030214
Acq. Method Set:	2_ASH 90_10 0pt5mpm
Processing Method	Kirsten
Channel Name:	W2489 ChA
Proc. Chnl. Descr.:	W2489 ChA 254nm

Date Acquired:3/2/2014 1:52:41 PM CSTDate Processed:2/21/2015 1:12:16 PM CST

Channel: W2489 ChA; Processed Channel: W2489 ChA 254nm; Result Id: 12009; Processing Method: Kirsten

	Processed Channel Descr.	RT	Area	% Area	Height
1	W2489 ChA 254nm	24.560	12736029	50.08	381616
2	W2489 ChA 254nm	26.809	12693572	49.92	361517

Processed Channel Descr.: W2489 ChA 254nm

Reported by User: System Report Method: Injection Summary Repor Report Method II 1002

Page: 1 of 1

Project Name: Stanley_1\Stanley2

Date Printed:

2/21/2015

1:14:36 PM US/Central

SAMPLE INFORMATION

Sample Name:	
Sample Type:	Unknown
Vial:	11
Injection #:	1
Injection Volume:	10.00 ul
Run Time:	30.0 Minutes

Acquired By:SystemSample Set NameKirsten030214Acq. Method Set:2_ASH 90_10 0pt5mpmProcessing MethodKirstenChannel Name:W2489 ChAProc. Chnl. Descr.:W2489 ChA 254nm

Date Acquired:3/2/2014 4:45:32 PM CSTDate Processed:2/21/2015 1:14:01 PM CST

Channel: W2489 ChA; Processed Channel: W2489 ChA 254nm; Result Id: 12013; Processing Method: Kirsten

	Processed Channel Descr.	RT	Area	% Area	Height
1	W2489 ChA 254nm	24.551	22700698	99.70	649522
2	W2489 ChA 254nm	26.920	67931	0.30	2313

Processed Channel Descr.: W2489 ChA 254nm

Reported by User: System Report Method: Injection Summary Repor Report Method II 1002

Page: 1 of 1

Project Name: Stanley_1\Stanley2

Date Printed:

2/21/2015

1:15:02 PM US/Central

	—196.918	\[152.226 -147.022 140.849		~108.112 ~106.182 ~101.708	77.160	 	21.393	S-91
Solvent Temperature Pulse Sequence Experiment Probe Number of Scans Receiver Gain Relaxation Delay Pulse Width Acquisition Time Spectrometer Freque Spectral Width Nucleus	cdcl3 50.0 s2pul 1D OneNMR_W024 128 30 1.0000 2.7500 1.2845 ncy 100.51 25510.2 13C							
e + e + e + e + e + e + e + e + e + e +			a a di la sun sugar					
230 220 210 2	<u>, , , , , , , , , , , , , , , , , , , </u>		130 12			 40 30) () –10

f1 (ppm)

SAMPLE INFORMATION

Sample Name:	
Sample Type:	Unknown
Vial:	46
Injection #:	1
Injection Volume:	10.00 ul
Run Time:	35.0 Minutes

Acquired By:SystemSample Set NameKirsten041014Acq. Method Set:2_ASH 90_10 0pt5mpmProcessing MethodKirstenChannel Name:W2489 ChAProc. Chnl. Descr.:W2489 ChA 254nm

Date Acquired:4/10/2014 3:22:01 PM CDTDate Processed:2/21/2015 12:57:26 PM CST

Channel: W2489 ChA; Processed Channel: W2489 ChA 254nm; Result Id: 9589; Processing Method: Kirsten

Processed Channel Descr.: W2489 ChA 254nm

	Processed Channel Descr.	RT	Area	% Area	Height
1	W2489 ChA 254nm	25.903	8478221	49.98	228572
2	W2489 ChA 254nm	28.145	8484176	50.02	210932

Reported by User: System Report Method: Injection Summary Repor Report Method II 1002

Page: 1 of 1

Project Name: Stanley_1\Stanley3

Date Printed:

2/21/2015

12:58:07 PM US/Central

SAMPLE INFORMATION

Sample Name:	
Sample Type:	Unknown
Vial:	47
Injection #:	1
Injection Volume:	10.00 ul
Run Time:	35.0 Minutes

Acquired By:SystemSample Set NameKirsten041014Acq. Method Set:2_ASH 90_10 0pt5mpmProcessing MethodKirstenChannel Name:W2489 ChAProc. Chnl. Descr.:W2489 ChA 254nm

Date Acquired:4/10/2014 3:57:41 PM CDTDate Processed:2/21/2015 12:58:37 PM CST

Channel: W2489 ChA; Processed Channel: W2489 ChA 254nm; Result Id: 9593; Processing Method: Kirsten

Processed Channel Descr.: W2489 ChA 254nm

	Processed Channel Descr.	RT	Area	% Area	Height
1	W2489 ChA 254nm	26.032	6022679	99.46	165338
2	W2489 ChA 254nm	28.378	32779	0.54	1226

Reported by User: System Report Method: Injection Summary Repor Report Method II 1002

Page: 1 of 1

Project Name: Stanley_1\Stanley3

Date Printed:

2/21/2015

12:59:18 PM US/Central

Solvent	cdcl3
Temperature	25.0
Pulse Sequence	s2pul
Experiment	1D
Probe	OneNMR_W024
Number of Scans	8
Receiver Gain	30
Relaxation Delay	1.0000
Pulse Width	3.4000
Acquisition Time	2.5559
Spectrometer Frequency	399.69
Spectral Width	6410.3
Nucleus	1H

0 2g

6	10574					
õ	mõmõn	8	フフコ	\sim	Ь	0.05
Ō		8	-1	\sim	ω	3-95
		Ω.	5 M 1	8	\sim	
m				<u> </u>		
ম্		ц. Ц.	805	<u> </u>	শ	
		N N	ຕຳຕຳຕຳ	<u> </u>	-	

Solvent	cdcl3
Temperature	32.0
Pulse Sequence	s2pul
Experiment	1D
Probe	OneNMR_W024
Number of Scans	128
Receiver Gain	30
Relaxation Delay	1.0000
Pulse Width	2.7500
Acquisition Time	1.2845
Spectrometer Frequency	100.51
Spectral Width	25510.2
Nucleus	13C

-198.850

SAMPLE INFORMATION

Sample Name:	
Sample Type:	Unknown
Vial:	48
Injection #:	1
Injection Volume:	10.00 ul
Run Time:	30.0 Minutes

Acquired By: System Sample Set Name Kirsten061815 Acq. Method Set: 2_ASH 95_5 0pt5mpm Processing Method Kirsten Channel Name: W2489 ChA W2489 ChA 254nm Proc. Chnl. Descr.:

6/18/2015 2:41:53 PM CDT Date Acquired: Date Processed: 6/19/2015 10:35:02 AM CDT

Channel: W2489 ChA; Processed Channel: W2489 ChA 254nm; Result Id: 14318; Processing Method: Kirsten

	Processed Channel Descr.	RT	Area	% Area	Height
1	W2489 ChA 254nm	11.809	66987865	49.02	2852474
2	W2489 ChA 254nm	13.016	69663363	50.98	2685986

Processed Channel Descr.: W2489 ChA 254nm

Reported by User: System Report Method: Injection Summary Repor Report Method II 1002

Page: 1 of 1

Stanley_1\Stanley3 Project Name:

Date Printed:

6/19/2015

10:40:43 AM US/Central

SAMPLE INFORMATION

Sample Name:	
Sample Type:	Unknown
Vial:	36
Injection #:	1
Injection Volume:	10.00 ul
Run Time:	20.0 Minutes

Acquired By: System Sample Set Name Kirsten061714 Acq. Method Set: 2_ASH 95_5 0pt5mpm Kirsten Processing Method Channel Name: W2489 ChA Proc. Chnl. Descr.: W2489 ChA 254nm

Date Acquired: 6/17/2014 4:02:50 PM CDT Date Processed: 2/21/2015 1:24:21 PM CST

Channel: W2489 ChA; Processed Channel: W2489 ChA 254nm; Result Id: 9633; Processing Method: Kirsten

	Processed Channel Descr.	RT	Area	% Area	Height
1	W2489 ChA 254nm	11.320	26708347	98.26	1643306
2	W2489 ChA 254nm	12.521	473365	1.74	28263

Processed Channel Descr.: W2489 ChA 254nm

Reported by User: System Report Method: Injection Summary Repor Report Method II 1002

Page: 1 of 1

Stanley_1\Stanley3 Project Name:

Date Printed:

2/21/2015

1:24:59 PM US/Central

143.5 143.5 143.4 133.9 132.2 128.9 128.9 127.3 127.5 17.5 127.5 127.5 127.5 127.5 127.5 127.5 127.5 127.5 1

~46.094 ~41.246 ~37.820

Solvent	cdcl3
Temperature	32.0
Pulse Sequence	s2pul
Experiment	1D
Probe	OneNMR_W024
Number of Scans	144
Receiver Gain	30
Relaxation Delay	1.0000
Pulse Width	0.0000
Acquisition Time	1.2845
Acquisition Date	2014-07-09T20:51:46
Spectrometer Frequency	/ 100.51
Spectral Width	25510.2
Nucleus	13C
O Ph 2h	
يعر المراقع والمراجع المراقع المعرف المراجع والمعالم والمقال المراجع والمراجع والمراجع والمراجع والمراجع والمراجع	a between adversession above session and the session of the last session and the se
सि, सिसी क्रिसे कि का स्वति होति हो प्रिकेट की दिन हो कि स्वति हो सि स्वति हो हो कि स्वतः स्वति हो हो हो हो हो इन हो कि सिता कि सिनिय के सिनिय हो कि से कि सि कि सि कि सि कि सि कि से कि सि कि से का स्वति के स्वति के से कि	

230 220 210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -10 f1 (ppm)

SAMPLE INFORMATION

Sample Name:	
Sample Type:	Unknown
Vial:	27
Injection #:	1
Injection Volume:	10.00 ul
Run Time:	30.0 Minutes

Acquired By:SystemSample Set NameKirsten062115_2Acq. Method Set:2_ASH 90_10 0pt5mpmProcessing MethodKirstenChannel Name:W2489 ChAProc. Chnl. Descr.:W2489 ChA 254nm

Date Acquired:6/21/2015 5:55:30 PM CDTDate Processed:6/21/2015 6:32:05 PM CDT

Channel: W2489 ChA; Processed Channel: W2489 ChA 254nm; Result Id: 14461; Processing Method: Kirsten

Processed Channel Descr.: W2489 ChA 254nm

	Processed Channel Descr.	RT	Area	% Area	Height
1	W2489 ChA 254nm	19.644	750285	51.04	28900
2	W2489 ChA 254nm	24.350	719677	48.96	20352

Reported by User: System Report Method: Injection Summary Repor Report Method II 1002

Page: 1 of 1

Project Name: Stanley_1\Stanley3

Date Printed:

6/21/2015

6:33:10 PM US/Central

SAMPLE INFORMATION

Sample Name:	
Sample Type:	Unknown
Vial:	32
Injection #:	1
Injection Volume:	10.00 ul
Run Time:	30.0 Minutes

Acquired By: System Sample Set Name Kirsten061715 Acq. Method Set: 2_ASH 90_10 0pt5mpm Processing Method Kirsten Channel Name: W2489 ChA Proc. Chnl. Descr.: W2489 ChA 254nm

Date Acquired: 6/18/2015 12:16:25 AM CDT Date Processed: 6/19/2015 10:35:34 AM CDT

Channel: W2489 ChA; Processed Channel: W2489 ChA 254nm; Result Id: 14324; Processing Method: Kirsten

	Processed Channel Descr.	RT	Area	% Area	Height
1	W2489 ChA 254nm	19.356	21466144	98.73	742651
2	W2489 ChA 254nm	24.145	276414	1.27	7934

Processed Channel Descr.: W2489 ChA 254nm

Reported by User: System Report Method: Injection Summary Repor Report Method II 1002

Page: 1 of 1

Stanley_1\Stanley3 Project Name:

Date Printed:

6/19/2015

10:42:40 AM US/Central

	—197.485		<pre>/143.114 /141.963 /134.036 /132.804 /132.136 /1729.048</pre>	128.971 128.203 127.390 127.212		—77.160		~45.957 ~40.638 ~37.669		S-103	
Solvent Temperature Pulse Sequence Experiment Probe Number of Scans Receiver Gain Relaxation Delay Pulse Width Acquisition Time Spectrometer Frequence Spectral Width	cdcl3 25.0 s2pul 1D OneNMR_W024 80 30 1.0000 3.2000 1.2845 y 100.51 25510.2										
		the state program to the state of the state		ng of dama and da sa tink da Mada ang sa	ullet entelling all general set and all general set		n yiniya da ka ku king jina da man		ar (and a like basis produce of an a fair of the second second second second second second second second second	an de portuna din parte de portuna de consecutor de consecutor de consecutor de consecutor de consecutor de con	
230 220 210 2	00 190 180 1	70 160 15	0 140 130	120 110 10(f1 (ppm)) 90 8	80 70	60 50	0 40 3	0 20	10 0	-10

SAMPLE INFORMATION

Sample Name:	
Sample Type:	Unknown
Vial:	34
Injection #:	1
Injection Volume:	10.00 ul
Run Time:	50.0 Minutes

Acquired By:SystemSample Set NameKirsten070115Acq. Method Set:2_ASH 95_5 0pt5mpmProcessing MethodKirstenChannel Name:W2489 ChAProc. Chnl. Descr.:W2489 ChA 254nm

Date Acquired:7/1/2015 8:05:43 PM CDTDate Processed:7/10/2015 4:22:36 PM CDT

_ Channel: W2489 ChA; Processed Channel: W2489 ChA 254nm; Result Id: 14895; Processing Method: Kirsten

	Processed Channel Descr.	RT	Area	% Area	Height
1	W2489 ChA 254nm	32.345	10991017	49.93	182112
2	W2489 ChA 254nm	43.284	11023203	50.07	130356

Processed Channel Descr.: W2489 ChA 254nm

Reported by User: System Report Method: Injection Summary Repor Report Method II 1002

Page: 1 of 1

Project Name: Stanley_1\Stanley3

Date Printed:

7/10/2015

4:22:56 PM US/Central

SAMPLE INFORMATION

	Ac
Unknown	Sa
35	Ac
1	Pro
10.00 ul	Ch
50.0 Minutes	Pro
	Unknown 35 1 10.00 ul 50.0 Minutes

cquired By:Systemample Set NameKirsten071015cq. Method Set:2_ASH 95_5 0pt5mpmrocessing MethodKirstennannel Name:W2489 ChAroc. Chnl. Descr.:W2489 ChA 254nm

Date Acquired:7/10/2015 4:36:39 PM CDTDate Processed:7/13/2015 9:57:31 AM CDT

Channel: W2489 ChA; Processed Channel: W2489 ChA 254nm; Result Id: 14956; Processing Method: Kirsten

	Processed Channel Descr.	RT	Area	% Area	Height
1	W2489 ChA 254nm	31.889	18154060	99.21	291806
2	W2489 ChA 254nm	42.893	143928	0.79	2873

Processed Channel Descr.: W2489 ChA 254nm

Reported by User: System Report Method: Injection Summary Repor Report Method II 1002

Page: 1 of 1

Project Name: Stanley_1\Stanley3

Date Printed:

7/13/2015

9:57:48 AM US/Central

S-106

	041.761	-147.401 -142.879 134.104 132.091 129.596 129.596 127.295 127.296 127.296 127.296 127.296 127.296 125.955 125.955 125.880 125.845 125.845 125.868	 ~45.670 ~41.029 ~37.394	S-107
Solvent Temperature Pulse Sequence Experiment Probe Number of Scans Receiver Gain Relaxation Delay Pulse Width Acquisition Time Spectrometer Frequence Spectral Width Nucleus	cdcl3 25.0 s2pul 1D OneNMR_W024 192 30 1.0000 3.2000 1.2845 y 100.51 25510.2 13C			
	℃F ₃			

230 220 210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -10 f1 (ppm)

Solvent	cdcl3
Temperature	25.0
Pulse Sequence	s2pul
Experiment	1D
Probe	OneNMR_W024
Number of Scans	16
Receiver Gain	46
Relaxation Delay	1.0000
Pulse Width	3.4333
Acquisition Time	0.7340
Spectrometer Frequency	376.05
Spectral Width	89285.7
Nucleus	19F

30 20 10 0 -10 -20 -30 -40 -50 -60 -70 -80 -90 -100 -110 -120 -130 -140 -150 -160 -170 -180 -190 -200 f1 (ppm)

SAMPLE INFORMATION

Sample Name:	KJ_4-229A_ASH_90to10_1mpm	Acquired By:	System
Sample Type:	Unknown	Sample Set Name	Kirsten070215
Vial:	32	Acq. Method Set:	2_ASH 90_10 1mpm
Injection #:	1	Processing Method	Kirsten
Injection Volume:	10.00 ul	Channel Name:	W2489 ChA
Run Time:	40.0 Minutes	Proc. Chnl. Descr.:	W2489 ChA 254nm

Date Acquired:7/2/2015 9:53:45 AM CDTDate Processed:7/10/2015 4:19:56 PM CDT

Channel: W2489 ChA; Processed Channel: W2489 ChA 254nm; Result Id: 14889; Processing Method: Kirsten

Processed Channel Descr.: W2489 ChA 254nm

	Processed Channel Descr.	RT	Area	% Area	Height
1	W2489 ChA 254nm	9.797	4630886	49.79	238447
2	W2489 ChA 254nm	13.462	4669868	50.21	166335

Reported by User: System Report Method: Injection Summary Repor Report Method II 1002

Page: 1 of 1

Project Name: Stanley_1\Stanley3

Date Printed:

7/10/2015

4:20:17 PM US/Central

SAMPLE INFORMATION

Sample Name:	KJ_4-229B_ASH_90to10_1mpm	Acquired By:	System
Sample Type:	Unknown	Sample Set Name	Kirsten070215
Vial:	33	Acq. Method Set:	2_ASH 90_10 1mpm
Injection #:	1	Processing Method	Kirsten
Injection Volume:	10.00 ul	Channel Name:	W2489 ChA
Run Time:	30.0 Minutes	Proc. Chnl. Descr.:	W2489 ChA 254nm

Date Acquired: 7/2/2015 4:48:23 PM CDT Date Processed: 7/10/2015 4:21:02 PM CDT

Channel: W2489 ChA; Processed Channel: W2489 ChA 254nm; Result Id: 14892; Processing Method: Kirsten

	Processed Channel Descr.	RT	Area	% Area	Height
1	W2489 ChA 254nm	9.754	15091053	98.10	688907
2	W2489 ChA 254nm	13.548	292306	1.90	11363

Processed Channel Descr.: W2489 ChA 254nm

Reported by User: System Report Method: Injection Summary Repor Report Method II 1002

Page: 1 of 1

Project Name: Stanley_1\Stanley3

Date Printed:

7/10/2015

4:21:16 PM US/Central

	101.061	—158.574		017.411	-77.160		~46.377 ~40.451 ~38.090	S-112
Solvent Temperature Pulse Sequence Experiment Probe Number of Scans Receiver Gain Relaxation Delay Pulse Width Acquisition Time Spectrometer Frequence Spectral Width Nucleus	cdcl3 25.0 s2pul 1D OneNMR_W024 64 30 1.0000 3.2000 1.2845 ty 100.51 25510.2 13C							
	OMe							
230 220 210 200			0 140 130 120	110 100 90		60 5		

_

SAMPLE INFORMATION

Sample Name:	KJ_4-228A_ASH_90to10_1mpm	Acquired By:	System
Sample Type:	Unknown	Sample Set Name	KLV_7_27_2015
Vial:	30	Acq. Method Set:	2_ASH 90_10 1mpm
Injection #:	1	Processing Method	Kirsten
Injection Volume:	10.00 ul	Channel Name:	W2489 ChA
Run Time:	40.0 Minutes	Proc. Chnl. Descr.:	W2489 ChA 254nm

Date Acquired:7/27/2015 11:26:39 AM CDTDate Processed:7/27/2015 1:19:30 PM CDT

Channel: W2489 ChA; Processed Channel: W2489 ChA 254nm; Result Id: 15663; Processing Method: Kirsten

	Processed Channel Descr.	RT	Area	% Area	Height
1	W2489 ChA 254nm	22.192	6732284	50.43	91183
2	W2489 ChA 254nm	31.081	6617876	49.57	61143

Reported by User: System Report Method: Injection Summary Repor Report Method II 1002

Page: 1 of 1

Project Name: Stanley_1\Stanley3

Date Printed:

7/27/2015

1:19:54 PM US/Central

SAMPLE INFORMATION

Sample Name:	KJ_4-243_ASH_90to10_1mpm	Acquired By:	System
Sample Type:	Unknown	Sample Set Name	Kirsten070715
Vial:	32	Acq. Method Set:	2_ASH 90_10 1mpm
Injection #:	1	Processing Method	Kirsten
Injection Volume:	10.00 ul	Channel Name:	W2489 ChA
Run Time:	60.0 Minutes	Proc. Chnl. Descr.:	W2489 ChA 254nm

Date Acquired:7/7/2015 5:18:48 PM CDTDate Processed:7/10/2015 4:13:54 PM CDT

Channel: W2489 ChA; Processed Channel: W2489 ChA 254nm; Result Id: 14883; Processing Method: Kirsten

Processed Channel Descr.: W2489 ChA 254nm

	Processed Channel Descr.	RT	Area	% Area	Height
1	W2489 ChA 254nm	20.486	9320252	99.14	131220
2	W2489 ChA 254nm	29.342	80716	0.86	880

Reported by User: System Report Method: Injection Summary Repor Report Method II 1002

Page: 1 of 1

Project Name: Stanley_1\Stanley3

Date Printed:

7/10/2015

4:14:36 PM US/Central

- 197.897	-159.952	<pre>145.197 143.462 143.920 133.920 132.168 129.918 129.918 127.059 112.962 111.991</pre>	-77.160	-55.336	-46.057 -41.233 -37.716	S-116
					7 5 5	

Solvent	cdcl3
Temperature	25.0
Pulse Sequence	s2pul
Experiment	1D
Probe	OneNMR_W024
Number of Scans	48
Receiver Gain	30
Relaxation Delay	1.0000
Pulse Width	3.2000
Acquisition Time	1.2845
Spectrometer Frequency	100.51
Spectral Width	25510.2
Nucleus	13C

SAMPLE INFORMATION

Sample Name:	KJ_4-238A_ASH_90to10_1mpm	Acquired By:	System
Sample Type:	Unknown	Sample Set Name	Kirsten070615
Vial:	36	Acq. Method Set:	2_ASH 90_10 1mpm
Injection #:	1	Processing Method	Kirsten
Injection Volume:	10.00 ul	Channel Name:	W2489 ChA
Run Time:	30.0 Minutes	Proc. Chnl. Descr.:	W2489 ChA 254nm

Date Acquired: 7/6/2015 5:31:32 PM CDT Date Processed: 7/27/2015 1:59:10 PM CDT

Channel: W2489 ChA; Processed Channel: W2489 ChA 254nm; Result Id: 15681; Processing Method: Kirsten

Processed Channel Descr.: W2489 ChA 254nm

	Processed Channel Descr.	RT	Area	% Area	Height
1	W2489 ChA 254nm	13.833	3618172	49.86	151549
2	W2489 ChA 254nm	16.852	3638227	50.14	121160

Reported by User: System Report Method: Injection Summary Repor Report Method II 1002

Page: 1 of 1

Project Name: Stanley_1\Stanley3

Date Printed:

7/27/2015

1:59:27 PM US/Central

SAMPLE INFORMATION

Sample Name:	KJ_4-238B_ASH_90to10_1mpm	Acquired By:	System
Sample Type:	Unknown	Sample Set Name	Kirsten070615
Vial:	37	Acq. Method Set:	2_ASH 90_10 1mpm
Injection #:	1	Processing Method	Kirsten
Injection Volume:	10.00 ul	Channel Name:	W2489 ChA
Run Time:	30.0 Minutes	Proc. Chnl. Descr.:	W2489 ChA 254nm

Date Acquired: 7/6/2015 6:02:13 PM CDT Date Processed: 7/27/2015 1:59:50 PM CDT

Channel: W2489 ChA; Processed Channel: W2489 ChA 254nm; Result Id: 15684; Processing Method: Kirsten

	Processed Channel Descr.	RT	Area	% Area	Height
1	W2489 ChA 254nm	13.794	10000726	98.81	399821
2	W2489 ChA 254nm	16.902	120478	1.19	4569

Processed Channel Descr.: W2489 ChA 254nm

Reported by User: System Report Method: Injection Summary Repor Report Method II 1002

Page: 1 of 1

Project Name: Stanley_1\Stanley3

Date Printed:

7/27/2015

2:00:03 PM US/Central

5-119	S-	1	1	9	
-------	----	---	---	---	--

	—198.702	—157.140	-110.705	 	 35.99635.067	S-120
Solvent	cdcl3					
Tomporaturo	25.0					

Temperature	25.0
Pulse Sequence	s2pul
Experiment	1D
Probe	OneNMR_W024
Number of Scans	48
Receiver Gain	30
Relaxation Delay	1.0000
Pulse Width	3.2000
Acquisition Time	1.2845
Spectrometer Frequency	100.51
Spectral Width	25510.2
Nucleus	13C

OMe 2m

230 220 210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -10 f1 (ppm)

SAMPLE INFORMATION

Sample Name:	
Sample Type:	Unknown
Vial:	38
Injection #:	1
Injection Volume:	10.00 ul
Run Time:	75.0 Minutes

Acquired By: System Sample Set Name Kirsten070615 Acq. Method Set: 2_ASH 90_10 0pt5mpm Processing Method Kirsten Channel Name: W2489 ChA Proc. Chnl. Descr.: W2489 ChA 254nm

Date Acquired: 7/6/2015 12:37:53 PM CDT Date Processed: 7/10/2015 4:25:29 PM CDT

Channel: W2489 ChA; Processed Channel: W2489 ChA 254nm; Result Id: 14904; Processing Method: Kirsten

Processed Channel Descr.: W2489 ChA 254nm

	Processed Channel Descr.	RT	Area	% Area	Height
1	W2489 ChA 254nm	21.360	4616216	50.33	134752
2	W2489 ChA 254nm	27.544	4554823	49.67	108377

Reported by User: System Report Method: Injection Summary Repor Report Method II 1002

Page: 1 of 1

Date Printed:

7/10/2015

4:25:46 PM US/Central

SAMPLE INFORMATION

Sample Name:	
Sample Type:	Unknown
Vial:	39
Injection #:	1
Injection Volume:	10.00 ul
Run Time:	45.0 Minutes

Acquired By: System Sample Set Name Kirsten070615 Acq. Method Set: 2_ASH 90_10 0pt5mpm Processing Method Kirsten Channel Name: W2489 ChA Proc. Chnl. Descr.: W2489 ChA 254nm

Date Acquired: 7/6/2015 2:39:15 PM CDT Date Processed: 7/10/2015 4:26:14 PM CDT

Channel: W2489 ChA; Processed Channel: W2489 ChA 254nm; Result Id: 14907; Processing Method: Kirsten

	Processed Channel Descr.	RT	Area	% Area	Height
1	W2489 ChA 254nm	21.358	14134269	98.72	389960
2	W2489 ChA 254nm	27.608	183694	1.28	4789

Processed Channel Descr.: W2489 ChA 254nm

Reported by User: System Report Method: Injection Summary Repor Report Method II 1002

Page: 1 of 1

Stanley_1\Stanley3 Project Name:

Date Printed:

7/10/2015

4:26:40 PM US/Central

	566
-	~
Solvent	f cdcl3
Temperature	25.0
Pulse Sequence	s2pul
Experiment	1D
Probe	OneNMR_W024
Number of Scans	144
Receiver Gain	30
Relaxation Delay	1.0000
Pulse Width	3.2000
Acquisition Time	1.2845
Spectrometer Frequence	cy 100.51
Spectral Width	25510.2
Nucleus	13C

45.833 -37.198 -36.394 52

S-124

230 220 210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -10 f1 (ppm)

SAMPLE INFORMATION

Sample Name:	KJ_4-242A_ASH_90to10_1mpm	Acquired By:	System
Sample Type:	Unknown	Sample Set Name	Kirsten070715
Vial:	30	Acq. Method Set:	2_ASH 90_10 1mpm
Injection #:	1	Processing Method	Kirsten
Injection Volume:	10.00 ul	Channel Name:	W2489 ChA
Run Time:	60.0 Minutes	Proc. Chnl. Descr.:	W2489 ChA 254nm

Date Acquired:7/7/2015 6:19:30 PM CDTDate Processed:7/10/2015 4:28:12 PM CDT

Channel: W2489 ChA; Processed Channel: W2489 ChA 254nm; Result Id: 14910; Processing Method: Kirsten

Processed Channel Descr.: W2489 ChA 254nm

	Processed Channel Descr.	RT	Area	% Area	Height
1	W2489 ChA 254nm	13.539	3640247	52.39	134781
2	W2489 ChA 254nm	17.263	3308568	47.61	109292

Reported by User: System Report Method: Injection Summary Repor Report Method II 1002

Page: 1 of 1

Project Name: Stanley_1\Stanley3

Date Printed:

7/10/2015

4:28:27 PM US/Central

SAMPLE INFORMATION

Sample Name:	KJ_4-242B_ASH_90to10_1mpm	Acquired By:	System
Sample Type:	Unknown	Sample Set Name	Kirsten070715
Vial:	31	Acq. Method Set:	2_ASH 90_10 1mpm
Injection #:	1	Processing Method	Kirsten
Injection Volume:	10.00 ul	Channel Name:	W2489 ChA
Run Time:	60.0 Minutes	Proc. Chnl. Descr.:	W2489 ChA 254nm

Date Acquired: 7/7/2015 7:20:08 PM CDT Date Processed: 7/10/2015 4:28:57 PM CDT

Channel: W2489 ChA; Processed Channel: W2489 ChA 254nm; Result Id: 14913; Processing Method: Kirsten

Processed Channel Descr.: W2489 ChA 254nm

	Processed Channel Descr.	RT	Area	% Area	Height
1	W2489 ChA 254nm	13.498	7070963	98.82	269876
2	W2489 ChA 254nm	17.294	84125	1.18	3305

Reported by User: System Report Method: Injection Summary Repor Report Method II 1002

Page: 1 of 1

Project Name: Stanley_1\Stanley3

Date Printed:

7/10/2015

4:29:14 PM US/Central

Solvent Temperature Pulse Sequence Experiment Probe Number of Scans Receiver Gain Relaxation Delay Pulse Width Acquisition Time Spectrometer Frequ Spectral Width Nucleus	ff9.861 cdcl3 25.0 s2pul 1D OneNMR_W024 160 30 1.0000 3.2000 1.2845 ency 100.51 25510.2 13C	-144.635 -144.635 -133.542 -132.716 -128.905 -126.760	-77.160	39.312 29.843 23.421	S-128
	n na filos francúzis, k. szadelj az na men kinken ki kink a men a kondu na stak, nika men k kink Men filos tan Tri filos tangan szade per ta jad pak nes v kink filosof a men a kondu na stak, nika men k filoso		vite a fina a fina de sense de sense de se se de sense		
230 220 210	200 190 180 170 1	60 150 140 130 120 110 f1 (pp	 100 90 80 70 60 m)	50 40 30 20 1	0 0 -10

—198.799		—143.945	133.646 132.282 132.282 128.961 127.106 127.106 126.728 126 126.728 126 126 126 126 126 126 126 126 126 126	—47.183	$ \begin{array}{c} -38.039 \\ 30.361 \\ \hline 30.167 \\ 29.971 \\ -21.402 \end{array} $	S-130
Solvent Temperature Pulse Sequence Experiment Probe Number of Scans Receiver Gain Relaxation Delay Pulse Width Acquisition Time Spectrometer Frequency Spectral Width Nucleus	cdcl3 25.0 s2pul 1D OneNMR_W024 256 30 1.0000 3.2000 1.2845 100.51 25510.2 13C					
O G-2a →						

230 220 210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -10 f1 (ppm)

120 110 100 f1 (ppm) -10

		—154.003	~ 137.087 ~ 134.779 ~ 127.445 ~ 126.693 ~ 123.990	77.160			062-134
Solvent Temperature Pulse Sequence Experiment Probe Number of Scans Receiver Gain Relaxation Delay Pulse Width Acquisition Time Spectrometer Frequence Spectral Width Nucleus	cdcl3 25.0 s2pul 1D OneNMR_W024 256 30 1.0000 3.2000 1.2845 ty 100.51 25510.2 13C						
t, me saklak dan several selda ikt setur ktora mi konse dika a bina bik dan severa Na pre provinje na pri regna gina gina pri na severa se gan a pri a pranja severa je gange	file abundadis yang seksa Madharan pan Bradi kabananan Manggaran pertamak kapasat pentan mga tanpak gentamatan	(Le y Lan, Alley Long associates, milita à scrande d'Angelage de La sance allege region (Their Million gev a real d'Angelage de	ing the section of a line of the section of the sec	i da bila sem dente di ku di se di se di se di seco di la capata di seco di seco di se di seco di seco di seco La seco da conte dente della seco di sec	nde versenet biller av en se skaldet av beskeldet forste Senere Friger i se server gerigeren gerigere Friger	National States, July States and States and States and States	ter mong til fan yf an de blannederen yf er blannin ein yrechd yn rysgener Hefyd benjinte tyf agfern yt yf y y y y gynere signig yn yn mefyd ar yn yt
230 220 210 20	0 190 180 2	L70 160 150) 140 130 120 110 f1 (ppm)	100 90 80 70 6	0 50 40) 30 20	10 0 -10

r.

SAMPLE INFORMATION

Sample Name:	
Sample Type:	Unknown
Vial:	82
Injection #:	1
Injection Volume:	10.00 ul
Run Time:	30.0 Minutes

Acquired By: System Sample Set Name Kirsten072415 Acq. Method Set: 2_ASH 95_5 0pt5mpm Processing Method Kirsten Channel Name: W2489 ChA Proc. Chnl. Descr.: W2489 ChA 254nm

Date Acquired: 7/24/2015 9:58:11 AM CDT Date Processed: 7/27/2015 1:56:22 PM CDT

Channel: W2489 ChA; Processed Channel: W2489 ChA 254nm; Result Id: 15675; Processing Method: Kirsten

	Processed Channel Descr.	RT	Area	% Area	Height
1	W2489 ChA 254nm	15.169	1417000	51.00	61542
2	W2489 ChA 254nm	19.511	1361451	49.00	47406

Reported by User: System Report Method: Injection Summary Repor Report Method II 1002

Page: 1 of 1

Project Name: Stanley_1\Stanley3

Date Printed:

7/27/2015

1:56:41 PM US/Central

SAMPLE INFORMATION

Sample Name:	
Sample Type:	Unknown
Vial:	83
Injection #:	1
Injection Volume:	10.00 ul
Run Time:	30.0 Minutes

Acquired By:	System
Sample Set Name	Kirsten072415
Acq. Method Set:	2_ASH 95_5 0pt5mpm
Processing Method	Kirsten
Channel Name:	W2489 ChA
Proc. Chnl. Descr.:	W2489 ChA 254nm

Date Acquired:7/24/2015 9:27:18 AM CDTDate Processed:7/27/2015 1:57:17 PM CDT

Channel: W2489 ChA; Processed Channel: W2489 ChA 254nm; Result Id: 15678; Processing Method: Kirsten

	Processed Channel Descr.	RT	Area	% Area	Height
1	W2489 ChA 254nm	15.284	2278848	48.18	98104
2	W2489 ChA 254nm	19.705	2450860	51.82	84537

Processed Channel Descr.: W2489 ChA 254nm

Reported by User: System Report Method: Injection Summary Repor Report Method II 1002

Page: 1 of 1

Project Name: Stanley_1\Stanley3

Date Printed:

7/27/2015

1:57:40 PM US/Central