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Experimental section 

General remarks 

The working electrode used in the cyclic voltammetry experiments was a glassy carbon disc (1.8 mm 

diameter) and a glass carbon rod was used as the counter electrode. The working electrode used in 

macro-scale electrolysis and controlled-potential coulometry was an assembly of four ordinary soft 

carbon rods (6 mm diameter and 4 cm length), placed as single rods in the edges of a square with a 

distance of 3 cm, and a large stainless steel cylinder (25 cm2 area) constituted the counter electrode. 

The electrochemical nitration were performed under controlled-potential condition in a two 

compartments cell, separated by an ordinary porous fritted-glass diaphragm (a tube with 1.5 cm 

diameter) and equipped with a magnetic stirrer. Acetaminophen (PAC), N-(2-

hydroxyphenyl)acetamide (OAC), 1-(4-(4-hydroxyphenyl)piperazin-1-yl)ethanone (APIP), acetic acid 

and sodium acetate were obtained from commercial sources. These chemicals were used without 

further purification. The glassy carbon electrode was polished using alumina slurry (from Iran 

Alumina Co.). More details are described in our previous paper.26 

Computational details 

The geometries of all species in the gas phase were fully optimized at BP86/Def2-TZVPP level of 

theory using Gaussian 03.18.Vibrational frequency analysis, calculated at the same level of theory, 

indicates that optimized structures are at the stationary points corresponding to local minima 

without any imaginary frequency. Also NBO analyzes19 were carried out at the mentioned levels of 

theory. A starting molecular-mechanics structure for the ab initio calculations was obtained using 

the HyperChem 5.02 program. 
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Controlled-potential synthesis of 2NPAC, 2NOAC and 2NAPIP 

A solution of acetate buffer solution (pH = 5.0, c = 0.2 M), containing PAC (or OAC or APIP), (0.25 

mmol), was electrolyzed in a divided cell at 0.45 (in the case of PAC) and 0.55 (in the case of OAC) 

V and 0.30 vs. Ag/AgCl (3M) (in the case of APIP) in the presence of nitrite ion (1 mmol). The 

electrolysis was terminated when the decay of current became more than 95%. At the end of 

electrolysis, the aqueous layer was extracted three times with ethyl acetate (90 mL). The combined 

organic extracts were dried with MgSO4 and evaporated in vacuum. 2NPAC, 2NOAC and 2NAPIP 

were obtained after recrystallization in a mixture of chloroform/diethylether (40/60, v/v). They 

were characterized by IR, 1H NMR, 13C NMR, MS and SCXRD. 

N-(4-hydroxy-3-nitrophenyl)acetamide (C8H8N2O4) (2NPAC) 

Isolated yield: 85%. Mp=158-160 oC. IR (KBr): 3433, 3287, 3189, 2960, 2926, 2855, 1661, 1542, 1482, 

1341, 1271, 1099, 1019, 813, 755, 629, 554, 513 cm-1. 1H NMR (400 MHz, DMSO-d6): δ 2.03 (s, 3H, 

methyl), 7.09 (d, 1H, J = 8.8 Hz), 7.61 (dd, 1H, J = 9.0, J =2.8 Hz), 8.30 (d, 1H, J =2.8 Hz), 10.09 (s, 1H), 

10.7 (broad, ~1H). 13C NMR (125 MHz, D2O): δ 23.6, 114.6, 119.4, 126.8, 131.1, 135.5, 148.1, 168.2. 

MS (EI) m/z (relative intensity): 196 (71), 154 (100), 137 (14), 109 (57), 80 (28), 52 (34). 

N-(2-hydroxy-3-nitrophenyl)acetamide (C8H8N2O4) (2NOAC) 

Isolated yield: 68 %. Mp = 228-230 oC. IR (KBr): 3313, 3095, 2924, 2853, 1668, 1608, 1532, 1447, 

1337, 1269, 1215, 1174, 1080, 990, 852, 730, 603, 524 cm-1. 1H NMR (400 MHz, DMSO-d6): δ 2.08 

(s, 3H, methyl), 3.40 (s, 1H, NH, disappeared by the addition of D2O), 6.03 (t, 1H, J =8.1 Hz), 7.42 (dd, 

1H, J =9.0 and J =1.6 Hz), 8.05 (dd, 1H, J = 7.6 and J =1.6 Hz), 9.14 (s, ~1H, OH, disappeared by the 



6 
 

addition of D2O). 13C NMR (100 MHz, DMSO-d6): δ 24.6, 108.5, 119.9, 120.1, 134.3, 134.9, 159.9, 

168.6. MS (EI) m/z (relative intensity): 196 (50), 154 (100), 137 (25), 109 (75), 80 (25), 52(19). 

1-(4-(4-hydroxy-3-nitrophenyl)piperazin-1-yl)ethanone (C12H15N2O4) (2NAPIP) 

Isolated yield: 78 %. Mp = 118-119 oC. IR (KBr): 3519, 3449, 2973, 2853, 1614, 1531, 1446, 1425, 

1246, 1171, 960, 757, 596 cm-1. 1H NMR (600 MHz, CDCl3): δ 2.15 (s, 3H, methyl), 3.10 (tt, 4H, 

piperazine, J = 4.8 Hz), 3.64 (t, 2H, J = 4.8 Hz), 3.78 (t, 2H, J = 4.8 Hz), 7.10 (d, 1H, J = 9.6 Hz), 7.31 

(dd, 1H J =3Hz), 7.50 (d, 1H, J = 3.0 Hz), 10.30 (s, 1H, OH). 13C NMR (200 MHz, CDCl3): δ 21.4, 41.2, 

46.0, 50.1, 50.2, 110.5, 120.7, 129.1, 133.3, 144.6, 150.0, 169.1. MS (EI) m/z (relative intensity): 265 

(90), 250 (9), 222 (18), 193 (100), 180 (27), 56(36). 
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Constant current synthesis of 2NPAC, 2NOAC and 2NAPIP 

To increase the feasibility of the method, the synthesis of 2NPAC, 2NOAC and 2NAPIP was also 

performed via the constant current electrolysis in the same conditions as described for controlled-

potential electrolysis. To achieve high product yield, the effect of current density was investigated 

in the range 0.01 to 2.5 mA/cm2, in acetate buffer solution (pH = 5.0, c = 0.2 M), containing PAC 

(OAC or APIP) and nitrite ion when the charge consumed in the redox process was 50 C. 

Fig. S1 shows the effect of current density on the generated potential during constant-

current synthesis of 2NPAC.  

 

Fig. S1. The potential-time diagram during constant current electrolysis of PAC (0.25 mmol) in the 

presence of nitrite ion (1 mmol), at glassy carbon electrode in acetate buffer solution (pH = 5.0, c = 

0.2 M). Rotation rate: 1000 rpm. Temperature = 25±1 ◦C. 

This Fig. shows that when the applied current is 0.1 mA/cm2, the cell potential is about 0.45 V 

vs. Ag/AgCl (3M), which is about half wave potential of PAC/PBQ redox couple, and is the 
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appropriate potential for the synthesis of 2NPAC. Therefore current density, 0.1 mA/cm2 was 

selected as an optimum current density. Our data show that, the highest product yield (84%) was 

obtained at current density of 0.1 mA/cm.  

The current efficiency for various current densities during the synthesis of 2NPAC is shown in 

Fig. S2. The current density varied from 0.1 to 1.0 mA/cm2, while the other parameters are kept 

constant. The effect of current density on the current efficiency is shown in Fig. S2. 

 

Fig. S2. Variation of current efficiency in the synthesis of 2NPAC versus applied current density. 

Charge consumed=50 C. 

Fig. S3 shows the effect of current density on the generated potential during constant-

current synthesis of 2NOAC. This Fig. shows that when the current density, 0.15 mA/cm2 was 

selected as an optimum current density. Our data show that, the highest product yield (64%) was 

obtained at current density of 0.15 mA/ cm2.  
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Fig. S3.The potential-time diagram during constant current electrolysis of OAC (0.25 mmol) in the 

presence of nitrite ion (1 mmol), at glassy carbon electrode in acetate buffer solution (pH = 5.0, c = 

0.2 M). Rotation rate: 1000 rpm. Temperature = 25±1 ◦C. 

The current efficiency for various current densities during the synthesis of 2NOAC is shown 

in Fig. S4. The current density varied from 0.05 to 1.0 mA/cm2, while the other parameters are kept 

constant. The effect of current density on the current efficiency is shown in Fig. S4. 

 

Fig. S4. Variation of current efficiency in the synthesis of 2NOAC versus applied current density. 

Charge consumed=50 C. 
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Fig. S5 shows the effect of current density on the generated potential during constant-

current synthesis of 2NAPIP. This Fig. shows that when the current density, 0.25 mA/cm2 was 

selected as an optimum current density. Our data show that, the highest product yield (75%) was 

obtained at current density of 0.15 mA/ cm2.  

 

Fig. S5.The potential-time diagram during constant current electrolysis of APIP (0.25 mmol) in the 

presence of nitrite ion (1 mmol), at glassy carbon electrode in acetate buffer solution (pH = 5.0, c = 

0.2 M). Rotation rate: 1000 rpm. Temperature = 25±1 ◦C. 

The current efficiency for various current densities during the synthesis of 2NAPIP is shown 

in Fig. S6. The current density varied from 0.05 to 2.5 mA/cm2, while the other parameters are kept 

constant. The effect of current density on the current efficiency is shown in Fig. S6. 
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Fig. S6. Variation of current efficiency of the synthesis of 2NAPIP versus applied current density. 

Charge consumed=50 C. 
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FTIR spectrum of 2NPAC 
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Mass spectrum of 2NPAC 
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1H NMR spectrum of 2NPAC  
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Expanded 1H NMR spectrum of 2NPAC  
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13C NMR spectrum of 2NPAC  
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Expanded 13C NMR spectrum of 2NPAC 
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Thin layer chromatography of 2NPAC (electrochemical synthesis) 

 

Silica gel: Ethyl acetate/n-Hexane (2/1 v/v) 
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Thin layer chromatography of 2NPAC (chemical synthesis) 
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FT-IR spectra of 2NPAC and 3NPAC obtained from chemical synthesis 
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Mass spectrum of 3NPAC (chemical synthesis) 
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FT-IR spectra of 2NPAC synthesized from electrochemical & chemical 

methods 
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UV-Vis spectra of 2NPAC & 3NPAC (at pH=5.0) 
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FTIR spectrum of 2NOAC 
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Mass spectrum of 2NOAC 
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1H NMR spectrum of 2NOAC  

 

  



27 
 

Expanded 1H NMR spectrum of 2NOAC  
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1H NMR spectrum of 2NOAC (with D2O) 
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Expanded 1H NMR spectrum of 2NOAC (with D2O)  
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13C NMR spectrum of 2NOAC 
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ORTEP view of X-ray crystal structure of 2NPAC 
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FTIR spectrum of 2NAPIP 
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Mass spectrum of 2NAPIP 
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1H NMR spectrum of 2NAPIP 
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Expanded 1H NMR spectrum of 2NAPIP 
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Expanded 1H NMR spectrum of 2NAPIP 
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13C NMR spectrum of 2NAPIP 
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Expanded 13C NMR spectrum of 2NAPIP 
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Cyclic voltammograms of APIP and 2NAPIP 

 

 

Fig. S7. (a) Cyclic voltammogram of APIP. (b) Cyclic voltammogram of 2NAPIP 

starting from anodic direction. (c) Cyclic voltammogram of 2NAPIP starting from  cathodic 

direction. At glassy carbon electrode, in acetate buffer solution (c = 0.2 M, pH = 5.0). 

Concentration: 0.25 mM. Scan rate: 25 mV s-1. Temperature =25 ± 1 oC 
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Calculated natural charge using BP86/Def2-TZVPP level of theory for PBQ 

and OBQ. 
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The chemical structures of the possible nitrated compounds 
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Calculated LUMO for 2NPAC, 3NPAC, 2NOAC and 5NOAC at level of 

BP86/Def2-TZVPP 
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The molecular orbital analysis of latter compounds showed that the LUMO orbitals for both 2NPAC 

and 2NOAC which are more stable thermodynamically compounds are also more stable than 

corresponding 3NPAC and 5NOAC. 
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The LUMO coefficient of PBQ, OBQ and APIPox 
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The calculations of LUMO coefficient of PBQ, OBQ and APIPox show that the LUMO 

coefficient of the carbon in the ortho position to the carbonyl carbon is larger than other 

carbons, which implies that a nucleophilic attack at this carbon should be favored. 
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Electrochemical oxidation of NHPA 

In opposite to simple hydroxylamine aromatic compounds, N-(4-hydroxy-3-

(hydroxyamino)phenyl)acetamid (NHPA) have two possible pathways for the oxidation (Scheme I).  

 
Scheme I. Possible pathways in electrochemical oxidation of NHPA.  

However, since the electron releasing from the pink area is more feasible than hydroxylamine 

group. 

 

So, we think that electrochemical generation of HAPBQ (path A) is more probable than path B. 

On the other hand, we think that two forms (HAPBQ and NitrosoAC) can be converted to each other 

(Nematollahi-Salahifar rearrangement), as shown in Scheme II. 

 

Scheme II. Interconversion between nitrosoAC and HAPBQ (Nematollahi-Salahifar rearrangement). 
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To study the interconversion between nitrosoAC and HAPBQ (Nematollahi-Salahifar 

rearrangement), in the first step, controlled-potential coulometry (CPC) of a solution containing 

2NPAC (0.25 mmol) was carried out in an acetate buffer solution (c = 0.2 M, pH = 5.0), at -0.58 V vs. 

Ag/AgCl. Fig. S8 displays the cyclic voltammograms of 2NPAC during the CPC. The voltammograms 

show that in parallel to the disappearance of peak C2, the current of anodic and cathodic peaks 

A4/C4 increases. During the reaction 2NPAC was converted to the corresponding hydroxylamine 

(NHPA) (Scheme III). 

 

Scheme III. Electrochemical reduction of 2NPAC to NHPA 

 

Fig. S8. Cyclic voltammograms of 2NPAC (0.25 mmol) in an acetate buffer solution (c = 0.2 M, pH = 

5.0) during the controlled potential coulometry at -0.58 V versus Ag/AgCl. Scan rate: 100 mV s-1. 

At the end of coulometry, the polarity of the electrode was reversed (at +0.25 V vs. Ag/AgCl). In 

these conditions, we consider two possibilities on the stability of nitrosoAC.  

 The first possibility:  
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If the electrogenerated nitrosoAC is not stable and interconverts very fast to the HAPBQ as shown 

in Scheme II, then the azoxy derivative was not obtained and the theoretical charge consumption 

(2e-) was obtained for the oxidation of NHPA (Scheme IV).  

 

Scheme IV. Oxidative conversion of NHPA to HAPBQ. 

 The second possibility:  

If nitrosoAC is stable, it will react with the starting hydroxylamine and the azoxy compound was 

obtained as major product using less charge (1e-) (for further data, see the valuable, published 

paper, B. A. Frontana-Uribe, C. Moinet, and L. Toupet, Eur. J. Org. Chem. 1999, 419) (Scheme V).  

 

Scheme V. Electrochemical oxidation pathway of NHPA  

Fig. S9 displays the cyclic voltammograms during the CPC at +0.25 V. The current of peak (A4) 

(IpA4) becomes about zero with the transfer of about two electrons per the starting molecule. This 

confirms the rapid tautomery of electrogenerated nitrosoAC to HAPBQ.  
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Finally, these data shows that during the electrochemical oxidation, NHPA directly (Scheme I, 

path a) or indirectly (generation of nitroso compound, and rapid tautomery of electrogenerated 

nitrosoAC) (Scheme II) was converted to HAPBQ. 

 
Fig. S9. Cyclic voltammograms of reduction product during controlled potential coulometry at +0.25 

V versus Ag/AgCl. Scan rate: 100 mV s-1. 


