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1. Methods

NMR spectroscopy and mass spectrometry. ‘H NMR spectra were recorded on a Jeol ECX 400
instrument. ESI-MS samples were measured on an Agilent 6210 ESI-TOF, Agilent Technologies, Santa Clara,
CA, USA. The solvent flow rate was adjusted to 4 puL/min, the spray voltage set to 4 kV, and drying gas flow
rate was set to 15 psi (1 bar). All other parameters were adjusted for a maximum abundance of the relative
[M+Na]". EI-MS samples were measured on a MAT 711, Varian MAT, Bremen. Electron Energy for El was set

to 80 eV (120 °C).

2. Synthesis of Benzamidosilane 2

T N-(3-(methoxydimethylsilyl)propyl)benzamide (2)[1]. To an
(e}

ice-cooled solution of 0.87 ml (1.0 eq) of 1 in 10 ml

3

/\/\ 9 10 15
Si
dichloromethane, 0.69 ml (1.1 eq) benzoyl chloride and 0.83 ml

(1.1 eq) triethylamine were added under stirring. After stirring at
room temperature for 2 h the yellow solution was poured into ice-cooled water and extracted three times
with 20 ml dichloromethane each. Then the organic phase was dried over sodium sulfate for 30 min,
filtrated and the solvent was removed under reduced pressure giving 0.99 g (67%) of 2 as yellow oil. The

product was stored under Ar atmosphere till further use.

'H-NMR (400 MHz, CDCl3): 6= 0.11 (s, 6H, H*°), 0.65 (t, J= 8 Hz, 2H, H?), 1.66 (quint, J= 8 Hz, 2H, H®),

3.41-3.45 (m, 5H, H"), 6.47 (s, 1H, H®), 7.40-7.76 ppm (m, 5H, H'*™®). EI-MS: m/z = 236.3 (calc. for
CioH1sNO,Si: m/z = 236.1) [M — CH;]*. ESI-MS: m/z = 274.1222 (calc. for C;,H1sNO,Si: m/z =

274.1234) [M + Na]*.
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Figure S1. "H-NMR spectrum of N-(3-(methoxydimethylsilyl)propyl)-benzamide (2) in CDCl; at 400 MHz.
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Figure S2. EI-MS of N-(3-(methoxydimethylsilyl)propyl)-benzamide (2).
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Figure S3. ESI-MS of N-(3-(methoxydimethylsilyl)propyl)-benzamide (2) (survey).
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Figure S4. ESI-MS of N-(3-(methoxydimethylsilyl)propyl)-benzamide (2) (zoomed).
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3. TXRF

3.1. Quantification

With Sherman’s equation for TXRF, the respective elemental mass deposition was calculated from the
obtained count rates.” For the effective excitation intensity correction of the incoming radiant power due

to the X-ray standing wave field the software package IMD (Version 5) was used.[3]

To determine the count rates of the characteristic fluorescence lines the recorded fluorescence spectra
were deconvoluted employing experimentally derived and physically modeled detector response functions
of the SDD.[4] In addition to the modeled fluorescence lines the spectrum is fitted with background

contributions from resonant Raman scattering and Bremsstrahlung.[5]

Table S1. Quantification results from reference-free TXRF spectroscopy.

elemental mass deposition silane areic density
C \ (0]
x 10" [atoms/cm?] [molecules/nm?]
1 3.9 0.25 6.8 2.5+0.9
2 6.5 0.38 7.4 3.8+1.3
native oxide 3.2 0.0 7.5

(Si0,/Si wafer blank)*

*The native oxide layer has a thickness of 1.7+0.5 nm as calculated from the total oxygen mass
deposition of the blank silicon wafer.

The uncertainties associated with the analytical TXRF quantification results are the relative uncertainties
of both experimental and atomic fundamental parameters. For more detailed information see Table S2. The
overall relative combined standard uncertainty for the quantification is up to 0.30 for nitrogen with the
main contributions to the uncertainty budget originating from relevant atomic fundamental parameters
such as fluorescence yields, transition probabilities and photoelectric cross sections ranging from 0.1 to

0.3.[6, 7]
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Table S2. Uncertainty budget giving the relative uncertainties for the analytical results obtained by
reference-free TXRF.[2, 7]

Contribution to the relative
source of uncertainty

uncertainty of —— / 1072
area

Element C N (o]
R; detected count rate ~0.5 ~0.7 ~0.1
So current of calibrated photo diode to determine the incident radiant

0.01 0.01 0.01
power
OdiodeE, SPectral responsitivity of the photodiode 1 1 1
P;nincident angle 0.7 0.7 0.7
Qg6 effective solid angle of detection 4 4 4
Iwmf relative intensity of the standing wave field on the surface 5 5 5
£qecr, detection efficiency of the detector 1.5 1.5 1.5
TiEg, Photoelectric cross section of element i 10 10 10
HUeorip total absorption cross section of element i 10 10 10
Q;excitation factor including the fluorescence yield, the transitions
probability of the fluorescence line and the jump ratio; the rel. uncertainty 30 25 20
is dominated by the rel. uncertainty of the fluorescence yield [2]

relative combined standard uncertainty u, 34% 30% 26%

3.2. Film thickness estimation

Nanolayer thicknesses were estimated from TXRF silane areic density values using equation 1.[8]

3 —-21 3 -3
surface density (molecules /nm?) = £Gum) x p (g/em?)x NA(mI:lfgCZf:l/)mOl) X107 (em?x nm?) eq.(1)

with film thickness (t), silane density (p), Avoagdro constant (N,4), and the molar mass (M) of the silane

(without hydrolysable OMe group).
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4. XpPS

4.1. Quantification

Table S3. CasaXPS quantification results of the unmodified Si wafer with native oxide (SiO,/Si

blank) and silane monolayers 1 and 2 obtained from survey spectra using laboratory XPS.

layer C N (0]
[atom-%]
1 24.7 1.9 39.2 34.2
2 30.9 2.6 354 31.1
native oxide 206 _ 43.0 364
(Si0,/Si wafer blank)*

* The native oxide layer has a thickness of 1.7+0.5 nm as calculated from the total oxygen mass
deposition of the blank silicon wafer in the TXRF experiment.

Table S4. Uncertainty budget giving the relative uncertainties for the CasaXPS quantification
results obtained for nitrogen.

source of uncertainty relative standard uncertainty [%]
surface concentration 10

peak fitting (component sum curve & background) 20

inelastic mean free path (IMFP) 20

elastic scattering (EAL vs. IMFP) 2

photoionization cross section 10

electron emission angle, 6 5

relative combined standard uncertainty u, 32%




4.2. Examples of high-resolution core-level synchrotron XPS data
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Figure S5. Examples of high-resolution C 1s (top, hv = 385 eV, 6 = 60°), N 1s (middle, hv = 500 eV,
0 = 60°), and O 1s (bottom, hv = 620 eV, 8 = 60°) SR XPS data of amidosilane 2 monolayer acquired at
Zgs = 1.2 nm.
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Figure S6. Fit of high-resolution Si 2p core-level spectra taken on aminosilane 1 (top) and amidosilane 2
(bottom) layers on silicon oxide surfaces using laboratory XPS (hv = 1486.69 eV, 0 = 60°, zgs = 5.7 nm).
The Si 2p peak was fitted according to ref.s [9-12] and include the following Si 2p components: Si° (bulk),
R1SiO; (silane), SiO, (oxide), and silicon suboxide (Si',0, Si'0, and Si",03) contributions.
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5. Calculation of Si 2p ionization potentials

To interpret experimental data, quantum chemical calculations were carried out to determine 2p ionization
potentials for various Si atoms in the tridymite/amidosilan system.

Since we have to deal with a Si-SiO, interface, with SiO, being amorphous, it is not straightforward to
choose an appropriate model system. In the literature one often uses a silicon bulk model combined with a
tridymite structure.[13, 14] For our purpose, it is sufficient to use only the tridymite phase, with an
amidosilane molecule on top. Our calculations are based on the crystallographic data published in Ref.[15]
to construct a supercell with 532 atoms. We cut the structure along the (0 0 1)-plane with end-standing
oxygen atoms on top of the surface. The dimensions of our supercell are 26.17 A x 29.91 A x 25.00 A.
Furthermore, all dangling bonds were saturated with hydrogen.

As a result we obtain a surface silanol (OH) group concentration of 4.6 OH groups per nm?2, which is in
perfect agreement with the reported experimental OH concentration of amorphous silica.[16-18] In a first
step, we relaxed the top layer. We used the GAPW method as implemented in the CP2K program.[19, 20]
As a basis set, we used 6-31G** and a plane wave cutoff of 300 eV. Further, we used density functional
theory in the generalized gradient approximation for all calculations. In particular, as an exchange
correlation functional, PBE was applied.[21] After optimizing the upper layer, the amidosilane molecule 2
was attached and the upper layer was optimized again with the attached molecule. The resulting tridymite
surface model with molecule 2 attached to it is shown in Figure S8. The ionization energies out of various
silicon 2p orbitals (I. P.) were calculated by the so-called A-KS approach.[22] Here, the ionization energy is
the difference between the neutral and core excited system. We used an iglo-Ill basis for the excitation
center to sufficiently account for relaxation effects. The detailed theory is described in Ref. [23].

Four selected Si atoms Si-1 to Si-4 were chosen for analysis as indicated in Figure S7. Table S5 shows the
calculated ionization energies for these four atoms, out of their 2p orbitals. The lowest ionization energy of
the 2p electron is obtained for Si-1 which is part of the silane molecule 2. Because all other Si atoms are
bound to more than one oxygen atom (as electron withdrawing atom), their ionization energies are shifted
to higher values: by 2 eV for Si-2, and 2.3 eV for the Si-3 and Si-4. Given the fact that we do not account for
different conformers, degrees of substitution or temperature effects, which may lead to further

corrections, our results are in principal agreement with the experimental data.
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Table S5. Calculated Si 2p ionization potentials (l. P.) for different silicon atoms. The numbers of
the silicon atoms Si-1 to Si-4 in the table correspond to those in Figure S7b.

atom I. P. [eV]
Si-1 102.41
Si-2 104.43
Si-3 104.70
Si-4 104.77

Figure S7. a) The used tridymite surface model with the attached amidosilane molecule 2. White sticks
correspond to hydrogen, beige to silicon, red to oxygen, green to carbon and blue to nitrogen. b) The four
investigated silicon atoms Si-1 to Si-4 are shown in yellow. The labels Si-1 to Si-4 correspond to the Si 2p
ionization potentials shown in Table S5.
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