Supporting Information:

Conformationally Defined Rexinoids and Their Efficacy in the Prevention of Mammary Cancers

Venkatram R. Atigadda, Gang Xia, Anil Deshpande a, Lizhi Wu, Natalia Kedishvili, Craig D. Smith, Helen Krontiras, Clinton J. Grubbs, Wayne J. Brouillette*, Donald D. Muccio*

Table of Contents:
Synthesis of 4-bromo-3-methylbut-2-enoate
and triethylphosphonosenecioate
Synthesis of compound 6
Synthesis of starting ketones (13-16)
Synthesis of compounds 7 and 8
Crystallographic data Table
page 2
Page 3
Page 6
Page 8
Page 12

Synthesis of 4-bromo-3-methylbut-2-enoate and triethylphosphonosenecioate:

Ethyl 4-bromo-3-methylbut-2-enoate. To a 5L, three-neck round-bottomed flask fitted with two condensers and a mechanical stirrer, was added ethyl 3,3 -dimethylacrylate ($100.0 \mathrm{~g}, 780 \mathrm{mmol}$) and carbon tetrachloride (1000 mL). This solution was then treated with N -bromosuccinimide ($139.0 \mathrm{~g}, 781$ mmol) followed by AIBN (1 g). The reaction mixture was then stirred at reflux for 6 h (CAUTION: vigorous boiling starts to take place as the reaction starts and may become uncontrollable if not cooled properly). The reaction mixture was then cooled to room temperature, filtered to remove the solids and washed with hexanes (500 mL). The organic layers were concentrated under vacuum to give an oil which was purified by distillation to give 110 g of ethyl 4-bromo-3-methylbut-2-enoate as a 1:1 mixture of E and Z isomers. B.P. $60-65^{\circ} \mathrm{C}(0.4 \mathrm{~mm}) .{ }^{1} \mathrm{H}$ NMR (E and Z isomers) $\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 5.97(\mathrm{~m}, 1 \mathrm{H}), 5.79(\mathrm{~m}, 1 \mathrm{H})$, $4.57(\mathrm{~s}, 2 \mathrm{H}), 4.2-4.1(\mathrm{~m}, 4 \mathrm{H}), 3.96(\mathrm{~s}, 2 \mathrm{H}), 2.29(\mathrm{~s}, 3 \mathrm{H}), 2.05(\mathrm{~s}, 3 \mathrm{H}), 1.3-1.2(\mathrm{t}, 6 \mathrm{H})$.

Triethyl phoshonosenecioate. To a 1L, three-neck round-bottomed flask fitted with a condenser and a nitrogen inlet, was added ethyl 4-bromo-3-methylbut-2-enoate (1:1 mixture of E and Z isomers) (47.0 g , 227 mmol) and triethyl phosphite ($41.5 \mathrm{~g}, 250 \mathrm{mmol}$). The reaction mixture was heated gradually to 150° C and maintained at this temperature for 1 h . The reaction mixture was then purified by distillation to give 51 g of triethyl phosphonosenecioate as a 1:1 mixture of E and Z isomers. bp $120-125^{\circ} \mathrm{C}(0.1 \mathrm{~mm})$. ${ }^{1} \mathrm{H} \operatorname{NMR}\left(E\right.$ and Z isomers) $\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 5.7-5.8(\mathrm{~m}, 1 \mathrm{H}), 4.1-4.2(\mathrm{~m}, 6 \mathrm{H}), 3.5(\mathrm{~d}, 1 \mathrm{H}), 2.7(\mathrm{~d}, 1 \mathrm{H}), 2.3$ (s, 1.5 H), 2.06 (s, 1.5 H), 1.3-1.2 (m, 9H).

Synthesis of Compound 6:

Scheme 1

33
 DMF

34

35
36

(2Z,4E)-4-($6^{\prime}, 7^{\prime}, 8^{\prime}, 9^{\prime}$-Tetrahydrobenzocyclohepten-5'-ylidene)-3-methyl-2-butenoic Acid (34).
A suspension of Zn dust ($11.4 \mathrm{~g}, 175 \mathrm{mmol}$) and copper (II) acetate (1.14 g) in glacial acetic acid (50 mL) was stirred under nitrogen for 1 h in a 100 mL , round-bottomed flask. The mixture was diluted with anhydrous ether (30 mL), vacuum-filtered, and the Zn -Cu complex was washed successively with anhydrous ether ($3 \times 25 \mathrm{~mL}$) and anhydrous benzene ($3 \times 25 \mathrm{~mL}$). This complex was dried under vacuum for 1 h and then transferred to a 250 mL , flame-dried, three-neck flask fitted with a condenser, addition funnel and nitrogen inlet. Freshly distilled dioxane (30 mL , distilled from Na /benzophenone) was
transferred to the flask and this suspension was heated to $100^{\circ} \mathrm{C}$ in an oil bath. This reaction mixture was then treated dropwise with a solution of 1-benzosuberone (33) ($8.0 \mathrm{~g}, 50 \mathrm{mmol}$) and ethyl 4-bromo3 -methylbut-2-enoate ($20.7 \mathrm{~g}, 100 \mathrm{mmol}$) in dry dioxane (30 mL). Vigorous bubbling was noticed during the addition process and the reaction mixture was stirred at reflux for 8 h and then cooled to room temperature. Water $(20 \mathrm{~mL})$ and $2 \mathrm{~N} \mathrm{HCl}(25 \mathrm{~mL})$ were added. The mixture was diluted with ether (100 mL) and allowed to stir for 10 min . The mixture was filtered and the acidic layer was separated. The organic layer was washed successively with water (75 mL), $1 \mathrm{~N} \mathrm{NaOH}(2 \times 75 \mathrm{~mL})$. The combined basic washes were cooled in an ice bath, acidified with $15 \% \mathrm{HCl}$ to $\mathrm{pH} 1-2$ and washed with ether $(2 \times 100$ $\mathrm{mL})$. The combined organic layers were dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$ and concentrated under vacuum to give (9Z)-34 as a pale yellow solid ($8.4 \mathrm{~g}, 69 \%$ yield): mp $121-122^{\circ} \mathrm{C}$ (ether/n-hexane); UV $\lambda_{\max } 283(\varepsilon=7316)$; IR (KBr) $2978(\mathrm{OH}), 1666(\mathrm{C}=\mathrm{O}), 1616(\mathrm{C}=\mathrm{C}) \mathrm{cm}^{-1} ; \mathrm{MS} \mathrm{m} / \mathrm{z} 243\left(\mathrm{MH}^{+}\right) ;{ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ 7.32-7.28 $(\mathrm{m}, 1 \mathrm{H}), 7.17-7.14(\mathrm{~m}, 2 \mathrm{H}), 7.08-7.05(\mathrm{~m}, 1 \mathrm{H}), 6.59(\mathrm{~s}, 1 \mathrm{H}), 5.80(\mathrm{t}, \mathrm{J}=1.71,1 \mathrm{H}), 2.75(\mathrm{~m}, 2 \mathrm{H}), 2.41-2.39$ $(\mathrm{m}, 2 \mathrm{H}), 2.17(\mathrm{~s}, 3 \mathrm{H}), 1.76-1.74(\mathrm{~m}, 4 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 171.91,156.71,146.40,145.01$, 140.17, 128.85, 128.31, 127.96, 127.40, 126.58, 118.09, 35.55, 31.34, 29.38, 27.50, 26.03; Anal calcd. for $\mathrm{C}_{16} \mathrm{H}_{18} \mathrm{O}_{2}$: C,79.31; $\mathrm{H}, 7.49$. Found: C, 79.53; H 7.59.
(2Z,4E)-4-(6', $7^{\prime}, 8^{\prime}, 9^{\prime}$-Tetrahydrobenzocyclohepten-5'-ylidene)-3-methyl-2-butenol (35). To a flamedried two-neck round-bottomed flask fitted with a nitrogen inlet and addition funnel was added acid 34 $(8.0 \mathrm{~g}, 33 \mathrm{mmol})$ and anhydrous ether (50 mL). The flask was cooled to $0^{\circ} \mathrm{C}$ in an ice bath and the reaction mixture was treated with $1 \mathrm{M} \mathrm{LiAlH}_{4} /$ ether ($43 \mathrm{~mL}, 43 \mathrm{mmol}$) dropwise. The reaction mixture was stirred for 2 h at $0^{\circ} \mathrm{C}$, cooled to $-80^{\circ} \mathrm{C}$ in a dry ice/acetone basth, and slowly quenched with methanol (2 mL) followed by $1 \mathrm{~N} \mathrm{HCl}(15 \mathrm{~mL})$. The reaction mixture was allowed to come to room temperature and extracted with ether $(2 \times 75 \mathrm{~mL})$. The combined ether layers were washed with water $(50 \mathrm{~mL})$, brine $(50 \mathrm{~mL})$, dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$ and concentrated under vacuum to give the alcohol $35(7.2 \mathrm{~g}$, 95% yield) as a an oil: UV $\lambda_{\max } 239(\varepsilon=11263)$; IR (neat) $3326(\mathrm{OH}), 1710(\mathrm{C}=\mathrm{C}) \mathrm{cm}^{-1} ; \mathrm{MS} \mathrm{m} / \mathrm{z} 211\left(\mathrm{MH}^{+}-\mathrm{H}_{2} \mathrm{O}\right)$; ${ }^{1} \mathrm{H}$ NMR $\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.19-7.14(\mathrm{~m}, 3 \mathrm{H}), 7.11-7.07(\mathrm{~m}, 1 \mathrm{H}), 5.92(\mathrm{~s}, 1 \mathrm{H}), 5.56(\mathrm{~m}, 1 \mathrm{H}), 4.20(\mathrm{~d}, \mathrm{~J}=$ $6.9,2 \mathrm{H}), 2.75(\mathrm{~m}, 2 \mathrm{H}), 2.32(\mathrm{~m}, 2 \mathrm{H}), 1.91(\mathrm{~s}, 3 \mathrm{H}), 1.73(\mathrm{~m}, 4 \mathrm{H}) ;{ }^{13} \mathrm{C} N \mathrm{NR}\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 145.86$, 145.32, 140.53, 136.52, 129.21, 128.58, 127.59, 126.75, 126.70, 60.90, 36.19, 30.92, 29.79, 27.87, 24.62; Anal. calcd for $\mathrm{C}_{14} \mathrm{H}_{16} \mathrm{O}: \mathrm{C}, 84.16 ; \mathrm{H}, 8.83$. Found: $\mathrm{C}, 83.95 ; \mathrm{H}, 8.87$.
(2Z,4E)-4-(6', $7^{\prime}, 8^{\prime}, 9^{\prime}$-Tetrahydrobenzocyclohepten-5'-ylidene)-3-methyl-2-butenal (36). A single-neck, round-bottomed flask fitted with a reflux condenser was charged with o-iodoxybenzoic acid (IBX) (34.4 $\mathrm{g}, 123 \mathrm{mmol}$) and acetone (75 mL) and warmed to $50-55^{\circ} \mathrm{C}$ in an oil bath. A solution of alcohol 35 (7.0 g , $31 \mathrm{mmol})$ in acetone $(25 \mathrm{~mL})$ was added all at once to the reaction mixture. The reaction was then allowed to stir at $50-55^{\circ} \mathrm{C}$ for 1.5 h . The reaction mixture was cooled to $0{ }^{\circ} \mathrm{C}$ in an ice bath, diluted with ether (100 mL) and filtered through a sintered glass funnel. The filtrate was washed with ether (2×50 mL), and the combined ether layers were concentrated under vacuum to furnish crude product 36 (5.8 $\mathrm{g}, 84 \%$ yield). This was purified by flash column chromatography (n-hexane/ether: $4 / 1$) to give 9Zaldehyde 36 ($5.1 \mathrm{~g}, 74 \%$ yield): UV $\lambda_{\max } 232(\varepsilon=13714)$; $\mathrm{IR}(\mathrm{KBr}) 1675(\mathrm{C}=0), 1612(\mathrm{C}=\mathrm{C}) \mathrm{cm}^{-1} ; \mathrm{MS} \mathrm{m} / \mathrm{z}$ $227.2\left(\mathrm{MH}^{+}\right) ;{ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 9.92(\mathrm{~d}, \mathrm{~J}=8.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.23-7.19(\mathrm{~m}, 3 \mathrm{H}), 7.15-7.10(\mathrm{~m}, 1 \mathrm{H})$, $6.17(\mathrm{~s}, 1 \mathrm{H}), 6.01(\mathrm{~d}, J=8.3 \mathrm{~Hz}, 1 \mathrm{H}), 2.80-2.75(\mathrm{~m}, 2 \mathrm{H}), 2.41-2.38(\mathrm{~m}, 2 \mathrm{H}), 2.13(\mathrm{~s}, 3 \mathrm{H}), 1.75-1.73(\mathrm{~m}, 4 \mathrm{H})$ ${ }^{13} \mathrm{C}$ NMR $\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 193.34,160.15,148.97,143.98,140.22,129.26,129.20,128.08,127.97$, 126.62, 125.58, 35.72, 30.94, 29.20, 27.31, 25.56; Anal. calcd for $\mathrm{C}_{16} \mathrm{H}_{18} \mathrm{O}: \mathrm{C}, 84.92 ; \mathrm{H}, 8.02$. Found: C, 84.64; H, 8.20.
(2E,4E,6Z,8E)-Ethyl 8-($6^{\prime}, 7^{\prime}, 8^{\prime}, 9^{\prime}$-Tetrahydrobenzocyclohepten-5'-ylidene)-3,7-dimethyl-2,4,6octatrienoate (37). To a flame-dried, 250 mL , tree-neck round-bottomed flask fitted with a nitrogen inlet, addition funnel and rubber septum was added $\mathrm{NaH}(60 \%$ suspension in mineral oil, $0.96 \mathrm{~g}, 24$
mmol). Dry THF (30 mL , distilled over $\mathrm{Na} /$ benzophenone) was added to the flask followed by a solution of phosphonosenecioate ($6.34 \mathrm{~g}, 24 \mathrm{mmol}$) in dry THF (20 mL). The resulting solution was stirred for 15 min. and then freshly distilled HMPA (7.5 mL) was added under a nitrogen atmosphere. The flask was covered with aluminum foil and stirred for 15 more min. A solution of aldehyde $36(5.0 \mathrm{~g}, 22 \mathrm{mmol})$ in dry THF (25 mL) was added dropwise through the addition funnel, and the mixture was then stirred for 2.5 h . The reaction mixture was quenched with water $(25 \mathrm{~mL})$ and extracted with ether $(2 \times 75 \mathrm{~mL})$. The combined ether layers were washed with brine (75 mL), dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated under vacuum to furnish the crude product. The product was purified by column chromatography (n hexane/ether: 9/1) to gave 5.9 g of 36 as a $85: 15$ mixture of ($9 Z$) : ($97,13 Z$)-36 (80% combined yield). Separation of these isomers was achieved by column chromatography using n-hexane/benzene (1:1) to obtain pure (9Z)-36 ($4.6 \mathrm{~g}, 62 \%$ yield) as a yellow oil: UV $\lambda_{\max } 324 \mathrm{~nm}(\varepsilon=28516)$; IR (neat) 1707 ($\mathrm{C}=0$), $1605(\mathrm{C}=\mathrm{C}) \mathrm{cm}^{-1}$; MS m/z $337\left(\mathrm{MH}^{+}\right)$; ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.26-7.18(\mathrm{~m}, 3 \mathrm{H}), 7.14-7.09(\mathrm{~m}, 1 \mathrm{H})$, 6.87 (dd, $J=4.3 \& 11.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.22(\mathrm{~d}, \mathrm{~J}=15.3 \mathrm{~Hz}, 1 \mathrm{H}), 6.09(\mathrm{~d}, \mathrm{~J}=11.07 \mathrm{~Hz}, 1 \mathrm{H}), 6.06(\mathrm{~s}, 1 \mathrm{H}), 5.76(\mathrm{~s}$, $1 \mathrm{H}), 4.16(\mathrm{q}, \mathrm{J}=7.1 \mathrm{~Hz}, 2 \mathrm{H}), 2.80-2.75(\mathrm{~m}, 2 \mathrm{H}), 2.38-2.34(\mathrm{~m}, 2 \mathrm{H}), 2.28(\mathrm{~s}, 3 \mathrm{H}), 2.02(\mathrm{~s}, 3 \mathrm{H}), 1.73-1.71(\mathrm{~m}$, $4 \mathrm{H}), 1.28(\mathrm{t}, \mathrm{J}=7.1 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($\left.100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 167.62,153.24,146.40,145.30,140.97,140.45$, 134.21, 132.93, 129.25, 128.41, 127.99, 127.81, 126.77, 118.99, 60.06, 35.95, 31.13, 29.22, 27.70, 24.99, 14.78, 14.16; Anal. Calcd for $\mathrm{C}_{23} \mathrm{H}_{28} \mathrm{O}_{2}$: C, 82.10; H, 8.51. Found: C, 81.86; H, 8.51.

($2 E, 4 E, 6 Z, 8 E$)-8-($6^{\prime}, 7^{\prime}, 8^{\prime}, 9^{\prime}$-Tetrahydrobenzocyclohepten-5'-ylidene)-3,7-dimethyl-2,4,6-octatrienoic

Acid (6). The 9Z-ester 36 ($4.0 \mathrm{~g}, 12 \mathrm{mmol}$) was suspended in methanol (200 mL) and warmed to about 70 ${ }^{\circ} \mathrm{C}$ in an oil bath. An aqueous solution of $1.25 \mathrm{~N} \mathrm{KOH}(150 \mathrm{~mL}, 120 \mathrm{mmol})$ (prepared with distilled and degassed water) was added to the above suspension and stirred under reflux for 1 h . Then the reaction mixture was cooled in an ice bath, diluted with ice-cold water (100 mL) and acidified to $\mathrm{pH} 1-2$ with icecold 2 N HCl . The resulting precipitate was filtered under vacuum and redissolved in ether (100 mL), washed with brine (40 mL), dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated under vacuum to furnish the final acid 6 ($3.5 \mathrm{~g}, 96 \%$ yield) as a yellow solid, which was crystallized from ether/ n-hexane to furnish highly pure (9Z)-6 (2.4, 67\% yield): mp 174-175 ${ }^{\circ} \mathrm{C}$ (ether/n-hexane); UV $\lambda_{\max } 319(\varepsilon=32722)$; IR (KBr) $2928(\mathrm{OH})$, $1669(\mathrm{C}=\mathrm{O}), 1595(\mathrm{C}=\mathrm{C}) \mathrm{cm}^{-1} ; \mathrm{MS} \mathrm{m} / \mathrm{z} 209.5\left(\mathrm{MH}^{+}\right) ;{ }^{1} \mathrm{H} \mathrm{NMR}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 11.5(\mathrm{bs}, 1 \mathrm{H}), 7.24-7.17$ $(\mathrm{m}, 3 \mathrm{H}), 7.12-7.10(\mathrm{~m}, 1 \mathrm{H}), 6.92(\mathrm{dd}, J=11.00 \& 4.28 \mathrm{~Hz}, 1 \mathrm{H}), 6.25(\mathrm{~d}, \mathrm{~J}=15.3 \mathrm{~Hz}, 1 \mathrm{H}), 6.11(\mathrm{~d}, \mathrm{~J}=10.91$, $1 \mathrm{H}), 6.07(\mathrm{~s}, 1 \mathrm{H}), 5.79(\mathrm{~s}, 1 \mathrm{H}), 2.81-2.77(\mathrm{~m}, 2 \mathrm{H}), 2.38-2.34(\mathrm{~m}, 2 \mathrm{H}), 2.29(\mathrm{~s}, 3 \mathrm{H}), 2.03(\mathrm{~s}, 3 \mathrm{H}), 1.73(\mathrm{br} \mathrm{s}$, $4 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 172.63,155.83,146.55,145.24,141.81,140.45,133.99,133.86,129.27$, 128.40, 127.94, 127.75, 127.71, 126.77, 35.94, 31.13, 29.21, 27.68, 25.04, 14.37; Anal. Calcd for $\mathrm{C}_{21} \mathrm{H}_{24} \mathrm{O}_{2}$: C, 81.78; $\mathrm{H}, 7.84$. Found: $\mathrm{C}, 81.65 ; \mathrm{H}, 7.84$.

Synthesis of Starting Ketones 13-16:

Scheme 1

2-(3-methyl) butyl-1,3-dimethoxy-1,4- butadiene (39): A solution of diene 38 ($60.1 \mathrm{~g}, 429.4$ mmol) in anhydrous THF (650 mL), in a 5 L , three neck round bottomed flask under nitrogen atmosphere was cooled to $-78{ }^{\circ} \mathrm{C}$ in dry ice/acetone bath. This solution was slowly treated with tert. BuLi (1.7 M sol. in pentane, $278 \mathrm{~mL}, 472.2 \mathrm{mmol}$). (CAUTION: tert. BuLi is highly pyrophoric and should be handled with proper care). The resulting golden yellow solution was allowed to stir for 15 minutes, during which a fine precipitate developed. To this was slowly added freshly distilled 1-bromo-3-methyl butane ($110 \mathrm{~g}, 728.5 \mathrm{mmol}$), and the mixture was stirred at -78 C for 15 min . The cold bath was removed and the mixture was allowed to stir for 2 hours. To this was added slowly 250 mL of water. The mixture was diluted with diethyl ether $(200 \mathrm{~mL})$ and the organic layer was separated. The aqueous layer was extracted with ether (200 mL) and the combined organic layers were washed with brine (250 mL), dried (sod.sulfate) and concentrated to give $84 \mathrm{~g}(93 \%)$ of $\mathbf{3 9}$ as an oil, which was used in the next step without any further purification. MS m/z $211(\mathrm{M}+1) ;{ }^{1} \mathrm{H} \operatorname{NMR}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 4.7(\mathrm{t}, 2 \mathrm{H}), 3.5(\mathrm{~s}, 6 \mathrm{H})$, 2.9-2.8 (m, 1H), 2.8-2.7 (m, 2H), 1.7-1.6 (m, 2H), 1.5-1.4 (m, 1H), 1.0-0.9 (m, 2H), 0.8 (d, 6H); ${ }^{13} \mathrm{C}^{\mathrm{NMR}}\left(\mathrm{CDCl}_{3}\right) \delta 155.0,91.8,54.6,41.2,33.6,28.5,27.8,24.9,23.1$

2-(3-methyl) butyl-1,3-cyclohexanedione (40): A suspension of 39 ($84 \mathrm{~g}, 400.0 \mathrm{mmol}$) and $1 \mathrm{~N} \mathrm{HCl}(25 \mathrm{~mL})$ was heated to 90 C while stirring vigorously. After about 15 minutes the mixture became exothermic and clear homogeneous liquid. The reaction mixture was stirred for an additional 15 minutes at this temperature and cooled to room temp. During this process the product was solidified, which was diluted with water $(500 \mathrm{~mL})$ and filtered. The solid was suspended in hexanes (250 mL), stirred, filtered and dried to give $68 \mathrm{~g}(93.4 \%)$ of $\mathbf{4 0}$. MS m/z
$183(\mathrm{M}+1) ;{ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ 9.5-9.0 (br, 1 H), $2.5(\mathrm{t}, 4 \mathrm{H}), 2.3-2.2(\mathrm{~m}, 2 \mathrm{H}), 2.0-1.9$ $(\mathrm{m}, 2 \mathrm{H}), 1.6-1.5(\mathrm{~m}, 1 \mathrm{H}), 1.2-1.1(\mathrm{~m}, 2 \mathrm{H}), 0.9(\mathrm{~d}, 6 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 206.0,188.1,117.2$, 40.1, 38.1, 33.3, 28.6, 23.0, 21.2, 20.2

2-(3-methyl) butyl-3-(3-methyl) propyloxy 2-cyclohexenone (41): A solution of 40 (68 g, 373.6 mmol), isobutanol ($83 \mathrm{~g}, 1120 \mathrm{mmol}$), and p-toluenesulfonic acid ($1 \mathrm{~g}, 1.2 \mathrm{mmol}$) in anhydrous benzene (730 mL) was refluxed overnight with azeotropic removal of water (DeanStark trap). The reaction mixture was cooled to room temperature, washed with saturated sodium bicarbonate solution ($3 \times 250 \mathrm{~mL}$), brine ($2 \times 250 \mathrm{~mL}$) and concentrated under vacuum to give $88 \mathrm{~g}(98.9 \%)$ of $\mathbf{4 1}$ as thick oil which solidified upon cooling. MS m/z $239(\mathrm{M}+1) ;{ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 3.75(\mathrm{~d}, 2 \mathrm{H}), 2.5(\mathrm{t}, 2 \mathrm{H}), 2.3-2.2(\mathrm{~m}, 4 \mathrm{H}), 2.0-1.9(\mathrm{~m}, 3 \mathrm{H}), 1.6-1.5$ $(\mathrm{m}, 1 \mathrm{H}), 1.2-1.1(\mathrm{~m}, 2 \mathrm{H}), 1.0(\mathrm{~d}, 6 \mathrm{H}), 0.9(\mathrm{~d}, 6 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 198.4,171.5,120.1,73.9$, 38.0, 36.5, 28.8, 28.4, 25.5, 22.6, 21.1, 20.1, 19.1

Procedure for making alkyl lithium's: using this general procedure, cyclopropyl lithium and ethyl lithium were prepared.
Cyclopropyl lithium. A three neck round bottomed flask containing anhydrous ether (150 mL) was treated with lithium ribbon $(10 \mathrm{~g}, 1440.9 \mathrm{mmol})$ cut into small pieces. The mixture was cooled to $-10{ }^{0} \mathrm{C}$ (methanol/ice), treated drop wise with freshly distilled cyclopropyl bromide (60 $\mathrm{g}, 495.95 \mathrm{mmol})$ in ether $(200 \mathrm{~mL})$. The reaction mixture was stirred for an additional 3 hours at $0-5^{\circ} \mathrm{C}$. This mixture was directly used in the next reaction without any further purification.
Procedure for preparing substituted cyclohexenones 13-16: using this general procedure, all the ketones were prepared.
2-(3-methyl) butyl -3-ethyl-2-cyclohexenone (13). A solution of isobutyl ether 41 ($88 \mathrm{~g}, 369.7$ $\mathrm{mmol})$ in anhydrous ether $(250 \mathrm{~mL})$ was cooled to $0^{0} \mathrm{C}$ in an ice bath, treated drop wise with ethyl lithium $(650 \mathrm{~mL})$. The resulting mixture was stirred at $0{ }^{\circ} \mathrm{C}$ for 2 hours and at room temperature for 48 hours. The reaction mixture was slowly quenched with water (200 mL), extracted with ether (2 X 200 mL). The combined organic layer was dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$, and concentrated under vacuum to provide 75 g of crude oil, which was purified by chromatography (silica gel: Hexane/ether 4:1) to give $58 \mathrm{~g}(80.1 \%)$ of $\mathbf{1 3}$ as an oil: MS m/z $195(\mathrm{M}+1) ;{ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 2.4-2.3(\mathrm{~m}, 4 \mathrm{H}), 2.3-2.2(\mathrm{~m}, 4 \mathrm{H}), 1.95-1.85(\mathrm{~m}, 2 \mathrm{H}), 1.6-1.5(\mathrm{~m}, 1 \mathrm{H}), 1.2-$ $1.1(\mathrm{~m}, 2 \mathrm{H}), 1.1(\mathrm{t}, 3 \mathrm{H}), 0.9(\mathrm{~d}, 6 \mathrm{H}),{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 199.2,159.9,135.4,39.0,38.1,30.0$, 28.5, 27.8, 22.9, 22.6, 22.5, 12.4

2-(3-methyl) butyl-3-cyclopropyl-2-cyclohexenone (14). MS m/z 207 (M+1); ${ }^{1} \mathrm{H}$ NMR (300 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 2.5-2.4(\mathrm{~m}, 2 \mathrm{H}), 2.4-2.3(\mathrm{~m}, 2 \mathrm{H}), 1.95-1.80(\mathrm{~m}, 5 \mathrm{H}), 1.6-1.5(\mathrm{~m}, 1 \mathrm{H}), 1.3-1.2(\mathrm{~m}$, $2 \mathrm{H}), 0.9(\mathrm{~d}, 6 \mathrm{H}), 0.9-0.8(\mathrm{~m}, 2 \mathrm{H}), 0.8-0.7(\mathrm{~m}, 2 \mathrm{H}),{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 198.3,159.0,136.6$, $38.8,38.3,28.8,24.6,23.1,22.9,22.5,14.8,6.8$
2-(3-methyl) butyl-3-isoropyl-2-cyclohexenone (15). MS m/z 209 (M+1); ${ }^{1} \mathrm{H}$ NMR (300 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 3.0-2.9(\mathrm{~m}, 1 \mathrm{H}), 2.38(\mathrm{t}, 2 \mathrm{H}), 2.3-2.2(\mathrm{~m}, 4 \mathrm{H}), 1.9-1.8(\mathrm{~m}, 2 \mathrm{H}), 1.6-1.5(\mathrm{~m}, 1 \mathrm{H}), 1.2-1.1$ $(\mathrm{m}, 2 \mathrm{H}), 1.06(\mathrm{~d}, 6 \mathrm{H}), 0.90(\mathrm{~d}, 6 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 199.9,163.8,135.0,39.5,38.7,31.4$, 28.9, 24.9, 23.2, 23.1, 22.9, 20.7

2-(3-methyl) butyl-3-phenyl-2-cyclohexenone (16). MS m/z 243 (M+1); ${ }^{1} \mathrm{H}$ NMR (300 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta$ 7.4-7.3 (m, 3H), 7.17 (d, 2H), 2.6(t, 2 H$), 2.5(\mathrm{t}, 2 \mathrm{H}), 2.2-2.0(\mathrm{~m}, 4 \mathrm{H}), 1.4-1.3(\mathrm{~m}, 1 \mathrm{H})$, 1.2-1.1 (m, 2H), $0.7(\mathrm{~d}, 6 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta$ 199.9, 157.1, 141.9, 137.4, 128.7, 128.0, 127.0, 39.2, 38.6, 33.8, 28.6, 24.9, 23.2, 22.7

Synthesis of Compounds 7 and 8:

Scheme 3

51. $\mathrm{R}=$ cyclopropyl
52. $\mathrm{R}=$ phenyl

7. R = cyclopropyl
8. $R=$ phenyl

2-Isopropyl-3-cyclopropyl-2-cyclohexenone (43). A solution of isobutyl ether $\mathbf{4 2}$ (48 g, 228.57 $\mathrm{mmol})$ in anhydrous ether $(150 \mathrm{~mL})$ was cooled to $0^{0} \mathrm{C}$ in an ice bath, treated drop wise with cyclopropyl lithium (350 mL). The resulting mixture was stirred at $0^{\circ} \mathrm{C}$ for 2 hours and at room temperature for 8 more hours. The reaction mixture was slowly quenched with water (200 mL), extracted with ether (2 X 200 mL). The combined organic layer was dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$, and concentrated under vacuum to provide 50 g of crude oil, which was purified by chromatography (silica gel: Hexane/ether 2:1) to give the ketone $43(38 \mathrm{~g})$ as an oil: MS m/z $179(\mathrm{M}+1) ;{ }^{1} \mathrm{H}$ NMR $\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 3.21-3.3(\mathrm{~m}, 1 \mathrm{H}), 2.28-2.33(\mathrm{~m}, 2 \mathrm{H}), 1.98-1.93(\mathrm{~m}, 1 \mathrm{H}), 1.88-1.83(\mathrm{~m}, 2 \mathrm{H})$, $1.82-1.77(\mathrm{~m}, 2 \mathrm{H}), 1.22(\mathrm{~d}, 6 \mathrm{H}, \mathrm{J}=7.1 \mathrm{~Hz}), 0.84-0.88(\mathrm{~m}, 2 \mathrm{H}), 0.76-0.73(\mathrm{~m}, 2 \mathrm{H})$.
2-Isopropyl-3-phenyl-2-cyclohexenone (44). $\mathrm{MS} \mathrm{m} / \mathrm{z}(\mathrm{M}+1) ;{ }^{1} \mathrm{H} \operatorname{NMR}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$ 7.40-7.26 (m, 3H), 7.16-7.13 (m, 2H), 2.61-2.49 (m, 3H), 2.47-2.43 (m, 2H), 2.07-1.98 (m, 2H), $1.11(\mathrm{~d}, 6 \mathrm{H}, \mathrm{J}=6.99 \mathrm{~Hz}) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 200.1,156.89,142.51,140.9,128.85,128.12$, 126.88, 39.98, 34.47, 29.95, 23.11, 21.47. Anal. (C H O) C, H.

Reformatsky reaction for preparing compounds 45 and 46:
(2Z)-4-(2'-Isopropyl-3'-cyclopropyl-2'-cyclohexen-1'-ylidene)-3-methyl-2-butenoic Acid (45). A suspension of Zn dust $(133 \mathrm{~g})$ in $10 \% \mathrm{HCl}(400 \mathrm{~mL})$ was stirred under nitrogen for 10 h in a 2 L , three-neck round bottomed flask. The aqueous layer was decanted and the zinc was
washed successively with distilled water (3 X 400 mL), anhydrous acetone (3 X 400 mL) and anhydrous ether (3 X 400 mL). After removing the residual ether the zinc dust was heated strongly with Bunsen burner flame for about a minute. The clumps of zinc are carefully broken up with a stirring rod. The cooled zinc was suspended in anhydrous dioxane (200 mL), and the stirred suspension was heated to $125^{\circ} \mathrm{C}$ in an oil bath. This reaction mixture was then treated drop wise over a period of 1 h with a solution of ketone $43(37.3 \mathrm{~g}, 212.36 \mathrm{mmol})$, and ethyl 4-bromo-3-methylbut-2-enoate ($120 \mathrm{~g}, 579.43 \mathrm{mmol}$) and anhydrous dioxane (200 mL). Vigorous bubbling was noticed during the addition process and the reaction mixture was stirred at reflux for 3 hours and then cooled to temperature. Water $(100 \mathrm{~mL})$ and $2 \mathrm{~N} \mathrm{HCl}(250 \mathrm{~mL})$ were added. The mixture was diluted with ether $(500 \mathrm{~mL})$ and allowed to stir for 15 min . The mixture was filtered and the acidic layer was separated. The organic layer was washed successively with water (2 X 100 mL), $1 \mathrm{~N} \mathrm{NaOH}(3 \mathrm{X} 150 \mathrm{~mL}$). The basic wash was cooled in an ice bath, acidified with $\mathrm{HCl}(2 \mathrm{~N})$ to $\mathrm{pH} 1-2$ and washed with ether (2 X 200 mL). The combined organic layers were washed with water ($2 \times 50 \mathrm{~mL}$), brine (50 mL), dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$ and evaporated under vacuum to provide a semisolid. This was crystallized from hexanes/ether, filtered and dried to give pure acid $45(30 \mathrm{~g})$: mp 125-126 ${ }^{\circ} \mathrm{C}$; MS m/z $261(\mathrm{M}+1)$; ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ $6.71(\mathrm{~s}, 1 \mathrm{H}), 5.68(\mathrm{~s}, 1 \mathrm{H}), 3.5-3.4(\mathrm{~m}, 1 \mathrm{H}), 2.31-2.26(\mathrm{~m}, 2 \mathrm{H}), 2.07(\mathrm{~s}, 3 \mathrm{H}), 1.81-1.73(\mathrm{~m}, 3 \mathrm{H})$, 1.6-1.52 (m, 2H), $1.28(\mathrm{~d}, 6 \mathrm{H}), 0.7-0.62(\mathrm{~m}, 2 \mathrm{H}), 0.58-0.54(\mathrm{~m}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C} \operatorname{NMR}\left(\mathrm{CDCl}_{3}\right) \delta 171.9$, 157.5, 141.2, 139.8, 139.1, 121.5, 117.2, 29.5, 29.1, 27.2, 26.5, 23.1, 21.7, 15.2, 5.7. Anal. (C H O) C, H.
(2Z)-4-(2'-Isopropyl-3'-phenyl-2'-cyclohexen-1'-ylidene)-3-methyl-2-butenoic Acid (46). mp 161-163 ${ }^{\circ} \mathrm{C}$; MS m/z $297(\mathrm{M}+1) ;{ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.35-7.22(\mathrm{~m}, 3 \mathrm{H}), 7.12-$ $7.09(\mathrm{~m}, 2 \mathrm{H}), 6.76(\mathrm{~s}, 1 \mathrm{H}), 5.76(\mathrm{~s}, 1 \mathrm{H}), 2.87-2.75(\mathrm{~m}, 1 \mathrm{H}), 2.41-2.31(\mathrm{~m}, 4 \mathrm{H}), 2.11(\mathrm{~s}, 3 \mathrm{H}), 1.8-$ $1.72(\mathrm{~m}, 2 \mathrm{H}), 1.13(\mathrm{~d}, 6 \mathrm{H}, \mathrm{J}=) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 171.9,157.3,145.6,140.6,139.3,138.6$, 128.6, 127.9, 126.6, 124.6, 117.7, 35.0, 30.9, 29.6, 26.4, 23.5, 22.1. Anal. (C H O) C, H.

General procedure for preparing compounds 47 and 48:

(2Z)-4-(2'-Isopropyl-3'-cyclopropyl-2'-cyclohexen-1'-ylidene)-3-methyl-2-butenol (47). To a flame-dried three-neck round-bottomed flask fitted with a nitrogen inlet and addition funnel was added acid $\mathbf{4 5}(10 \mathrm{~g}, 38.46 \mathrm{mmol})$ and anhydrous ether $(150 \mathrm{~mL})$. the flask was cooled to 0 ${ }^{0} \mathrm{C}$ in an ice bath and the reaction mixture was treated with $1 \mathrm{M} \mathrm{LiAlH}_{4} /$ ether $(52 \mathrm{~mL}, 51.9$ $\mathrm{mmol})$ dropwise. The reaction mixture was stirred for an additional 1 hour at $0^{\circ} \mathrm{C}$ cooled to -78 ${ }^{0} \mathrm{C}$ in dry ice/acetone bath, and slowly quenched with methanol (50 mL) followed by $10 \% \mathrm{H}_{2} \mathrm{SO}_{4}$ $(100 \mathrm{~mL}$). The mixture was allowed to come to room temperature extracted with ether (3 X 100 mL). The combined ether layers were washed with water (50 mL), brine (2 X 100 mL), dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$ and concentrated under vacuum to provide 10 g of colorless oil, which was used in the next reaction without further purification. MS m/z $247(\mathrm{M}+1)$; ${ }^{1} \mathrm{H}$ NMR $\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 5.8(\mathrm{~s}$, $1 \mathrm{H}), 5.5-5.4(\mathrm{~m}, 1 \mathrm{H}), 4.0(\mathrm{~d}, 2 \mathrm{H}), 2.5-2.4(\mathrm{~m}, 2 \mathrm{H}), 2.1-2.0(\mathrm{~m}, 2 \mathrm{H}), 1.8(\mathrm{~s}, 3 \mathrm{H}), 1.8-1.7(\mathrm{~m}, 3 \mathrm{H}), 1.6-1.5$ $(\mathrm{m}, 3 \mathrm{H}), 1.4-1.3(\mathrm{~m}, 2 \mathrm{H}), 1.0(\mathrm{~d}, 6 \mathrm{H}), 0.7-0.6(\mathrm{~m}, 2 \mathrm{H}), 0.6-0.5(\mathrm{~m}, 2 \mathrm{H})$.
(2Z)-4-(2'-Isopropyl-3'-phenyl-2'-cyclohexen-1'-ylidene)-3-methyl-2-butenol (48). MS m/z $(\mathrm{M}+1) ;{ }^{1} \mathrm{H}$ NMR $\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.35-7.31(\mathrm{~m}, 2 \mathrm{H}), 7.25-7.23(\mathrm{~m}, 1 \mathrm{H}), 7.13-7.09(\mathrm{~m}, 2 \mathrm{H})$, $6.05(\mathrm{~s}, 1 \mathrm{H}), 5.54-5.48(\mathrm{~m}, 1 \mathrm{H}), 4.08(\mathrm{~d}, 2 \mathrm{H}), 2.85-2.76(\mathrm{~m}, 1 \mathrm{H}), 2.32(\mathrm{t}, 2 \mathrm{H}), 2.24-2.19(\mathrm{~m}, 2 \mathrm{H})$, $1.84(\mathrm{~s}, 3 \mathrm{H}), 1.77-1.68(\mathrm{~m}, 3 \mathrm{H}), 1.10(\mathrm{~d}, 6 \mathrm{H})$.

General procedure for preparing compounds 49 and 50: Using this general procedure, all the aldehydes were prepared.
(2Z)-4-(2'-Isopropyl-3'-cyclopropyl-2'-cyclohexen-1'-ylidene)-3-methyl-2-butenal (49). A solution of crude alcohol $47(10 \mathrm{~g}, 40.65 \mathrm{mmol})$ in anhydrous $\mathrm{CH}_{2} \mathrm{Cl}_{2}(360 \mathrm{~mL})$ was cooled to $0{ }^{\circ} \mathrm{C}$ in an ice bath. The reaction mixture was treated with $\mathrm{MnO}_{2}(100 \mathrm{~g})$, followed by powdered $4 \mathrm{~A}^{0}$ molecular sieves (50 g) and stirred for 6 hours under nitrogen atmosphere. The reaction mixture was diluted with anhydrous $\mathrm{CH}_{2} \mathrm{Cl}_{2}(700 \mathrm{~mL})$, stirred for 10 minutes and filtered through a 0.5 inch layer of silica gel. The MnO_{2} was suspended in ether $(1000 \mathrm{~mL})$ stirred for 10 min and filtered. The combined organic layers were concentrated under vacuum to give 8.5 g of crude oil. This was purified by flash column chromatography (silica gel: Hexanes/ether 6:1) to give 5.1 g of 9 z aldehyde 49 and 1 g of all E aldehyde. MS m/z (M+1); ${ }^{1} \mathrm{H}$ NMR $(300 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}\right) \delta 9.58(\mathrm{~d}, 1 \mathrm{H}), 6.07(\mathrm{~s}, 1 \mathrm{H}), 5.92(\mathrm{dd}, 1 \mathrm{H}), 3.54-3.4(\mathrm{~m}, 1 \mathrm{H}), 2.21-2.16(\mathrm{~m}, 2 \mathrm{H}), 2.02(\mathrm{~s}$, $3 \mathrm{H}), 1.85-1.72(\mathrm{~m}, 3 \mathrm{H}), 1.61-1.53(\mathrm{~m}, 2 \mathrm{H}), 1.27(\mathrm{~d}, 6 \mathrm{H}, \mathrm{J}=), 0.74-0.67(\mathrm{~m}, 2 \mathrm{H}), 0.6-0.54(\mathrm{~m}$, $2 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 193.65,160.96,142.05,139.25,138.19,128.41,119.21,28.70,28.60$, 26.90, 25.40, 23.1, 21.60, 14.73, 5.47. Anal. (C H O) C, H.
(2Z)-4-(2'-Isopropyl-3'-phenyl-2'-cyclohexen-1'-ylidene)-3-methyl-2-butenal (50). MS m/z $(\mathrm{M}+1) ;{ }^{1} \mathrm{H}$ NMR $\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 9.66(\mathrm{~d}, 1 \mathrm{H}), 7.37-7.32(\mathrm{~m}, 2 \mathrm{H}), 7.28-7.23(\mathrm{~m}, 1 \mathrm{H}), 7.12-$ $7.09(\mathrm{~m}, 2 \mathrm{H}), 6.26(\mathrm{~s}, 1 \mathrm{H}), 5.97(\mathrm{~d}, 1 \mathrm{H}), 2.90-2.80(\mathrm{~m}, 1 \mathrm{H}), 2.37-2.31(\mathrm{~m}, 4 \mathrm{H}), 2.06(\mathrm{~s}, 3 \mathrm{H}), 1.8-$ $1.70(\mathrm{~m}, 2 \mathrm{H}), 1.12(\mathrm{~d}, 6 \mathrm{H}, \mathrm{J}=) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 193.6,160.56,144.64,141.40,140.14$, $137.8,128.7,128.3,127.4,126.4,122,34.6,30.4,28.8,25.3,23.32$, 22.0. Anal. (C H O) C, H.
General procedure for preparing compounds 51 and 52:
($2 E, 4 E, 6 Z$)- and ($2 Z, 4 E, 6 Z$)-Ethyl 8-(2'-Isopropyl-3'-cyclopropyl-2'-cyclohexen-1'-ylidene)-3,7-dimethyl-2,4,6-octatrienoate (51). To a flame-dried, 1L, three-neck round-bottomed flask fitted with a nitrogen inlet, addition funnel and rubber septum was added $\mathrm{NaH}(60 \%$ suspension in mineral oil, $1.2 \mathrm{~g}, 30.83 \mathrm{mmol})$. Anhydrous THF (150 mL) was added to the flask followed by a solution of freshly distilled triethylphophonosenecioate ($8.1 \mathrm{~g}, 30.68 \mathrm{mmol}$) was added. The resulting solution was stirred for 15 min and then freshly distilled HMPA (25 mL) was added. The flask was covered with aluminum foil and stirred for 15 min . A solution of aldehyde 49 (5.0 $\mathrm{g}, 20.49 \mathrm{mmol})$ in dry THF (100 mL) was added dropwise through the addition funnel, and the mixture was stirred for an additional 1.5 hours. The reaction mixture was quenched with water $(100 \mathrm{~mL})$ and extracted with ether (3 X 250 mL). The combined ether layers were washed with brine (2 X 100 mL), dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$ and concentrated under vacuum to give 9 g of crude oil. This was purified by chromatography (silica gel: Hexanes/ether 8:1) to give 6.7 g of ester $\mathbf{5 1}$ as an oil (85:15 mixture of (9Z): (9Z, 13Z)-51). MS m/z (M+1); ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ $6.64(\mathrm{dd}, 1 \mathrm{H}), 6.18(\mathrm{~d}, 1 \mathrm{H}), 6.01(\mathrm{~d}, 1 \mathrm{H}), 5.96(\mathrm{~s}, 1 \mathrm{H}), 5.72(\mathrm{~s}, 1 \mathrm{H}), 4.15(\mathrm{q}, 2 \mathrm{H}), 3.53-3.43(\mathrm{~m}$, $1 \mathrm{H}), 2.25(\mathrm{~s}, 3 \mathrm{H}), 2.15-2.06(\mathrm{~m}, 2 \mathrm{H}), 1.90(\mathrm{~s}, 3 \mathrm{H}), 1.85-1.73(\mathrm{~m}, 3 \mathrm{H}), 1.59-1.50(\mathrm{~m}, 2 \mathrm{H}), 1.30-$ $1.20(\mathrm{~m}, 9 \mathrm{H}), 0.70-0.65(\mathrm{~m}, 2 \mathrm{H}), 0.58-0.55(\mathrm{~m}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 167.7,153.6,142.44$, $139.2,138.8,137.07,134.05,133.32,126.8,121.7,118.3,59.95,29.11,27.25,25.14,23.67$, 22.1, 14.96, 14.76, 14.03, 5.66. Anal. ($\mathrm{C}_{24} \mathrm{H}_{34} \mathrm{O}_{2}$) C, H.
(2E,4E,6Z)- and (2Z,4E,6Z)-Ethyl 8-(2'-Isopropyl-3'-phenyl-2'-cyclohexen-1'-ylidene)-3,7-dimethyl-2,4,6-octatrienoate (52). MS m/z ($\mathrm{M}+1$); ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.37-7.3$ (m, 2H), 7.28-7.2 (m, 1H), 7.16-7.13 (m, 2H), 6.69 (dd, 1H), $6.21(\mathrm{~d}, 1 \mathrm{H}), 6.16(\mathrm{~s}, 1 \mathrm{H}), 6.06(\mathrm{~d}, 1 \mathrm{H})$, $5.75(\mathrm{~s}, 1 \mathrm{H}), 4.15(\mathrm{q}, 2 \mathrm{H}), 2.9-2.8(\mathrm{~m}, 1 \mathrm{H}), 2.34(\mathrm{t}, 2 \mathrm{H}), 2.29(\mathrm{~s}, 3 \mathrm{H}), 2.26-2.22(\mathrm{~m}, 2 \mathrm{H}), 1.95(\mathrm{~s}$, $3 \mathrm{H}), 1.89-1.70(\mathrm{~m}, 2 \mathrm{H}), 1.30(\mathrm{t}, 3 \mathrm{H}), 1.14(\mathrm{~d}, 6 \mathrm{H}),{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 167.2,153.1,145.1$,
141.6, 139.3, 138.4, 136.9, 133.4, 133.3, 128.2, 127.6, 126.8, 126.2, 124.1, 118.2, 59.6, 34.6, 30.5, 28.8, 24.6, 23.5, 22.1, 14.4, 13.6. Anal. ($\mathrm{C}_{27} \mathrm{H}_{34} \mathrm{O}_{2}$) C, H.

General procedure for preparing compounds 7 and 8:

(2E,4E,6Z)-8-(2'-Isopropyl-3'-cyclopropyl-2'-cyclohexen-1'-ylidene)-3,7-dimethyl-2,4,6octatrienoic Acid (7). The ester 51(85:15 mixture of (9Z): (9Z, 13Z)-51) ($6.7 \mathrm{~g}, 18.93 \mathrm{mmol}$) was suspended in methanol (335 mL) and warmed to about $70{ }^{\circ} \mathrm{C}$. An aqueous solution of KOH $(2.7 \mathrm{~N}, 70 \mathrm{~mL})$ was added to the above solution and stirred under reflux for 1 h . Then the reaction mixture was cooled in an ice bath, diluted with ice cold water (250 mL) and acidified slowly to $\mathrm{pH} 2-3$ with ice cold 1 N HCl . The resulting yellow precipitate was filtered and washed with ice-cold water. The wet precipitate was dissolved in ether (500 mL), washed with brine (2 X 100 mL), dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$ and concentrated to about 40 mL volume under vacuum. The mixture was diluted with hexanes (75 mL) and cooled in the freezer for 18 hours. The resulting yellow crystalline solid was filtered, washed with ice cold hexanes and dried to give 4.0 g of pure acid 7 as single 9 Z isomer. mp $167-170{ }^{\circ} \mathrm{C} ; \mathrm{MS} \mathrm{m} / \mathrm{z}(\mathrm{M}+1) ;{ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ $6.69(\mathrm{dd}, 1 \mathrm{H}), 6.21(\mathrm{~d}, 1 \mathrm{H}), 6.02(\mathrm{~d}, 1 \mathrm{H}), 5.96(\mathrm{~s}, 1 \mathrm{H}), 5.74(\mathrm{~s}, 1 \mathrm{H}), 3.53-3.43(\mathrm{~m}, 1 \mathrm{H}), 2.25(\mathrm{~s}$, $3 \mathrm{H}), 2.1-2.04(\mathrm{~m}, 2 \mathrm{H}), 1.90(\mathrm{~s}, 3 \mathrm{H}), 1.85-1.73(\mathrm{~m}, 3 \mathrm{H}), 1.6-1.50(\mathrm{~m}, 2 \mathrm{H}), 1.29(\mathrm{~d}, 6 \mathrm{H}), 0.70-0.62$ $(\mathrm{m}, 2 \mathrm{H}), 0.58-0.53(\mathrm{~m}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 172.8,156.2,143.3,139.1,139.0,137.2,135.0$, 133.1, 126.8, 121.6, 117.4, 29.13, 29.10, 27.2, 25.2, 23.6, 22.1, 14.9, 14.3, 5.7. Anal. ($\mathrm{C}_{22} \mathrm{H}_{30}$ O_{2}) C, H.
(2E,4E,6Z)-8-(2'-Isopropyl-3'-phenyl-2'-cyclohexen-1'-ylidene)-3,7-dimethyl-2,4,6octatrienoic Acid (8). mp 202-204 ${ }^{\circ} \mathrm{C}$; MS m/z (M+1); ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.37-7.3$ (m, 2H), 7.28-7.2 (m, 1H), 7.16-7.13 (m, 2H), 6.72 (dd, 1H), $6.24(\mathrm{~d}, 1 \mathrm{H}), 6.16(\mathrm{~s}, 1 \mathrm{H}), 6.08(\mathrm{~d}$, $1 \mathrm{H}), 5.78(\mathrm{~s}, 1 \mathrm{H}), 2.9-2.8(\mathrm{~m}, 1 \mathrm{H}), 2.34(\mathrm{t}, 2 \mathrm{H}), 2.29(\mathrm{~s}, 3 \mathrm{H}), 2.26-2.22(\mathrm{~m}, 2 \mathrm{H}), 1.96(\mathrm{~s}, 3 \mathrm{H})$, 1.78-1.68(m, 2H), $1.14(\mathrm{~d}, 6 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 172.8,156.1,145.5,142.9,139.8,138.8$, $137.5,134.8,133.4,128.7,128.0,127.1,126.6,124.4,117.5,35.0,30.9,29.3,25.1,23.9,22.5$, 14.3. Anal. $\left(\mathrm{C}_{25} \mathrm{H}_{30} \mathrm{O}_{2}\right) \mathrm{C}$, H .

