In-Depth Assessment of the Pd-Catalyzed Fluorination of 5Membered Heteroaryl Bromides

General Supporting Information

Phillip J. Milner, ${ }^{\dagger}$ Yang Yang, ${ }^{\dagger, \dagger}$ Stephen L. Buchwald ${ }^{\dagger, *}$ \dagger Department of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States

\ddagger Department of Chemistry, University of Pittsburgh, Pittsburgh, Pennsylvania 15260

General Procedures.

Anhydrous, oxygen-free toluene, ether $\left(\mathrm{Et}_{2} \mathrm{O}\right)$, tetrahydrofuran (THF), and dichloromethane $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$ were purchased from J. T. Baker and passed through two activated alumina columns followed by sparging with argon before use. All other anhydrous solvents were purchased from Aldrich in Sure-Seal ${ }^{\mathrm{TM}}$ bottles and sparged with argon before use. Potassium fluoride (99.0 \%) was purchased from Aldrich and dried at $180{ }^{\circ} \mathrm{C}$ under vacuum for 24 h . The dried KF was then transferred to a nitrogen-filled glovebox where it was thoroughly ground using an oven-dried mortar and pestle. The finely ground KF was then filtered through a $45 \mu \mathrm{~m}$ stainless-steel sieve (purchased from Cole Parmer) to obtain KF with particle size of $<45 \mu \mathrm{~m} . \mathbf{L} 1,{ }^{1} \mathbf{L} 2,{ }^{2} \mathbf{L} 3,{ }^{3} \mathbf{P 1},{ }^{4} \mathbf{P} 2,{ }^{2}$ and $\mathbf{P 3},{ }^{3}$ were prepared according to literature procedures. The P3 used in this work was received as a gift from Dr. Aaron Sather (MIT), to whom we are grateful. $\operatorname{Di}(1-$ adamantyl)phosphine was received as a gift from Sigma-Aldrich, for which we are grateful, and was converted to di(1-adamantyl)chlorophosphine following the literature procedure. ${ }^{5}\left[(1,5-\mathrm{COD}) \mathrm{Pd}\left(\mathrm{CH}_{2} \mathrm{TMS}\right)_{2}\right]$ was prepared according to the literature procedure ${ }^{6}$ and stored at $-20{ }^{\circ} \mathrm{C}$ in a nitrogen-filled glovebox when not in use. XPhosbased precatalyst S17 and XantPhos-based precatalyst S18 were prepared according to the literature procedure (see Figure S 1 for structures). ${ }^{7}$ Degassed aq. $\mathrm{K}_{3} \mathrm{PO}_{4}$ solutions were obtained by dissolving $\mathrm{K}_{3} \mathrm{PO}_{4}$ in deionized water, and degassing the solution by performing several evacuation/argon refill cycles while sonicating the solution. N bromosuccinimide was recrystallized from hot water and stored at $0^{\circ} \mathrm{C}$ in the dark when not in use. All other reagents were purchased from commercial sources and used as received, or prepared as described below. All compounds were analyzed by ${ }^{1} \mathrm{H},{ }^{13} \mathrm{C},{ }^{31} \mathrm{P}$,
${ }^{19}$ F NMR, and IR, where appropriate. New compounds were also analyzed by elemental analysis or high resolution ESI-MS. All ${ }^{19}$ F NMR yields stated for fluorination reactions are calculated from ${ }^{19} \mathrm{~F}$ NMR spectra relative to an internal standard of 1fluoronaphthalene. ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra were recorded on a Varian XL 300 MHz , Varian Inova 500 MHz , or Bruker AVANCE- 600 MHz spectrometers and were calibrated using residual solvent $\left(\mathrm{CDCl}_{3}:{ }^{1} \mathrm{H}\right.$ NMR: $\delta 7.26 \mathrm{ppm} ;{ }^{13} \mathrm{C}$ NMR: $\left.\delta 77.24 \mathrm{ppm}\right)$ as an internal reference. ${ }^{19} \mathrm{~F}$ and ${ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}$ spectra were recorded on Varian XL 300 MHz or Varian Inova 500 MHz spectrometers. ${ }^{19} \mathrm{~F}$ NMR spectra were calibrated to an external standard of neat $\mathrm{CFCl}_{3}(\delta 0 \mathrm{ppm}) .{ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}$ NMR spectra were calibrated to an external standard of neat $\mathrm{H}_{3} \mathrm{PO}_{4}$ ($\delta 0.0 \mathrm{ppm}$). The following abbreviations were used to explain multiplicities: $\mathrm{s}=$ singlet, $\mathrm{d}=$ doublet, $\mathrm{t}=$ triplet, $\mathrm{pt}=$ pseudotriplet, $\mathrm{q}=$ quartet, $\mathrm{p}=$ pentet, $m=$ multiplet. \quad IR spectra were recorded on a Thermo Scientific Nicolet iS5 Fourier Transform IR Spectrometer. HRMS data were collected on a Bruker Daltonics APEXIV 4.7 Tesla Fourier Transform Ion Cyclotron Resonance Mass Spectrometer. Elemental analysis was performed by Atlantic Microlabs Inc., Norcross, GA, USA. Low-temperature X-ray diffraction data (ϕ-and ω-scans) were collected on a Siemens Platform three-circle diffractometer coupled to a Bruker-AXS Smart Apex CCD detector with graphite-monochromated Mo K α radiation $(\lambda=0.71073 \AA$) or a Bruker-AXS X8 Kappa Duo diffractometer coupled to a Smart Apex2 CCD detector with Mo K_{a} radiation $(\lambda=0.71073 \AA)$. Screw-cap reaction tube refers to Fisher $16 \times 125 \mathrm{~mm}$ tubes (Cat. No. 1495925C) or Fisher $20 \times 150 \mathrm{~mm}$ tubes (Cat. No. 1495937C) tubes equipped with SPTA PTFE/SIL F/15-425 10 (Cat. No. 03394A) septa or SPTA SPTA PTFE/SIL F/18-400 10
(Cat. No. 03394B), respectively. All reactions carried out at high temperatures should be performed behind a blast shield and/or closed hood sash.

Figure S1. Structures of precatalysts used in this work.

Table S1. Additional examples of unsuccessful fluorinations of 5-membered heteroaryl bromides.

${ }^{a}$ Reaction conditions: $\operatorname{ArBr}(0.10 \mathrm{mmol}), \mathrm{AgF}$ (2.0 eq.), KF (0.05 eq.), P1-3 (2 \%), solvent $(1.0 \mathrm{~mL}), 130{ }^{\circ} \mathrm{C}, 14 \mathrm{~h}$. ${ }^{b}$ Significant decomposition observed by ${ }^{19} \mathrm{~F}$ NMR and GC/MS. ${ }^{c} \mathrm{ArSO}_{2} \mathrm{~F}$ observed by ${ }^{19} \mathrm{~F}$ NMR and GC/MS.

Table S2. Inhibition of the Pd-catalyzed fluorination of 4-($n \mathrm{Bu}) \mathrm{PhBr}$ by nitrogencontaining 5-membered heteroarenes. ${ }^{\text {a }}$
Entry
${ }^{a}$ Reaction conditions: $4-(n \mathrm{Bu}) \mathrm{PhBr}(0.10 \mathrm{mmol})$, additive $(0.10 \mathrm{mmol}), \mathrm{AgF}(0.20$ $\mathrm{mmol}), \mathrm{KF}(0.05 \mathrm{mmol}), \mathbf{P} 2(2 \%)$, cyclohexane $(1.0 \mathrm{~mL}), 130{ }^{\circ} \mathrm{C}, 14 \mathrm{~h} .{ }^{19} \mathrm{~F}$ NMR yields.

Synthesis of new complexes.

In a nitrogen-filled glovebox, an oven-dried 20 mL vial equipped with a stir bar was charged with
$\mathbf{L} 1(133 \mathrm{mg}, 0.21 \mathrm{mmol}, 1.00 \mathrm{eq}$.
and 2-bromothiophene ($60.1 \mu \mathrm{l}, 062 \mathrm{mmol}, 3.00$ eq.). Pentane (5 mL) was added, and the non-homogenous reaction mixture was vigorously stirred as $\left[(1,5-) \operatorname{Pd}\left(\mathrm{CH}_{2} \mathrm{TMS}\right)_{2}[(80.0\right.$ $\mathrm{mg}, 0.21 \mathrm{mmol}, 1.00 \mathrm{eq}$.$) was added in one portion. The reaction mixture was allowed to$ vigorously stir for 48 h , at which time it was filtered through a sintered glass frit. The resulting yellow solid was thoroughly washed with pentane ($3 \times 5 \mathrm{~mL}$), affording 13 (130 $\mathrm{mg}, 65 \%$) as a dark yellow solid. Clean ${ }^{1} \mathrm{H},{ }^{13} \mathrm{C}$, and ${ }^{31} \mathrm{P}$ NMR spectra of $\mathbf{1 3}$ could not be obtained due to its slow decomposition $\left(\mathrm{CD}_{2} \mathrm{Cl}_{2}, \mathrm{CDCl}_{3}\right.$, THF- $\left.\mathrm{d}_{8}\right)$ or poor solubility $\left(\mathrm{C}_{6} \mathrm{D}_{6}\right)$ in solution. It was detected by ${ }^{1} \mathrm{H}$ NMR $\left(500 \mathrm{MHz}, \mathrm{CD}_{2} \mathrm{Cl}_{2}\right)$ signals at $\delta 7.37(\mathrm{~d}, \mathrm{~J}$ $=6 \mathrm{~Hz}, 1 \mathrm{H}), 6.88-7.15(\mathrm{~m}, 5 \mathrm{H}), 6.60(\mathrm{bs}, 1 \mathrm{H}), 3.85(\mathrm{~s}, 3 \mathrm{H}), 3.42(\mathrm{bs}, 3 \mathrm{H}), 2.91(\mathrm{bs}, 1 \mathrm{H})$, 2.57 (bs, 2H), 2.33 (bs, 6H), 2.13 (bs, 6H), 1.94 (bs, 6H), 1.58-1.78 (bs, 17H), 1.25 (bs, $6 \mathrm{H}), 0.88$ (bs, 6 H) ppm. ${ }^{31} \mathrm{P}$ NMR ($202 \mathrm{MHz}, \mathrm{CD}_{2} \mathrm{Cl}_{2}$): $\delta \sim 76 \mathrm{ppm}(\mathrm{bs})$. Anal. Calcd. for $\mathrm{C}_{47} \mathrm{H}_{64} \mathrm{BrO}_{2} \mathrm{PPdS}: \mathrm{C}, 62.01 ; \mathrm{H}, 7.09$; found: C, $62.20 ; \mathrm{H}, 7.04$.

X-ray quality crystals of $\mathbf{1 3}$ were obtained by layering a $\mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{Et}_{2} \mathrm{O}$ solution of 13 with pentane and cooling the mixture to $-20^{\circ} \mathrm{C}$ in a nitrogen-filled glovebox. The thiophene ring in $\mathbf{1 3}$ is disordered over two positions.

Identification code
Empirical formula
Formula weight

14036
C47 H64 Br O2 P Pd S
910.32

Temperature	100(2) K
Wavelength	0.71073 A
Crystal system	Triclinic
Space group	P-1
Unit cell dimensions	$a=11.4610(3) \AA \quad a=66.5161(12)^{\circ}$.
	$b=13.5662(3) \AA \quad \mathrm{A}=89.9625(13)^{\circ}$.
	$\mathrm{c}=15.6083(4) \AA \quad \mathrm{A}=74.4572(12)^{\circ}$.
Volume	2128.89(9) \AA^{3}
Z	2
Density (calculated)	$1.420 \mathrm{Mg} / \mathrm{m}^{3}$
Absorption coefficient	$1.498 \mathrm{~mm}^{-1}$
F(000)	948
Crystal size	$0.600 \times 0.090 \times 0.050 \mathrm{~mm}^{3}$
Theta range for data collection	1.433 to 30.032°.
Index ranges	$-16<=\mathrm{h}<=16,-19<=\mathrm{k}<=19,-21<=1<=21$
Reflections collected	104796
Independent reflections	$12442[\mathrm{R}($ int $)=0.0293]$
Completeness to theta $=25.242^{\circ}$	100.0 \%
Absorption correction	Semi-empirical from equivalents
Max. and min. transmission	0.7461 and 0.6043
Refinement method	Full-matrix least-squares on F^{2}
Data / restraints / parameters	12442 / 198 / 499
Goodness-of-fit on F^{2}	1.082
Final R indices [$\mathrm{I}>2 \operatorname{sigma}(\mathrm{I})$]	$\mathrm{R} 1=0.0240, \mathrm{wR} 2=0.0586$
R indices (all data)	$\mathrm{R} 1=0.0288, \mathrm{wR} 2=0.0608$
Extinction coefficient	n/a
Largest diff. peak and hole	0.693 and -1.021 e. \AA^{-3}

In a nitrogen-filled glovebox, an oven-dried 20 mL vial equipped with a stir bar was charged with L1 ($200 \mathrm{mg}, 0.31 \mathrm{mmol}, 1.00$ eq.) and 2-bromo-5-acetylthiophene ($69.7 \mathrm{mg}, 0.31 \mathrm{mmol}, 1.10$ eq.). Pentane (10 mL) was added, and the non-homogenous reaction mixture was vigorously stirred as [(1,5$\mathrm{COD}) \operatorname{Pd}\left(\mathrm{CH}_{2} \mathrm{TMS}\right)_{2}[(121 \mathrm{mg}, 0.31 \mathrm{mmol}, 1.00 \mathrm{eq}$.$) was added in one portion. The$ reaction mixture was allowed to vigorously stir for 48 h , at which time it was filtered through a sintered glass frit. The resulting yellow solid was thoroughly washed with pentane ($3 \times 5 \mathrm{~mL}$), affording $14(206 \mathrm{mg}, 70 \%)$ as a yellow solid. Clean ${ }^{1} \mathrm{H},{ }^{13} \mathrm{C}$, and ${ }^{31} \mathrm{P}$ NMR spectra of $\mathbf{1 4}$ could not be obtained due to its slow decomposition $\left(\mathrm{CD}_{2} \mathrm{Cl}_{2}\right.$, $\left.\mathrm{CDCl}_{3}, \mathrm{THF}-\mathrm{d}_{8}\right)$ or poor solubility $\left(\mathrm{C}_{6} \mathrm{D}_{6}\right)$ in solution. It was detected by ${ }^{1} \mathrm{H}$ NMR (500 $\mathrm{MHz}, \mathrm{CD}_{2} \mathrm{Cl}_{2}$) signals at $\delta 7.46(\mathrm{~d}, \mathrm{~J}=4 \mathrm{~Hz}, 1 \mathrm{H}), 7.08(\mathrm{~s}, 2 \mathrm{H}), 6.97(\mathrm{dd}, \mathrm{J}=9,3 \mathrm{~Hz}, 1 \mathrm{H})$, $6.89(\mathrm{~d}, \mathrm{~J}=9 \mathrm{~Hz}), 6.78(\mathrm{~d}, \mathrm{~J}=4 \mathrm{~Hz}), 3.84(\mathrm{~s}, 3 \mathrm{H}), 3.34(\mathrm{~s}, 3 \mathrm{H}), 3.01($ septet, $\mathrm{J}=7 \mathrm{~Hz})$, 2.34-2.39 (m, 9H), 2.08-2.17 (m, 6H), $1.95(\mathrm{bs}, 7 \mathrm{H}), 1.59-1.79(\mathrm{~m}, 19 \mathrm{H}), 1.34(\mathrm{~d}, \mathrm{~J}=7$ $\mathrm{Hz}, 6 \mathrm{H}$) , 0.83 (bs, 6H) ppm. ${ }^{31} \mathrm{P}$ NMR ($202 \mathrm{MHz}, \mathrm{CD}_{2} \mathrm{Cl}_{2}$): $\delta \sim 73.8 \mathrm{ppm}$ (bs) (free $\mathbf{L} 1$ was also detected). Anal. Calcd. for $\mathrm{C}_{49} \mathrm{H}_{66} \mathrm{BrO}_{3} \operatorname{PPdS}: \mathrm{C}, 61.79$; $\mathrm{H}, 6.98$; found, C , 60.79; H, 7.13.

X-ray quality crystals of $\mathbf{1 4}$ were obtained by layering a $\mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{Et}_{2} \mathrm{O}$ solution of 14 with pentane and cooling the mixture to $-20^{\circ} \mathrm{C}$. The crystal of $\mathbf{1 4}$ was low quality and split into multiple domains, each rotated just a couple of degrees from the next or previous one(s), respectively. Integration as "not twinned" resulted in a very large
(refined) box size. This is clearly suboptimal; however, integration as a non-merohedral twin was not stable and resulted in unusable data. Three molecules of $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ (one disordered) are present in the unit cell.

Identification code
X14114
Empirical formula
Formula weight
1207.13

Temperature
100(2) K
Wavelength
Crystal system
Triclinic

Space group
Unit cell dimensions
P-1
$\mathrm{a}=13.5389(7) \AA \quad \mathrm{a}=70.077(4)^{\circ}$.
$\mathrm{b}=14.0092(8) \AA \quad \mathrm{b}=77.005(4)^{\circ}$.
$\mathrm{c}=17.1535(11) \AA \quad \mathrm{g}=62.377(3)^{\circ}$.
Volume
2701.4(3) \AA^{3}

Z
2

Density (calculated)
$1.484 \mathrm{Mg} / \mathrm{m}^{3}$
Absorption coefficient
$7.324 \mathrm{~mm}^{-1}$
F(000)
1244

Crystal size
Theta range for data collection
Index ranges
Reflections collected
$0.330 \times 0.300 \times 0.005 \mathrm{~mm}^{3}$

Independent reflections
2.749 to 68.244°.
$-15<=\mathrm{h}<=16,-16<=\mathrm{k}<=16,-20<=\mathrm{l}<=20$
$9735[\mathrm{R}(\mathrm{int})=0.0790]$

Completeness to theta $=67.679^{\circ}$	98.9%
Absorption correction	Semi-empirical from equivalents
Max. and min. transmission	0.7531 and 0.5592
Refinement method	Full-matrix least-squares on F^{2}
Data / restraints / parameters	$9735 / 1134 / 646$
Goodness-of-fit on F2	$\mathrm{R} 1=0.065$
Final R indices [I>2sigma(I)]	$\mathrm{R} 1=0.0701, \mathrm{wR} 2=0.1784$
R indices (all data)	n / a
Extinction coefficient	3.273 and $-0.992 \mathrm{e} . \AA^{-3}$

In a nitrogen-filled glovebox, an oven-dried 20 mL vial equipped with a stir bar was charged with L1 ($256 \mathrm{mg}, 0.40 \mathrm{mmol}, 1.00$ eq.) and 3-bromothiophene ($112 \mu \mathrm{l}, 1.20$ $\mathrm{mmol}, 3.00$ eq.). Pentane (10 mL) was added, and the non-homogenous reaction mixture was vigorously stirred as $\left[(1,5-\mathrm{COD}) \mathrm{Pd}\left(\mathrm{CH}_{2} \mathrm{TMS}\right)_{2}[(156 \mathrm{mg}, 0.40 \mathrm{mmol}, 1.00 \mathrm{eq}\right.$.$) was$ added in one portion. The reaction mixture was allowed to vigorously stir for 48 h , at which time it was filtered through a sintered glass frit. The resulting yellow solid was thoroughly washed with pentane ($3 \times 5 \mathrm{~mL}$), affording S16-a $(255 \mathrm{mg}, 70 \%)$ as a dark yellow solid. Clean ${ }^{1} \mathrm{H},{ }^{13} \mathrm{C}$, and ${ }^{31} \mathrm{P}$ NMR spectra of $\mathbf{S 1 6}$-a could not be obtained due to its rearrangement to $\mathbf{S 1 6} \mathbf{- b}$ in solution ($\sim 18 \%$ rearranged after 15 min .). It was detected
by ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CD}_{2} \mathrm{Cl}_{2}$) signals at $\delta 7.03-7.11(\mathrm{~m}, 3 \mathrm{H}), 6.96(\mathrm{bs}, 1 \mathrm{H}), 6.91$ (bs, $2 \mathrm{H}), 6.43(\mathrm{bs}, 1 \mathrm{H}), 3.84(\mathrm{~s}, 3 \mathrm{H}), 3.36(\mathrm{~s}, 3 \mathrm{H}), 2.98(\mathrm{bs}, 1 \mathrm{H}), 2.57(\mathrm{bs}, 2 \mathrm{H}), 2.28(\mathrm{bs}, 6 \mathrm{H})$, 2.13 (bs, 6H), 1.93 (bs, 6H), 1.57-1.78 (m, 18H), 1.33 (bs, 6H), $0.85(\mathrm{bs}, 6 \mathrm{H}) \mathrm{ppm} .{ }^{31} \mathrm{P}$ NMR ($122 \mathrm{MHz}, \mathrm{CD}_{2} \mathrm{Cl}_{2}$): $\delta \sim 74 \mathrm{ppm}$ (bs). (The observed broadening of the ${ }^{1} \mathrm{H}$ and ${ }^{31} \mathrm{P}$ NMR signals is likely due to rapid exchange between S16-a and S16-b).

After 24 h in solution, a 1:1.1 mixture of S16-a and S16-b was obtained. S16-b was detected by ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CD}_{2} \mathrm{Cl}_{2}$) signals at $\delta 7.34(\mathrm{~s}, 2 \mathrm{H}), 5.78(\mathrm{~s}, 1 \mathrm{H}), 3.84$ $(\mathrm{s}, 3 \mathrm{H}), 3.71(\mathrm{~s}, 3 \mathrm{H}), 1.23(\mathrm{~d}, \mathrm{~J}=7 \mathrm{~Hz}, 3 \mathrm{H}), 1.15(\mathrm{bs}, 3 \mathrm{H}), 1.09(\mathrm{~d}, \mathrm{~J}=7 \mathrm{~Hz}, 3 \mathrm{~h}), 0.74(\mathrm{~d}$, $\mathrm{J}=7 \mathrm{~Hz}, 3 \mathrm{H}), 0.07(\mathrm{bs}, 3 \mathrm{H}) \mathrm{ppm} .{ }^{31} \mathrm{P}$ NMR ($122 \mathrm{MHz}, \mathrm{CD}_{2} \mathrm{Cl}_{2}$): $\delta 83.7 \mathrm{ppm} . \mathrm{A}{ }^{13} \mathrm{C}$ NMR ($150 \mathrm{MHz}, \mathrm{CD}_{2} \mathrm{Cl}_{2}$) spectrum of the 1:1.1 mixture of $\mathbf{S 1 6}$-a and $\mathbf{S 1 6} \mathbf{- b}$ is included for reference. $\mathrm{HRMS}(E S I) \mathrm{m} / \mathrm{z}$ for $\mathrm{C}_{47} \mathrm{H}_{64} \mathrm{O}_{2} \mathrm{PPdS}\left(\mathrm{M}-\mathrm{Br}^{-}\right)$: 829.3394; found: 829.3390.

Synthesis of heteroaryl bromides.

When available, heteroaryl bromides were purchased from commercial suppliers and used without further purification. In cases where the commercially available aryl bromide was an oil, it was filtered through a short plug of non-basic alumina in a nitrogen-filled glovebox prior to use. 5-bromo-2-phenylthiazole (9b-Br), ${ }^{8}$ 4-bromo-1-trityl-1 H -pyrazole ($\mathbf{1 2 b} \mathbf{- B r}$), ${ }^{9}$ 5-bromo- N, N-diethylthiophene-2-sulfonamide, ${ }^{10}$ 2-bromo-3-phenylthiophene (21c-Br), ${ }^{11}$ 2-iso-butyl-5-phenylthiazole, ${ }^{12}$ 4-bromo-3-phenyl-1Hpyrazole, ${ }^{13} t$-butyl \quad 4-methylthiazole-5-carboxylate $\quad(\mathbf{2 7 c} \mathbf{- H}), \quad{ }^{14} \quad$ 2methylbenzo[b]thiophene, ${ }^{15}$ 3-bromo-2-methylbenzo[b]thiophene (S4-Br), ${ }^{16}$ methyl 3-bromo-1-tosyl-1H-indole-5-carboxylate (S9), ${ }^{17}$ 4-bromo-3-methyl-1-trityl-1 H -pyrazole
(S12-Br), ${ }^{18}$ 4-bromo-3,5-dimethyl-1-trityl-1H-pyrazole (S13c-Br), ${ }^{18}$ and 2-bromo-1-methyl-1 H -benzimidazole ${ }^{19}$ were prepared according to literature procedures.

General Procedure A (Bromination with NBS). The heteroarene (1.00 eq .) was dissolved in DMF in a roundbottom flask equipped with a stir bar and open to air. The flask was cooled to $0{ }^{\circ} \mathrm{C}$, and N -bromosuccinimide (1.10-2.00 eq.) was added portionwise. The reaction was allowed to stir for 12 h at the indicated temperature. At this time, the reaction mixture was brought to room temperature and diluted with water and either hexanes or ether. The phases were separated, and the aqueous phase was extracted with additional ether or hexanes. The combined organic phases were washed with $\mathrm{H}_{2} \mathrm{O}(3 \times)$ and brine, dried over MgSO_{4}, filtered through a short silica gel plug, and concentrated with the aid of a rotary evaporator. The product was further purified as indicated.

General Procedure B (Suzuki-Miyaura Coupling). This procedure is adapted from the literature. ${ }^{20}$ To a reaction tube equipped with a stir bar was added precatalyst $\mathbf{S 1 7}$ or $\mathbf{S 1 8}$ (2-10\%, see Figure S1), additional ligand (if necessary), and boronic acid (1.10-3.50 eq.) (if the aryl halide was a solid, it was also added at this point). The tube was capped, placed under high vacuum, and backfilled with argon. This process was repeated a total of three times. THF and degassed $a q . \mathrm{K}_{3} \mathrm{PO}_{4}$ solution (2.0-4.0 eq.) were then added (if the aryl halide was a liquid, it was added at this point). The cap was replaced with one that had not been punctured, and the reaction tube was placed in an oil bath that had been pre-heated to the desired temperature and allowed to vigorously stir overnight. At this
time, the reaction mixture was cooled to room temperature and diluted with ether and water. The phases were separated, and the aqueous phase was extracted with additional ether. The combined organic phases were dried over MgSO_{4}, filtered through a short celite plug, and concentrated with the aid of a rotary evaporator. The crude reaction mixture was purified as described.

General Procedure \mathbf{C} (Bromination with $\mathbf{B r}_{2}$). The heteroarene (1.00 eq.) was dissolved in DMF in a roundbottom flask equipped with a stir bar and open to air. The roundbottom flask was cooled to $0{ }^{\circ} \mathrm{C}$. An equal volume of DMF was added to a separate roundbottom flask equipped with a stir bar and cooled to $0{ }^{\circ} \mathrm{C} . \mathrm{Br}_{2}$ (4.00 eq .) was added dropwise to the second flask, which was allowed to stir at $0^{\circ} \mathrm{C}$ for 2 min . At this time, the $\mathrm{Br}_{2} / \mathrm{DMF}$ solution was cannulated dropwise to the first flask, maintaining the temperature of the reaction mixture near $0^{\circ} \mathrm{C}$. The reaction mixture was allowed to stir for the indicated time, and then diluted with $\mathrm{Et}_{2} \mathrm{O}$ and carefully quenched with saturated $a q$. $\mathrm{Na}_{2} \mathrm{SO}_{3}$. The phases were separated, and the aqueous phase was extracted with additional ether. The combined organic phases were washed with $\mathrm{H}_{2} \mathrm{O}(2 \times)$ and brine, dried over MgSO_{4}, filtered through a short silica gel plug, and concentrated using a rotary evaporator. The product was further purified as indicated.

General Procedure D (Negishi Coupling). This procedure is adapted from the literature. ${ }^{21}$ Under an atmosphere of argon, the heteroarene (1.30 eq.) and THF were added to an oven-dried roundbottom flask equipped with a stir bar. The flask was cooled to $-78{ }^{\circ} \mathrm{C}$, and $n \mathrm{BuLi}$ (2.5 M in hexanes, 1.43 eq.) was added dropwise. The reaction mixture was allowed to vigorously stir at $-78^{\circ} \mathrm{C}$ for 1 h , at which time $\mathrm{ZnCl}_{2}(1.9 \mathrm{M}$ in
$2 \mathrm{MeTHF}, 1.56$ eq.) was added dropwise. The reaction mixture was allowed to warm toroom temperatureand stir for 1 h , during which time it became homogenous. Next, bromobenzene (1.00 eq.) was added via syringe. The septum was removed, and under a positive pressure of argon $\mathbf{S 1 7}$ (2\%) and XPhos (2\%) were quickly added. The reaction mixture was allowed to stir atroom temperaturefor 12 h . At this time, ether and water were added, and the phases were separated. The aqueous phase was further extracted with ether $(2 \times)$. The combined organic phases were washed with brine $(2 \times)$, dried over MgSO_{4}, filtered through a plug of celite, eluting with ether, and concentrated. The product was further purified as indicated.

General Procedure E (N-Protection of Azoles). The azole (1.00 eq.) was dissolved in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ in a roundbottom flask equipped with a stir bar. Then, triethylamine (2.00 eq.) and the arylsulfonyl chloride (1.10 eq.) or trityl chloride (1.50 eq .) was added in one portion, and the reaction mixture was allowed to stir at room temperature for 12 h . At this time, water was added, and the phases were separated. The aqueous phase was further extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$, dried over MgSO_{4}, and filtered through a silica gel plug, eluting with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$, and concentrated. The product was further purified as indicated.

a stir bar. 3,4-Dihydro-2H-pyran ($694 \mu \mathrm{~L}, 7.61 \mathrm{mmol}, 3.00 \mathrm{eq}$.$) and p$-TsOH (43.0 mg , $0.25 \mathrm{mmol}, 0.10$ eq.) were added, and the reaction mixture was allowed to stir at room
temperature for 1 h , during which time all of the starting material dissolved and the solution turned dark brown. The reaction mixture was diluted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(40 \mathrm{~mL})$ and saturated $a q . \mathrm{NaHCO}_{3}(50 \mathrm{~mL})$ was added. The phases were separated, and the aqueous phase was further extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(2 \times 30 \mathrm{~mL})$. The combined organic phases were washed with saturated $a q . \mathrm{NaHCO}_{3}(50 \mathrm{~mL})$ and brine $(50 \mathrm{~mL})$, dried over MgSO_{4}, filtered, and concentrated. Purification of the crude reaction mixture by flash chromatography $(0 \rightarrow 2 \rightarrow 4 \% \mathrm{EtOAc} /$ hexanes $)$ afforded 3-bromo-1-(tetrahydro-2 H -pyran-2-yl)-1 H -indazole (11-Br) ($585 \mathrm{mg}, 82 \%$) as a white solid. Melting Point: $66{ }^{\circ} \mathrm{C}$ (Lit. $\left.65{ }^{\circ} \mathrm{C}\right) .{ }^{22}{ }^{1} \mathrm{H}$ NMR $\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 7.51(\mathrm{~d}, \mathrm{~J}=10 \mathrm{~Hz}, 1 \mathrm{H}), 7.47(7.47(\mathrm{~d}, \mathrm{~J}=$ $9 \mathrm{~Hz}, 1 \mathrm{H}), 7.34(\mathrm{pt}, \mathrm{J}=9 \mathrm{~Hz}, 1 \mathrm{H}), 7.13(\mathrm{pt}, \mathrm{J}=8 \mathrm{~Hz}, 1 \mathrm{H}), 5.58(\mathrm{dd}, \mathrm{J}=10,3 \mathrm{~Hz}, 1 \mathrm{H})$, 3.90-3.94 (m, 1H), 3.63 (td, J = 12, $2 \mathrm{~Hz}, 1 \mathrm{H}), 2.42-2.49(\mathrm{~m}, 1 \mathrm{H}), 2.00-2.09(\mathrm{~m}, 1 \mathrm{H})$, 1.93-2.00 (m, 1H), 1.60-1.70 (m, 2H), 1.51-1.59 (m, 1H) ppm; ${ }^{13} \mathrm{C}$ NMR (125 MHz , CDCl_{3}): $\delta 140.7,127.9,124.5,122.2,122.1,120.5,110.4,85.6,67.6,29.4,25.1,22.6$ ppm. IR: 2952, 2850, 1617, 1496, 1462, 1444, 1411, 1318, 1211, 1181, 1123, 1077, $1052,1038,1005,963,909,874,754,654,627,579 \mathrm{~cm}^{-1}$. These spectra are consistent with those reported in the literature. ${ }^{22}$

methylthiophene-2-carboxylate ($312 \mathrm{mg}, 2.00 \mathrm{mmol}, 1.00 \mathrm{eq}$.), N -bromosuccinimide ($712 \mathrm{mg}, 4.00 \mathrm{mmol}, 2.00$ eq.), and $\operatorname{DMF}(5 \mathrm{~mL}$) were combined in a 25 mL
roundbottom flask and allowed to stir at $50{ }^{\circ} \mathrm{C}$ overnight. Purification of the crude product mixture by filtration through a silica gel plug, eluting with $\mathrm{Et}_{2} \mathrm{O}$, provided methyl 4-bromo-5-methylthiophene-2-carboxylate ($395 \mathrm{mg}, 84 \%$) as a light brown solid. Melting Point: 42-44 ${ }^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.58(\mathrm{~s}, 1 \mathrm{H}), 3.86(\mathrm{~s}, 3 \mathrm{H}), 2.42(\mathrm{~s}, 3 \mathrm{H})$ ppm; ${ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 161.8,142.4,135.9,130.2,110.4,99.9,52.4,15.5$ ppm. IR: 3091, 2950, 1706, 1452, 1334, 1244, 1151, 1081, 1002, 806, 750, $631 \mathrm{~cm}^{-1}$. Anal. Calcd. for $\mathrm{C}_{7} \mathrm{H}_{7} \mathrm{BrO}_{2} \mathrm{~S}: \mathrm{C}, 35.76 ; \mathrm{H}, 3.00$; found: $\mathrm{C}, 35.80 ; \mathrm{H}, 2.98$. It should be noted that the ${ }^{1} \mathrm{H}$ NMR shift of the proton located on the thiophene ring in the potentially formed regioisomeric compound methyl 3-bromo-5-methylthiophene-2-carboxylate is predicted to be more than $1 \mathrm{ppm}(\sim 6.5 \mathrm{ppm})$ upfield from where it is observed $(\sim 7.6$ ppm), suggesting that the desired product formed exclusively.

phenylboronic acid ($1.34 \mathrm{~g}, 11.0 \mathrm{mmol}, 1.10 \mathrm{eq}$.$) , \mathbf{S 1 7}$ ($169 \mathrm{mg}, 0.20 \mathrm{mmol}, 2 \%$), THF $(20 \mathrm{~mL})$, and $a q . \mathrm{K}_{3} \mathrm{PO}_{4}(1.0 \mathrm{M}, 20 \mathrm{~mL}, 20 \mathrm{mmol}, 2.0$ eq.) were combined in a 100 mL roundbottom flask and allowed to stir at room temperature for 12 h . Purification of the crude reaction mixture by flash chromatography (pentane) yielded 3-bromo-2phenylthiophene $(1.58 \mathrm{~g}, 66 \%)$ as a colorless oil. ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.67(\mathrm{~d}$, $\mathrm{J}=8 \mathrm{~Hz}, 2 \mathrm{H}), 7.45(\mathrm{pt}, \mathrm{J}=8 \mathrm{~Hz}, 2 \mathrm{H}), 7.39(\mathrm{t}, \mathrm{J}=8 \mathrm{~Hz}, 1 \mathrm{H}), 7.29(\mathrm{dd}, \mathrm{J}=5,2 \mathrm{~Hz}, 1 \mathrm{H})$, 7.07 (dd, $\mathrm{J}=5,3 \mathrm{~Hz}, 1 \mathrm{H}) \mathrm{ppm} ;{ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 138.3,133.0,131.8$, $129.2,128.6,128.4,125.1,107.6 \mathrm{ppm}$. IR: $3106,3056,1523,1484,1444,1343,1146$,
$1073,863,755,690,624,608 \mathrm{~cm}^{-1}$. These spectra are consistent with those reported in the literature. ${ }^{23}$

carboxylate ($1.20 \mathrm{~g}, 4.00 \mathrm{mmol}, 1.00 \mathrm{eq}$.$) , phenylboronic acid (540 \mathrm{mg}, 4.40 \mathrm{mmol}, 4.40$ eq.), S18 (190 mg, $0.20 \mathrm{mmol}, 5 \%$), XantPhos ($116 \mathrm{mg}, 0.20 \mathrm{mmol}, 5 \%$), THF (4.0 mL), aq. $\mathrm{K}_{3} \mathrm{PO} 4(1 \mathrm{M}, 8.0 \mathrm{~mL}, 8.0 \mathrm{mmol}, 2.0$ eq.) were combined in a 50 mL Schlenk flask and allowed to stir at $60{ }^{\circ} \mathrm{C}$ for 12 h . Purification of the crude reaction mixture by flash chromatography (5\% EtOAc/hexanes) yielded methyl 4-bromo-5-phenylthiophene-2carboxylate ($1.04 \mathrm{~g}, 88 \%$) as a white solid. The regioselectivity was confirmed by comparison of the ${ }^{1} \mathrm{H}$ NMR spectrum with that of the potentially formed regioisomeric compound methyl 5-bromo-4-phenylthiophene-2-carboxylate (21a-Br). Melting Point: $70{ }^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR (500 MHz, CDCl_{3}): $\delta 7.73(\mathrm{~s}, 1 \mathrm{H}), 7.64-7.68(\mathrm{~m}, 2 \mathrm{H}), 7.41-7.48(\mathrm{~m}$, $3 \mathrm{H}), 3.90(\mathrm{~s}, 3 \mathrm{H}) \mathrm{ppm} ;{ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 162.4,145.9,137.9,132.7,132.6$, 129.9, 129.7, 129.4, 108.7, 53.2 ppm. IR: 3100, 3025, 2960, 1728, 1714, 1528, 1450, $1438,1291,1182,1080,1069,924,862,840,755,746,714,692,669,629,611 \mathrm{~cm}^{-1}$. HRMS (ESI) for $\mathrm{C}_{12} \mathrm{H}_{13} \mathrm{BrNO}_{2} \mathrm{~S}\left(\mathrm{M}+\mathrm{NH}_{4}{ }^{+}, \mathrm{M}+2+\mathrm{NH}_{4}{ }^{+}\right): 313.9845,315.9825$; found: 313.9858, 315.9842.

This procedure was adapted from the literature. ${ }^{12}$ 2-benzoylthiophene $(1.00 \mathrm{~g}, 5.31 \mathrm{mmol}$, 1.00 eq. $), \operatorname{Pd}(\mathrm{OAc})_{2}(119 \mathrm{mg}, 0.53 \mathrm{mmol}, 10 \%)$, tricyclohexylphosphine tetrafluoroborate ($293 \mathrm{mg}, 0.80 \mathrm{mmol}, 15 \%$), and $\mathrm{K}_{2} \mathrm{CO}_{3}(1.10 \mathrm{~g}, 7.97 \mathrm{mmol}, 1.50 \mathrm{eq}$.) were combined in a 100 mL Schlenk tube equipped with a stir bar. The tube was placed under high vacuum and backfilled with argon. This process was repeated a total of three times. The screwcap was replaced with a septum, and bromobenzene ($558 \mu \mathrm{~L}, 5.31 \mathrm{mmol}, 1.00 \mathrm{eq}$.$) ,$ pivalic acid ($183 \mu \mathrm{~L}, 1.59 \mathrm{mmol}, 0.30 \mathrm{eq}$.), and N, N-dimethylacetamide (25 mL) were added. The septum was replaced with the screw-cap, and the tube was placed in an oil bath that had been pre-heated to $100^{\circ} \mathrm{C}$ and allow to stir for 12 h . At this time, the tube was cooled to room temperature, and the reaction mixture was diluted with ether (50 mL) and water $(50 \mathrm{~mL})$. The phases were separated, and the aqueous phase was further extracted with ether $(2 \times 25 \mathrm{~mL})$. The combined organic phases were washed with water $(2 \times 25 \mathrm{~mL})$ and brine $(25 \mathrm{~mL})$, dried over MgSO_{4}, filtered through a silica gel plug, eluting with ether, and concentrated. The resulting brown solid was recrystallized from hot methanol to afford 2-benzoyl-5-phenylthiophene ($\mathbf{2 0 e} \mathbf{- H}$) ($889 \mathrm{mg}, 63 \%$) as a pale yellow solid. Melting Point: $130{ }^{\circ} \mathrm{C}\left(\right.$ Lit. $\left.132{ }^{\circ} \mathrm{C}\right) .{ }^{25}{ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.89$ $(\mathrm{d}, \mathrm{J}=7 \mathrm{~Hz}, 2 \mathrm{H}), 7.70(\mathrm{~d}, \mathrm{~J}=9 \mathrm{~Hz}, 2 \mathrm{H}), 7.58-7.63(\mathrm{~m}, 2 \mathrm{H}), 7.51(\mathrm{pt}, \mathrm{J}=8 \mathrm{~Hz}, 2 \mathrm{H}), 7.44$ $(\mathrm{pt}, \mathrm{J}=8 \mathrm{~Hz}, 2 \mathrm{H}), 7.39(\mathrm{~d}, \mathrm{~J}=8 \mathrm{~Hz}, 1 \mathrm{H}), 7.36(\mathrm{~d}, \mathrm{~J}=4 \mathrm{~Hz}, 1 \mathrm{H}) \mathrm{ppm} ;{ }^{13} \mathrm{C}$ NMR (125 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 188.2,153.4,142.4,138.2,136.1,133.4,132.3,129.3,129.2,128.6$, 126.5, 124.0 ppm. IR: 2951, 2849, 1617, 1495, 1462, 1318, 1211, 1177, 1077, 1037,
$1005,909,754,703,668 \mathrm{~cm}^{-1}$. These spectra are consistent with those reported in the literature. ${ }^{26}$
$\mathbf{2 0 e}-\mathbf{B r}$ was prepared according to General Procedure C. Thus, $\mathbf{2 0 e} \mathbf{- H}(211 \mathrm{mg}, 0.80$ mmol, 1.00 eq. $), \mathrm{Br}_{2}(163 \mu \mathrm{~L}, 3.20 \mathrm{mmol}, 4.00$ eq. $)$, and $\mathrm{DMF}(8 \mathrm{~mL})$ were combined in a 25 mL roundbottom flask and allowed to stir at $0{ }^{\circ} \mathrm{C}$ for 1 h . Purification of the crude reaction mixture by filtration through a silica gel plug, eluting with ether, followed by recrystallization of the resulting solid from MeOH , afforded 5-benzoyl-3-bromo-2phenylthiophene ($163 \mathrm{mg}, 59 \%$) as a pale yellow solid. Melting Point: $84{ }^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR (500 MHz, CDCl_{3}): $\delta 7.89(\mathrm{dd}, \mathrm{J}=8,2 \mathrm{~Hz}, 2 \mathrm{H}), 7.72(\mathrm{dd}, \mathrm{J}=8,2 \mathrm{~Hz}, 2 \mathrm{H}), 7.63(\mathrm{tt}, \mathrm{J}=$ $8,2 \mathrm{~Hz}, 1 \mathrm{H}), 7.59(\mathrm{~s}, 1 \mathrm{H}), 7.54(\mathrm{pt}, \mathrm{J}=8 \mathrm{~Hz}, 2 \mathrm{H}), 7.4-7.51(\mathrm{~m}, 3 \mathrm{H}) \mathrm{ppm},{ }^{13} \mathrm{C}$ NMR (125 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 187.2,147.3,141.5,138.5,137.4,132.8,132.2,126.9,129.3,129.2$, 128.9, 128.8, 108.2 ppm . IR: 3057, 1630, 1596, 1575, 1520, 1447, 1426, 1426, 1324, 1286, 1223, 1152, 1115, 1075, 874, 764, 709, 694, 652, $631 \mathrm{~cm}^{-1}$. Anal. Calcd. for $\mathrm{C}_{17} \mathrm{H}_{11} \mathrm{BrOS}: \mathrm{C}, 59.49$; H, 3.23; found: C, 59.45; H, 3.39 .

This compound was prepared according to General Procedure B. Thus, 5-bromo- N, N -diethylthiophene-2-sulfonamide ${ }^{10}(2.00 \mathrm{~g}, 6.71 \mathrm{mmol}, 1.00 \mathrm{eq}$.$) , phenylboronic acid (1.23$
$\mathrm{g}, 10.1 \mathrm{mmol}, 1.50 \mathrm{eq}.), \mathbf{S} 17(114 \mathrm{mg}, 0.13 \mathrm{mmol}, 2 \%)$, THF (7 mL), and $a q . \mathrm{K}_{3} \mathrm{PO}_{4}(1$ M, $13.4 \mathrm{~mL}, 13.4 \mathrm{mmol}, 2.0$ eq.) were combined in a 100 mL Schlenk tube and allowed to stir at $60{ }^{\circ} \mathrm{C}$ overnight. Purification of the crude reaction mixture by flash chromatography ($10 \rightarrow 20 \%$ EtOAc/hexanes) afforded 5-phenyl- N, N-diethylthiophene-2sulfonamide (20f-H)(1.41 g, 71\%) as a light brown solid. Melting Point: $80-81{ }^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.59(\mathrm{~d}, \mathrm{~J}=7 \mathrm{~Hz}, 2 \mathrm{H}), 7.50(\mathrm{~d}, \mathrm{~J}=4 \mathrm{~Hz}, 1 \mathrm{H}), 7.41(\mathrm{pt}, \mathrm{J}=7$ $\mathrm{Hz}, 2 \mathrm{H}), 7.36(\mathrm{t}, \mathrm{J}=7 \mathrm{~Hz}, 1 \mathrm{H}), 7.24(\mathrm{~d}, \mathrm{~J}=4 \mathrm{~Hz}, 1 \mathrm{H}), 3.28(\mathrm{q}, \mathrm{J}=8 \mathrm{~Hz}, 4 \mathrm{H}), 1.20(\mathrm{t}, \mathrm{J}=$ $7 \mathrm{~Hz}, 6 \mathrm{H}) \mathrm{ppm} ;{ }^{13} \mathrm{C}$ NMR (125 MHz, CDCl_{3}): $\delta 150.4,139.0,132.9,132.3,129.3,129.1$, 126.2, 122.9, 42.8, 14.4 ppm. IR: 2983, 2941, 2873, 1448, 1334, 1294, 1243, 1201, 1143, 1011, $940,812,791,754,704,685,647,579 \mathrm{~cm}^{-1}$. Anal. Calcd. for $\mathrm{C}_{14} \mathrm{H}_{17} \mathrm{NO}_{2} \mathrm{~S}_{2}: \mathrm{C}$, 56.92; H, 5.80; found: C, 57.15; H, 5.76.
$\mathbf{2 0 f}-\mathbf{B r}$ was prepared according to General Procedure C. Thus, $\mathbf{2 0 f}-\mathbf{H}(1.41 \mathrm{~g}, 4.77 \mathrm{mmol}$, 1.00 eq.), $\mathrm{Br}_{2}(984 \mu \mathrm{~L}, 19.1 \mathrm{mmol}, 4.00$ eq.), and DMF (20 mL) were combined in a 100 mL roundbottom flask at $0^{\circ} \mathrm{C}$ and allowed to stir at $0^{\circ} \mathrm{C}$ overnight. The crude product mixture was purified by flash chromatography (5% EtOAc/hexanes) to afford 4-bromo-5-phenyl- N, N-diethylthiophene-2-sulfonamide ($1.67 \mathrm{~g}, 93 \%$) as a thick yellow oil. ${ }^{1} \mathrm{H}$ NMR (500 MHz, CDCl_{3}): $\delta 7.62-7.65(\mathrm{~m}, 2 \mathrm{H}), 7.42-7.49(\mathrm{~m}, 4 \mathrm{H}), 3.20(\mathrm{q}, \mathrm{J}=8 \mathrm{~Hz}, 4 \mathrm{H})$, $1.23(\mathrm{t}, \mathrm{J}=7 \mathrm{~Hz}, 6 \mathrm{H}) \mathrm{ppm} ;{ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 144.0,139.6,134.8,131.5$, 129.6, 129.2, 129.0, 107.5, 43.1, 14.6 ppm . IR: 2974, 2935, 2873, 1445, 1431, 1339, 1305, 1200, 1149, 1019, 934, 828, 784, 757, 718, 691, $580 \mathrm{~cm}^{-1}$. Anal. Calcd. for $\mathrm{C}_{14} \mathrm{H}_{16} \mathrm{BrNO}_{2} \mathrm{~S}_{2}$: C, 44.92; H, 4.31; found: C, 44.91; H, 4.21.

An oven-dried 100 mL roundbottom flask equipped with a stir bar was charged with 2bromothiophene carboxylic acid $(2.00 \mathrm{~g}, 9.66 \mathrm{mmol}, 1.00 \mathrm{eq}$.$) . The roundbottom flask$ was placed under high vacuum and backfilled with nitrogen. Then, anhydrous $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ $(30 \mathrm{~mL})$ and DMF $(2.5 \mathrm{~mL})$ were added (the solid should dissolve at this point). The septum was fitted with a vent needle, and oxalyl chloride ($1.66 \mathrm{~mL}, 19.3 \mathrm{mmol}, 2.00 \mathrm{eq}$. was added dropwise (Caution: evolution of toxic gases!). The reaction mixture was allowed to stir at room temperature for 1 h , at which time it was concentrated with the aid of a rotary evaporator. The roundbottom flask was placed under high vacuum and backfilled with nitrogen. The resulting thick yellow oil was dissolved in anhydrous $\mathrm{CH}_{2} \mathrm{Cl}_{2}(30 \mathrm{~mL})$ and the flask was cooled to $0{ }^{\circ} \mathrm{C}$. Then, diethylamine $(4.99 \mathrm{~mL}, 48.3$ $\mathrm{mmol}, 5.00$ eq.) was added dropwise (Caution: evolution of HCl !). The reaction mixture was allowed to stir at room temperature for 12 h . At this time, the reaction mixture was diluted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(40 \mathrm{~mL})$, and saturated aq. $\mathrm{NaHCO}_{3}(50 \mathrm{~mL})$ was carefully added. The phases were separated, and the aqueous phase was further extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ (2 $\times 40 \mathrm{~mL})$. The combined organic phases were washed with water $(2 \times 50 \mathrm{~mL})$ and brine (50 mL), dried over MgSO_{4}, filtered, and concentrated. The resulting material was purified by flash chromatography $(10 \rightarrow 20 \% \rightarrow 30 \%$ EtOAc/hexanes) to afford 5-bromo- N, N-diethyl-thiophene-2-carboxamide ($1.27 \mathrm{~g}, 52 \%$) as a greasy pale yellow solid that melted close to room temperature. ${ }^{1} \mathrm{H}$ NMR $\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 7.08(\mathrm{~d}, \mathrm{~J}=4 \mathrm{~Hz}$, $1 \mathrm{H}), 6.99(\mathrm{~d}, \mathrm{~J}=4 \mathrm{~Hz}, 1 \mathrm{H}), 3.52(\mathrm{q}, \mathrm{J}=7 \mathrm{~Hz}, 4 \mathrm{H}), 1.24(\mathrm{t}, \mathrm{J}=7 \mathrm{~Hz}, 6 \mathrm{H}) \mathrm{ppm} ;{ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 146.1,132.4,130.9,130.4,129.2,107.4, \sim 43(\mathrm{bs}), \sim 15(\mathrm{bs}) \mathrm{ppm}$.

IR: $3068,2982,2964,2934,1600,1528,1433,1383,1313,1281,1223,1050,969,940$, 843, $824,748,726,692,633 \mathrm{~cm}^{-1}$. Anal. Calcd. for $\mathrm{C}_{9} \mathrm{H}_{12}$ BrNOS: C, $41.23 ; \mathrm{H}, 4.61$; found: C, 41.38; H, 4.52.

20g-H was prepared according to General Procedure B. Thus, 5-bromo- N, N-diethyl-thiophene-2-carboxamide ($800 \mathrm{mg}, 3.05 \mathrm{mmol}, 1.00 \mathrm{eq}$.), phenylboronic acid (558 mg , $4.58 \mathrm{mmol}, 1.50 \mathrm{eq}.), \mathbf{S} 17(51.6 \mathrm{mg}, 0.06 \mathrm{mmol}, 2 \%)$, THF (3 mL), and $a q . \mathrm{K}_{3} \mathrm{PO}_{4}(1 \mathrm{M}$, $6.0 \mathrm{~mL}, 6.0 \mathrm{mmol}, 2.0$ eq.) were combined in a 50 mL Schlenk tube and allowed to stir at $60^{\circ} \mathrm{C}$ for 12 h . Purification of the crude reaction mixture by flash chromatography (10 $\rightarrow 20 \rightarrow 30 \%$ EtOAc/hexanes) afforded 5-phenyl-N,N-diethyl-thiophene-2-carboxamide ($587 \mathrm{mg}, 74 \%$) as a white solid. Melting Point: $45-47{ }^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.60-7.63(\mathrm{~m}, 2 \mathrm{H}), 7.39(\mathrm{pt}, \mathrm{J}=8 \mathrm{~Hz}, 2 \mathrm{H}), 7.29-7.34(\mathrm{~m}, 2 \mathrm{H}), 7.22(\mathrm{~d}, \mathrm{~J}=4 \mathrm{~Hz}, 1 \mathrm{H})$ ppm; ${ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 146.1,132.4,130.9,130.4,129.2,129.2,107.4 \sim 43$ (bs), ~15 (bs) ppm. IR: 3061, 2986, 1601, 1538, 1459, 1385, 1367, 1307, 1285, 1180, 1103, 1054, 915, 845, 822, 750, 731, 703, 688, 675, $622 \mathrm{~cm}^{-1}$. Anal. Calcd. for $\mathrm{C}_{15} \mathrm{H}_{17} \mathrm{NOS}: \mathrm{C}, 69.46$; H, 6.61; found: C, $69.69 ; \mathrm{H}, 6.63$.
$\mathbf{2 0 g} \mathbf{- B r}$ was prepared according to General Procedure C. Thus, 20g-H ($1.14 \mathrm{mg}, 4.40$ mmol, 1.00 eq.), $\mathrm{Br}_{2}(906 \mu \mathrm{~L}, 17.6 \mathrm{mmol}, 4.00$ eq. $)$, and DMF (20 mL) were combined at $0{ }^{\circ} \mathrm{C}$ and allowed to stir at $0{ }^{\circ} \mathrm{C}$ for 1 h . Purification of the crude reaction mixture by flash chromatography ($20 \% \mathrm{EtOAc} /$ hexanes) afforded 4-bromo-5-phenyl- N, N-diethyl-thiophene-2-carboxamide ($1.29 \mathrm{mg}, 87 \%$) as a thick pale yellow oil. ${ }^{1} \mathrm{H}$ NMR (500 MHz , $\left.\mathrm{CDCl}_{3}\right): \delta 7.64-7.67(\mathrm{~m}, 2 \mathrm{H}), 7.38-7.47(\mathrm{~m}, 3 \mathrm{H}), 7.26(\mathrm{~s}, 1 \mathrm{H}), 3.57(\mathrm{q}, \mathrm{J}=7 \mathrm{~Hz}, 4 \mathrm{H})$,
$1.28(\mathrm{t}, \mathrm{J}=7 \mathrm{~Hz}, 6 \mathrm{H}) \mathrm{ppm} ;{ }^{13} \mathrm{C} \operatorname{NMR}\left(125 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 162.4,141.5,137.5,132.2$, $131.9,129.1,128.9,128.8,106.7, \sim 43$ (bs), ~ 15 (bs) ppm. IR: 2971, 2932, 1609, 1529, $1440,1380,1319,1277,1216,1056,844,815,758,729,693,628 \mathrm{~cm}^{-1}$. Anal. Calcd. for $\mathrm{C}_{15} \mathrm{H}_{16} \mathrm{BrNOS}: \mathrm{C}, 53.26$; H, 4.77; found: C, 53.53; H, 4.83.

20h-H was prepared according to General Procedure B. Thus, 2,5-dibromothiophene ($1.13 \mathrm{~mL}, 10.0 \mathrm{mmol}, 1.00$ eq.), phenylboronic acid ($3.05 \mathrm{~g}, 25.0 \mathrm{mmol}, 2.50 \mathrm{eq}.), \mathbf{S 1 7}$ $(169 \mathrm{mg}, 0.20 \mathrm{mmol}, 2 \%)$, THF (10 mL), and $a q . \mathrm{K}_{3} \mathrm{PO}_{4}(1.5 \mathrm{M}, 20 \mathrm{~mL}, 30 \mathrm{mmol}, 3.0$ eq.) were combined in a 100 Schlenk flask and allowed to stir at $60{ }^{\circ} \mathrm{C}$ for 12 h . Purification of the crude reaction mixture by flash chromatography ($1 \% \mathrm{EtOAc} /$ hexanes) yielded 2,5-diphenylthiophene ($1.13 \mathrm{~g}, 48 \%$) as a pale yellow crystalline solid. Melting Point: $153{ }^{\circ} \mathrm{C}\left(\right.$ Lit. $\left.152-153{ }^{\circ} \mathrm{C}\right) .{ }^{27}{ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.63-7.66(\mathrm{~m}, 4 \mathrm{H})$, 7.38-7.42 (m, 4H), 7.26-7.31 (m, 4H) ppm; ${ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 143.8$, 134.4, 129.1, 127.7, $125.8,124.1 \mathrm{ppm}$. IR: $3055,3017,1593,1480,1454,1273,1157,1079$, $1028,940,902,804,747,683 \mathrm{~cm}^{-1}$. These spectra are consistent with those reported in the literature. ${ }^{28}$

20h-Br was prepared according to a slightly modified General Procedure A. Thus, 20hH ($1.12 \mathrm{~g}, 4.75 \mathrm{mmol}, 1.00 \mathrm{eq}$.$) , \mathrm{N}$-bromosuccinimide ($934 \mathrm{mg}, 5.22 \mathrm{mmol}, 1.10 \mathrm{eq}$.), DMF (10 mL), and $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ (20 mL , added to solubilize the starting material) were combined and allowed to stir at room temperature for 12 h . Purification by flash
chromatography (hexanes), followed by recrystallization of the resulting solid from hot MeOH , yielded 3-bromo-2,5-diphenylthiophene ($725 \mathrm{mg}, 48 \%$) as a pale yellow solid. Melting Point: $42-43{ }^{\circ} \mathrm{C}\left(\right.$ Lit. $\left.43-44{ }^{\circ} \mathrm{C}\right) .{ }^{27}{ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.73(\mathrm{~d}, \mathrm{~J}=9$ $\mathrm{Hz}, 2 \mathrm{H}), 7.61(\mathrm{~d}, \mathrm{~J}=9 \mathrm{~Hz}, 2 \mathrm{H}), 7.40-7.49(\mathrm{~m}, 5 \mathrm{H}), 7.31-7.37(\mathrm{~m}, 1 \mathrm{H}), 7.29(\mathrm{~s}, 1 \mathrm{H}) \mathrm{ppm} ;$ ${ }^{13} \mathrm{C}$ NMR (125 MHz, CDCl_{3}): $\delta 143.3,137.4,133.2,133.0,129.2,129.0,128.7,128.4$, $128.3,127.5,125.6,108.0 \mathrm{ppm}$. IR: $3055,3026,1598,1533,1496,1442,1326,1275$, $1156,1073,1036,969,908,824,752,715,624,608 \mathrm{~cm}^{-1}$. These spectra are consistent with those reported in the literature. ${ }^{29}$

carboxaldehyde ($540 \mathrm{mg}, 2.00 \mathrm{mmol}, 1.00 \mathrm{eq}$.), phenylboronic acid ($270 \mathrm{mg}, 2.20 \mathrm{mmol}$, 1.10 eq.), S18 ($95 \mathrm{mg}, 0.1 \mathrm{mmol}, 5 \%$), THF (2 mL), and $a q . \mathrm{K}_{3} \mathrm{PO}_{4}(1.0 \mathrm{M}, 4.0 \mathrm{~mL}, 4.0$ $\mathrm{mmol}, 2.0$ eq.) were combined in a 25 mL roundbottom flask and allowed to stir at $60^{\circ} \mathrm{C}$ for 12 h . Purification of the crude reaction mixture by flash chromatography ($0 \rightarrow 2 \rightarrow 4$ $\rightarrow 6 \%$ EtOAc/hexanes) yielded 4-bromo-5-phenylthiophene-2-carboxaldehyde (370 mg , 69%) as a pale yellow solid. The regioselectivity is assumed based on that observed for the preparation of methyl 3-bromo-2-phenylthiophene-5-carboxylate. Melting Point: 83 ${ }^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR $\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 9.86(\mathrm{~s}, 1 \mathrm{H}), 7.73(\mathrm{~s}, 1 \mathrm{H}), 7.68-7.70(\mathrm{~m}, 2 \mathrm{H}), 7.46-$ $7.50(\mathrm{~m}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 182.2,148.5,141.7,140.3,132.2,130.1$, 129.4, 129.2, 109.2 ppm. IR: 3309, 3082, 3054, 2847, 1678, 1663, 1450, 1432, 1306,

1219, 1125, 1076, 915, 848, 837, 754, 724, 690, 662, $633 \mathrm{~cm}^{-1}$. HRMS (ESI) m/z calcd. for $\mathrm{C}_{11} \mathrm{H}_{8} \mathrm{BrOS}\left(\mathrm{M}+\mathrm{H}^{+}, \mathrm{M}+2+\mathrm{H}^{+}\right)$: 266.9474, 268.9454; found: 266.9476, 268.9451 .

S1b-H was prepared according to General Procedure B. Thus, 2-acetyl-5bromothiophene ($1.03 \mathrm{~g}, 5.00 \mathrm{mmol}, 1.00 \mathrm{eq}$.) , phenylboronic acid ($914 \mathrm{mg}, 7.50 \mathrm{mmol}$, 1.50 eq.$)$, S17 ($85 \mathrm{mg}, 0.10 \mathrm{mmol}, 2 \%$), THF (5 mL), and $a q . \mathrm{K}_{3} \mathrm{PO}_{4}(1.0 \mathrm{M}, 10 \mathrm{~mL}, 10$ $\mathrm{mmol}, 2.0$ eq.) were combined in a 50 mL roundbottom flask and allowed to stir at $60^{\circ} \mathrm{C}$ for 12 h . Purification of the crude reaction mixture by flash chromatography $(0 \rightarrow 2.5 \rightarrow$ $5 \rightarrow 7.5 \% \mathrm{EtOAc} /$ hexanes $)$ yielded 2-acetyl-5-phenylthiophene $(840 \mathrm{mg}, 83 \%)$ as a pale yellow solid. Melting Point: $114-116{ }^{\circ} \mathrm{C}\left(\right.$ Lit. $\left.115{ }^{\circ} \mathrm{C}\right) .{ }^{30}{ }^{1} \mathrm{H}$ NMR $\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta$ 7.64-7.67 (m, 3H), $7.42(\mathrm{pt}, \mathrm{J}=7 \mathrm{~Hz}, 2 \mathrm{H}), 7.37(\mathrm{tt}, \mathrm{J}=8,2 \mathrm{~Hz}, 1 \mathrm{H}), 7.32(\mathrm{~d}, \mathrm{~J}=4 \mathrm{~Hz}$, 1H), 2.57 (s, 3H) ppm; ${ }^{13} \mathrm{C} \operatorname{NMR}\left(125 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 190.7,152.9,143.2,133.6,133.4$, 129.2, 126.4, 124.0, 26.7 ppm . IR: $3081,3001,1645,1530,1441,1362,1275,1087$, $1036,926,908,809,756,687,661,611,586 \mathrm{~cm}^{-1}$. These spectra are consistent with those reported in the literature. ${ }^{30}$
$\mathbf{S 1 b}-\mathbf{B r}$ was prepared according to General Procedure A. Thus, S1b-H (700 mg, 3.46 mmol, 1.00 eq.), N -bromosuccinimide ($862 \mathrm{mg}, 4.84 \mathrm{mmol}, 1.40 \mathrm{eq}$.$) , and DMF (10 \mathrm{~mL}$) were combined in a 25 mL roundbottom flask and allowed to stir at $50{ }^{\circ} \mathrm{C}$ overnight. Purification of the crude reaction mixture by filtration through a silica gel plug, eluting
with ether, followed by trituration of the resulting solid with cold MeOH , yielded 2-acetyl-4-bromo-5-phenylthiophene ($740 \mathrm{mg}, 76 \%$) as a pale yellow solid. Melting Point: $70{ }^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.67(\mathrm{dd}, \mathrm{J}=8,2 \mathrm{~Hz}, 2 \mathrm{H}), 7.63(\mathrm{~s}, 1 \mathrm{H}), 7.43-7.48$ $(\mathrm{m}, 3 \mathrm{H}), 2.56(\mathrm{~s}, 3 \mathrm{H}) \mathrm{ppm} ;{ }^{13} \mathrm{C}$ NMR (125 MHz, $\left.\mathrm{CDCl}_{3}\right): \delta 189.8,146.9,142.3,136.4$, 132.1, 129.5, 129.1, 128.8, 108.1, 26.5 ppm. IR: 3077, 1652, 1446, 1431, 1359, 1312, $1270,1223,1155,1078,1046,922,882,861,831,760,697,682,632,608,595 \mathrm{~cm}^{-1}$. Anal. Calcd. for $\mathrm{C}_{12} \mathrm{H}_{9} \mathrm{BrOS}: \mathrm{C}, 51.26$; H, 3.23; found: C, 51.08; H, 3.07.

S1c-H was prepared according to General Procedure B. Thus, 2-bromo-5cyanothiophene ($940 \mathrm{mg}, 5.00 \mathrm{mmol}, 1.00$ eq.), phenylboronic acid ($915 \mathrm{mg}, 7.50 \mathrm{mmol}$, 1.50 eq.), $\mathbf{S 1 7}(169 \mathrm{mg}, 0.20 \mathrm{mmol}, 4 \%)$, THF (5.0 mL), and aq. $\mathrm{K}_{3} \mathrm{PO}_{4}(1.0 \mathrm{M}, 10 \mathrm{~mL}$, $10 \mathrm{mmol}, 2.0$ eq.) were combined in a 50 mL Schlenk tube and allowed to stir at $40^{\circ} \mathrm{C}$ for 12 h . The crude reaction mixture was purified by flash chromatography ($0 \rightarrow 4 \%$ $\mathrm{EtOAc} /$ hexanes); all of the fractions containing the desired product were collected and concentrated to afford a yellow solid, which was recrystallized from hot hexanes to afford 2-cyano-5-phenylthiophene ($387 \mathrm{mg}, 42 \%$) as a yellow solid. Melting Point: $85-87{ }^{\circ} \mathrm{C}$ (Lit. $\left.86-87{ }^{\circ} \mathrm{C}\right) .{ }^{31}{ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.59-7.62(\mathrm{~m}, 3 \mathrm{H}), 7.38-7.46(\mathrm{~m}, 3 \mathrm{H})$, $7.28(\mathrm{~d}, \mathrm{~J}=4 \mathrm{~Hz}, 1 \mathrm{H}) \mathrm{ppm} ;{ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 152.0,138.5,132.4,129.6$, $129.4,126.5,123.4,114.5,108.3 \mathrm{ppm}$. IR: 3097, 2219, 1493, 1455, 1254, 1239, 1157,
$1058,999,954,909,816,753,684 \mathrm{~cm}^{-1}$. These spectra are consistent with those reported in the literature. ${ }^{31}$

S1c-Br was prepared according to General Procedure C. Thus, S1c-H (463 mg, 2.50 mmol, 1.00 eq. $), \mathrm{Br}_{2}(516 \mu \mathrm{~L}, 10.0 \mathrm{mmol}, 4.00 \mathrm{eq}$.$) , and \mathrm{DMF}(10 \mathrm{~mL})$ were combined at $0{ }^{\circ} \mathrm{C}$ and allowed to stir at room temperature for 12 h . The crude reaction mixture was filtered through a silica gel plug, eluting with ether, and concentrated. The resulted yellow solid was recrystallized from hot hexanes to afford 4-bromo-2-cyano-5phenylthiophene ($355 \mathrm{mg}, 54 \%$) as a fluffy pale yellow solid. Melting Point: $76-78{ }^{\circ} \mathrm{C}$. ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.61-7.65(\mathrm{~m}, 2 \mathrm{H}), 7.57(\mathrm{~s}, 1 \mathrm{H}), 7.46-7.50(\mathrm{~m}, 3 \mathrm{H}) \mathrm{ppm}$;
${ }^{13} \mathrm{C}$ NMR (125 MHz, CDCl_{3}): $\delta 145.8,141.0,130.9,130.0,129.3,129.1,113.2,108.2$, 99.9 ppm IR: $3093,2223,1448,1433,1321,1220,1167,1116,1073,868,838,753,721$, 688, $629 \mathrm{~cm}^{-1}$. HRMS (ESI) m / z calcd. for $\mathrm{C}_{11} \mathrm{H}_{10} \mathrm{BrN}_{2} \mathrm{~S}\left(\mathrm{M}+\mathrm{NH}_{4}{ }^{+}, \mathrm{M}+2+\mathrm{NH}_{4}{ }^{+}\right)$: 280.9743, 282.9723; found: 280.9745, 282.9721.

S1d-H was prepared according to General Procedure B. Thus, 2-bromo-5-nitrothiophene $(1.64 \mathrm{~g}, 8.00 \mathrm{mmol}, 1.00 \mathrm{eq}$.$) , phenylboronic acid (1.46 \mathrm{~g}, 12.0 \mathrm{mmol}, 1.50 \mathrm{eq}$.$) , S17 (272$ $\mathrm{mg}, 0.32 \mathrm{mmol}, 4 \%)$, THF (8.0 mL), and aq. $\mathrm{K}_{3} \mathrm{PO}_{4}(1.0 \mathrm{M}, 16.0 \mathrm{~mL}, 16 \mathrm{mmol}, 2.0 \mathrm{eq}$. were combined in a 100 mL roundbottom flask and allowed to stir at $60^{\circ} \mathrm{C}$ overnight. The crude reaction mixture was purified by flash chromatography $(2 \rightarrow 4 \rightarrow 6 \%$
$\mathrm{EtOAc} /$ hexanes); all of the fractions containing the desired product were collected and concentrated to provide a brown solid. This solid was recrystallized from hot MeOH to afford 5-phenyl-2-nitrothiophene ($927 \mathrm{mg}, 57 \%$) as an orange-brown solid. Melting Point: $126{ }^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.91(\mathrm{~d}, \mathrm{~J}=4 \mathrm{~Hz}, 1 \mathrm{H}), 7.61-7.64(\mathrm{~m}, 2 \mathrm{H})$, 7.42-7.48 (m, 3H), $7.24(\mathrm{~d}, \mathrm{~J}=5 \mathrm{~Hz}, 1 \mathrm{H}) \mathrm{ppm} ;{ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 152.2$, 132.2, 130.2, $129.8,129.5,126.4,122.5 \mathrm{ppm}$ (the ${ }^{13} \mathrm{C}-\mathrm{NO}_{2}$ signal could not be readily observed). IR: 3110, 1536, 1496, 1449, 1425, 1353, 1326, 1248, 1043, 1028, 958, 812, $755,731 \mathrm{~cm}^{-1}$. Anal. Calcd. for $\mathrm{C}_{10} \mathrm{H}_{7} \mathrm{NO}_{2} \mathrm{~S} ; \mathrm{C}, 58.52 ; \mathrm{H}, 3.44$; found: C, $58.46 ; \mathrm{H}, 3.54$.

S1d-Br was prepared according to General Procedure C. Thus, S1d-H (920 mg, 4.52 mmol, 1.00 eq.), $\operatorname{Br}_{2}(932 \mu \mathrm{~L}, 18.1 \mathrm{mmol}, 4.00 \mathrm{eq}$.$) , and DMF (20 \mathrm{~mL}$) were combined at $0^{\circ} \mathrm{C}$ and allowed to stir at room temperature for 12 h . The crude reaction mixture was filtered through a silica gel plug, eluting with ether, and concentrated to afford an orange solid. This solid was triturated with cold methanol, filtered, and washed with additional cold methanol, to afford 4-bromo-5-phenyl-2-nitrothiophene ($897 \mathrm{mg}, 70 \%$) as a bright yellow solid. Melting Point: $69{ }^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.91(\mathrm{~s}, 1 \mathrm{H}), 7.64-$ $7.69(\mathrm{~m}, 2 \mathrm{H}), 7.48-7.32(\mathrm{~m}, 3 \mathrm{H}) \mathrm{ppm} ;{ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 146.1$, 132.4, 130.9, 130.4, 129.2, 129.2, 107.4 ppm (the ${ }^{13} \mathrm{C}-\mathrm{NO}_{2}$ signal could not be readily observed). IR: $3110,1596,1525,1509,1489,1446,1421,1350,1319,1218,1162,1084$, 1071, 1033, 1000, 960, 910, 855, 842, 804, 753, 779, 718, $689 \mathrm{~cm}^{-1}$. Anal. Calcd. for $\mathrm{C}_{10} \mathrm{H}_{6} \mathrm{BrNO}_{2} \mathrm{~S}: \mathrm{C}, 42.27 ; \mathrm{H}, 2.13$; found: $\mathrm{C}, 42.01 ; \mathrm{H}, 2.12$. It should be noted that the ${ }^{1} \mathrm{H}$ NMR shift of the proton located on the thiophene ring in the potentially formed regioisomeric compound 3-bromo-2-nitro-5-phenylthiophene is predicted to be more than
$0.8 \mathrm{ppm}(\sim 7.1 \mathrm{ppm})$ upfield from where it is observed ($\sim 7.9 \mathrm{ppm}$), suggesting that the desired product formed exclusively.

20i-H was prepared according to General Procedure B. Thus, 2,5-dibromo-3methylthiophene ($1.50 \mathrm{~g}, 5.90 \mathrm{mmol}, 1.00 \mathrm{eq}$.$) , phenylboronic acid (1.79 \mathrm{~g}, 14.7 \mathrm{mmol}$, 2.50 eq.), S17 ($250 \mathrm{mg}, 0.30 \mathrm{mmol}, 5 \%$), THF (6 mL), and aq. $\mathrm{K}_{3} \mathrm{PO}_{4}(2 \mathrm{M}, 9 \mathrm{~mL}, 18.0$ mmol, 3 eq.) were combined in a 50 mL Schlenk tube and allowed to stir at $60^{\circ} \mathrm{C}$ for 12 h. Purification of the crude reaction mixture by flash chromatography (hexanes) provided 2,5-diphenyl-3-methylthiophene ($780 \mathrm{mg}, 53 \%$) as an off-white solid. Melting Point: $85^{\circ} \mathrm{C}\left(\right.$ Lit. $\left.86-87{ }^{\circ} \mathrm{C}\right) .{ }^{32}{ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.65$ (dd, J = 9, $2 \mathrm{~Hz}, 2 \mathrm{H}$), 7.56 (dd, J = 7, $1 \mathrm{~Hz}, 2 \mathrm{H}), 7.46(\mathrm{pt}, \mathrm{J}=8 \mathrm{~Hz}, 2 \mathrm{H}), 7.41(\mathrm{pt}, \mathrm{J}=7 \mathrm{~Hz}, 2 \mathrm{H}), 7.36(\mathrm{tt}, \mathrm{J}=8$, $2 \mathrm{~Hz}, 1 \mathrm{H}), 7.31(\mathrm{tt}, \mathrm{J}=8,1 \mathrm{~Hz}, 1 \mathrm{H}), 7.20(\mathrm{~s}, 1 \mathrm{H}) \mathrm{ppm} ;{ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$): δ $141.9,137.5,134.8,134.4,134.3,129.0,128.9,128.7,127.5,127.4,127.3,125.6,15.3$ ppm. IR: $3049,2926,1596,1486,1448,1182,1075,1012,838,755,722,695,627 \mathrm{~cm}^{-1}$. These spectra are consistent with those reported in the literature. ${ }^{32}$
$\mathbf{2 0 i} \mathbf{- B r}$ was prepared according to a slightly modified General Procedure A. Thus, 20i-H ($200 \mathrm{mg}, 0.80 \mathrm{mmol}, 1.00 \mathrm{eq}$.), N -bromosuccinimide ($214 \mathrm{mg}, 1.20 \mathrm{mmol}, 1.50$ eq.), DMF (2 mL), and $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ (1 mL , to solubilize the starting material) were combined and allowed to stir at room temperature overnight. Purification of the crude reaction mixture
by filtration through a silica gel plug, eluting with hexanes, afforded 3-bromo-2,5-diphenyl-4-methylthiophene ($154 \mathrm{mg}, 59 \%$) as a white crystalline solid. Melting Point: $104{ }^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.71(\mathrm{~d}, \mathrm{~J}=8 \mathrm{~Hz}, 2 \mathrm{H}), 7.44-7.50(\mathrm{~m}, 6 \mathrm{H}), 7.40$ (pt, J $=7 \mathrm{~Hz}, 2 \mathrm{H}$), $2.37(\mathrm{~s}, 3 \mathrm{H}) \mathrm{ppm} ;{ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$): δ 137.4, 136.7, $134.3,133.8,133.5,129.3,129.2,128.8,128.6,128.3,128.0,112.0,15.9$ ppm. IR: 3049, 2994, 2916, 1597, 1485, 1440, 1346, 1251, 1178, 1080, 1035, 1024, 1010, 919, 810, 753, 698, $586 \mathrm{~cm}^{-1}$. HRMS (ESI) m / z calcd. for $\mathrm{C}_{17} \mathrm{H}_{14} \mathrm{BrS}\left[\mathrm{M}+\mathrm{H}^{+}, \mathrm{M}+2+\mathrm{H}^{+}\right]: 328.9994$, 330.9979; found: 328.9996, 330.9977.

$\mathbf{2 0 j} \mathbf{- H}$ was prepared according to General Procedure B. Thus, 2,3,5-tribromothiophene ($646 \mu \mathrm{~L}, 5.00 \mathrm{mmol}, 1.00$ eq.), phenylboronic acid ($2.13 \mathrm{~g}, 17.5 \mathrm{mmol}, 3.50 \mathrm{eq}.), \mathrm{S} 17$ ($212 \mathrm{mg}, 0.25 \mathrm{mmol}, 5 \%$), THF (5 mL), and aq. $\mathrm{K}_{3} \mathrm{PO}_{4}(1 \mathrm{M}, 20 \mathrm{~mL}, 20 \mathrm{mmol}, 4.0 \mathrm{eq}$. were combined in a 100 mL Schlenk tube and allowed to stir at $60{ }^{\circ} \mathrm{C}$ for 12 h . Purification of the crude reaction mixture by flash chromatography (hexanes $\rightarrow 1 \%$ EtOAc/hexanes) yielded 2,3,5-triphenylthiophene ($1.23 \mathrm{~g}, 79 \%$) as a fluffy yellow solid. Melting Point: $139-141{ }^{\circ} \mathrm{C}\left(\right.$ Lit. $\left.144-145{ }^{\circ} \mathrm{C}\right) .{ }^{33}{ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.66(\mathrm{~d}, \mathrm{~J}$ $=7 \mathrm{~Hz}, 2 \mathrm{H}), 7.37-7.43(\mathrm{~m}, 3 \mathrm{H}), 7.25-7.36(\mathrm{~m}, 11 \mathrm{H}) \mathrm{ppm} ;{ }^{13} \mathrm{C}$ NMR $\left(125 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$: $\delta 142.7,139.1,138.1,136.7,134.3,134.2,129.3,129.2,129.1,128.6,128.6,127.8$, $127.6,127.2,126.7,125.7 \mathrm{ppm}$. IR: $3058,3021,1597,1484,1446,1070,1029,914$, $846,754,695 \mathrm{~cm}^{-1}$. These spectra are consistent with those reported in the literature. ${ }^{33}$
$\mathbf{2 0 j} \mathbf{- B r}$ was prepared according to a slightly modified General Procedure A. Thus, $\mathbf{2 0 j} \mathbf{- H}$ ($625 \mathrm{mg}, 2.00 \mathrm{mmol}, 1.00 \mathrm{eq}$.), N -bromosuccinimide ($392 \mathrm{mg}, 2.20 \mathrm{mmol}, 1.10 \mathrm{eq}$.), DMF (5 mL), and $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ (2 mL , to solubilize the starting material) were combined and allowed to stir at room temperature overnight. The crude reaction mixture was filtered through a silica gel plug, eluting with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$, and concentrated. The resulting solid was recrystallized from hot methanol to afford 4-bromo-2,3,5-triphenylthiophene (590 mg , 75%) as a pale yellow solid. Melting Point: $129^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.75$ $(\mathrm{dd}, \mathrm{J}=7,2 \mathrm{~Hz}, 2 \mathrm{H}), 7.49(\mathrm{pt}, \mathrm{J}=8 \mathrm{~Hz}, 2 \mathrm{H}), 7.36-7.44(\mathrm{~m}, 5 \mathrm{H}), 7.32(\mathrm{dd}, \mathrm{J}=8,2 \mathrm{~Hz}$, 2H), 7.23 (bs, 5H) ppm; ${ }^{13} \mathrm{C}$ NMR (125 MHz, CDCl_{3}): δ 139.4, 139.1, 137.2, 136.0, 133.7, 133.4, 130.9, 129.5, 128.9, 128.7, 128.6, 128.5, 128.4, 127.9, 127.8, 111.2 ppm. IR: $3058,3021,1598,1484,1446,1070,1029,914,846,754,695 \mathrm{~cm}^{-1}$. Anal. Calcd. for $\mathrm{C}_{22} \mathrm{H}_{15} \mathrm{BrS}: \mathrm{C}, 67.52$; H, 3.86; found: C, 67.56; H, 3.94.

dibromothiophene ($566 \mu \mathrm{~L}, 5.00 \mathrm{mmol}, 1.00 \mathrm{eq}$.), 1-naphthylboronic acid ($946 \mathrm{mg}, 5.50$ mmol, 1.10 eq.), $\mathbf{S 1 7}(85.0 \mathrm{mg}, 0.10 \mathrm{mmol}, 2 \%)$, XPhos ($48.0 \mathrm{mg}, 0.10 \mathrm{mmol}, 2 \%$), THF $(10 \mathrm{~mL})$, and $a q . \mathrm{K}_{3} \mathrm{PO}_{4}(0.5 \mathrm{M}, 20 \mathrm{~mL}, 10 \mathrm{mmol}, 2.0 \mathrm{eq}$.) were combined in a 100 mL roundbottom flask and allowed to stir at room temperature for 12 h . Purification of the crude reaction mixture by flash chromatography (hexanes) yielded 3-bromo-2-(1naphthyl)thiophene ($848 \mathrm{mg}, 59 \%$) as a white solid. The regioselectivity is assumed
based on that observed for the preparation of 3-bromo-2-phenylthiophene. Melting Point: $80{ }^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR $\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 7.93-7.98(\mathrm{~m}, 2 \mathrm{H}), 7.79-7.82(\mathrm{~m}, 1 \mathrm{H}), 7.43-7.58$ $(\mathrm{m}, 4 \mathrm{H}), 7.44(\mathrm{~d}, \mathrm{~J}=5 \mathrm{~Hz}), 7.19(\mathrm{~d}, \mathrm{~J}=5 \mathrm{~Hz}) \mathrm{ppm} ;{ }^{13} \mathrm{C} \mathrm{NMR}\left(125 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta$ $136.7,133.7,132.2,130.6,130.3,129.6,129.5,128.5,126.7,126.3,126.2,126.2,125.2$, 111.1 ppm. IR: 3040, 1591, 1503, 1385, 1341, 1146, 1014, 858, 794, 777, 708, 683, 617 cm^{-1}. Anal. Calcd. for $\mathrm{C}_{14} \mathrm{H}_{9} \mathrm{BrS}: \mathrm{C}, 58.25 ; \mathrm{H}, 3.14$; found: C, $58.69 ; \mathrm{H}, 3.28$.

$\mathrm{CH}_{2} \mathrm{Cl}_{2}(12 \mathrm{~mL})$ under an atmosphere of N_{2}. Concentrated $\mathrm{H}_{2} \mathrm{SO}_{4}(\sim 170 \mu \mathrm{~L}, \sim 3.00 \mathrm{mmol}$, ~ 1.00 eq.) was added dropwise, and the mixture was allowed to stir atroom temperaturefor 10 min . Next, 3-bromothiophene-2-carboxylic acid ($621 \mathrm{mg}, 3.00 \mathrm{mmol}$, 1.00 eq.) was added under a positive pressure of N_{2}, followed immediately by $t \mathrm{BuOH}$ ($1.4 \mathrm{~mL}, 15 \mathrm{mmol}, 5.0$ eq.). The reaction mixture was allowed to stir at room temperature for 12 h . At this time, saturated $a q . \mathrm{NaHCO}_{3}(10 \mathrm{~mL})$ was carefully added, followed by additional $\mathrm{CH}_{2} \mathrm{Cl}_{2}(20 \mathrm{~mL})$. The phases were separated, and the aqueous phase was extracted with additional $\mathrm{CH}_{2} \mathrm{Cl}_{2}(2 \times 20 \mathrm{~mL})$. The combined organic phases were washed with saturated $a q . \mathrm{NaHCO}_{3}(20 \mathrm{~mL}), \mathrm{H}_{2} \mathrm{O}(20 \mathrm{~mL})$, and brine $(20 \mathrm{~mL})$, dried over MgSO_{4}, filtered, and concentrated. The crude product mixture was purified by flash chromatography ($0 \rightarrow 5 \% \mathrm{EtOAc} /$ hexanes) to yield tert-butyl 3-bromothiophene-2carboxylate ($\mathbf{S} 2-\mathbf{B r}$) (308 mg, 39\%) as a pale yellow oil. ${ }^{1} \mathrm{H}$ NMR $\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta$ $2.67(\mathrm{~s}, 3 \mathrm{H}), 1.54(\mathrm{~s}, 9 \mathrm{H}) \mathrm{ppm} ;{ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 160.2,159.3$, 139.1,
127.7, 83.2, 28.3, 17.3 ppm . IR: 2978, 2931, 1714, 1697, 1532, 1401, 1368, 1331, 1303, 1255, 1163, 1090, 1050, 1015, 841, 827, $762 \mathrm{~cm}^{-1}$. Anal. Calcd. for $\mathrm{C}_{9} \mathrm{H}_{11} \mathrm{BrO}_{2} \mathrm{~S}: \mathrm{C}$, 41.08; H, 4.21; found: C, 41.33; H, 4.15.

General Procedure B. Thus, methyl 4-bromo-thiophene-2-carboxylate (1.00 g, 4.52 mmol, 1.00 eq.), phenylboronic acid ($827 \mathrm{mg}, 6.80 \mathrm{mmol}, 1.50 \mathrm{eq}$.$) , \mathbf{S 1 7}$ ($77.0 \mathrm{mg}, 0.09$ $\mathrm{mmol}, 2 \%)$, THF (4.5 mL), and $a q . \mathrm{K}_{3} \mathrm{PO}_{4}(1 \mathrm{M}, 9.0 \mathrm{~mL}, 9.0 \mathrm{mmol}, 2.0$ eq.) were combined in a Schlenk tube and allowed to stir at $60^{\circ} \mathrm{C}$ for 12 h . Purification of the crude reaction mixture by flash chromatography $(0 \rightarrow 2.5 \rightarrow 5 \% \mathrm{EtOAc} /$ hexanes $)$ yielded methyl 4-phenylthiophene-2-carboxylate ($689 \mathrm{mg}, 70 \%$) as an off-white solid. Melting Point: $95{ }^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 8.09(\mathrm{~d}, \mathrm{~J}=2 \mathrm{~Hz}, 1 \mathrm{H}), 7.65(\mathrm{~d}, \mathrm{~J}=2 \mathrm{~Hz}$, $1 \mathrm{H}), 7.59(\mathrm{~d}, \mathrm{~J}=7 \mathrm{~Hz}, 2 \mathrm{H}), 7.42(\mathrm{pt}, \mathrm{J}=8 \mathrm{~Hz}, 2 \mathrm{H}), 7.33(\mathrm{t}, \mathrm{J}=7 \mathrm{~Hz}, 1 \mathrm{H}), 3.92(\mathrm{~s}, 3 \mathrm{H})$ ppm; ${ }^{13} \mathrm{C}$ NMR (125 MHz, CDCl_{3}): $\delta 162.7,143.0,134.9,134.2,132.3,129.1,127.9$, 127.0, 126.4, 52.4 ppm. IR: 3099, 2950, 1705, 1547, 1440, 1259, 1205, 1084, 869, 853, 791, 748, 688, $628 \mathrm{~cm}^{-1}$. Anal. Calcd. for $\mathrm{C}_{12} \mathrm{H}_{10} \mathrm{O}_{2} \mathrm{~S}: \mathrm{C}, 66.03 ; \mathrm{H}, 4.62$; found: C , 65.93; H, 4.63.

21a-Br was prepared according to General Procedure A. Thus, 21a-H ($600 \mathrm{mg}, 2.75$ mmol, 1.00 eq.), N -bromosuccinimide ($684 \mathrm{mg}, 3.85 \mathrm{mmol}, 1.40$ eq.), and DMF (10 mL) were combined in a 25 mL roundbottom flask and allowed to stir at room temperature
overnight. Filtration of the crude reaction mixture through a silica gel plug, eluting with ether, was sufficient to provide methyl 5-bromo-4-phenylthiophene-2-carboxylate (770 $\mathrm{mg}, 94 \%$) as a pale yellow solid. Recrystallization from MeOH provided the desired material as an off-white solid. Melting Point: $80{ }^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$): δ $7.72(\mathrm{~s}, 1 \mathrm{H}), 7.54(\mathrm{~d}, \mathrm{~J}=9 \mathrm{~Hz}, 2 \mathrm{H}), 7.45(\mathrm{pt}, \mathrm{J}=9 \mathrm{~Hz}, 2 \mathrm{H}), 7.39(\mathrm{t}, \mathrm{J}=7 \mathrm{~Hz}, 1 \mathrm{H}), 3.90$ (s, 3) ppm; ${ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 161.8,142.4,134.7,134.2,133.1,128.7$, $128.6,128.3,116.5,52.5 \mathrm{ppm}$. IR: $3099,2950,1705,1547,1440,1259,1205,1084$, 869, 853, 791, 748, $688 \mathrm{~cm}^{-1}$. Anal. Calcd. for $\mathrm{C}_{12} \mathrm{H}_{9} \mathrm{BrO}_{2} \mathrm{~S}: \mathrm{C}, 48.50 ; \mathrm{H}, 3.05$; found: C, 48.59; H, 3.03.

21b-H was prepared according to General Procedure B. Thus, 2,4-dibromothiophene ($1.12 \mathrm{~mL}, 10.0 \mathrm{mmol}, 1.00 \mathrm{eq}$.$) , phenylboronic acid (3.05 \mathrm{~g}, 25.0 \mathrm{mmol}, 2.50 \mathrm{eq}.), \mathbf{S 1 7}$ ($169 \mathrm{mg}, 0.20 \mathrm{mmol}, 2 \%$), THF (10 mL), and aq. $\mathrm{K}_{3} \mathrm{PO}_{4}(1 \mathrm{M}, 20 \mathrm{~mL}, 10 \mathrm{mmol}, 3.0$ eq.) were combined in a 100 mL Schlenk tube and allowed to stir at $60{ }^{\circ} \mathrm{C}$ for 12 h . Purification of the crude reaction mixture by flash chromatography $(0 \rightarrow 1 \%$ EtOAc/hexanes) yielded a white solid that was $\sim 95 \%$ 21b-H, as judged by ${ }^{1} \mathrm{H}$ NMR. Recrystallization of this material from MeOH yielded 2,4-diphenylthiophene (1.88 g , 80%) as a white crystalline solid. Melting Point: $120^{\circ} \mathrm{C}$ (Lit. 124-125 ${ }^{\circ} \mathrm{C}$). ${ }^{34}{ }^{1} \mathrm{H}$ NMR (500 MHz, CDCl_{3}): $\delta 7.63-7.70(\mathrm{~m}, 4 \mathrm{H}), 7.62(\mathrm{~d}, \mathrm{~J}=2 \mathrm{~Hz}, 1 \mathrm{H}), 7.40-7.46(\mathrm{~m}, 5 \mathrm{H}), 7.31-$ 7.36 (m, 2H) ppm; ${ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 145.2,143.3,136.0,134.4,129.1$,
$129.0,127.8,127.4,126.4,126.0,122.5,119.8 \mathrm{ppm}$. IR: $3053,3037,1595,1481,1447$, $1365,1198,1155,1075,1028,965,910,885,834,751,734,691 \mathrm{~cm}^{-1}$. These spectra are consistent with those reported in the literature. ${ }^{35}$

21b-Br was prepared according to a modification of General Procedure A to prevent formation of dibrominated and regioisomeric monobrominated side products. 2,4diphenylthiophene ($945 \mathrm{mg}, 4.00 \mathrm{mmol}, 1.00 \mathrm{eq}$.) was dissolved in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(10 \mathrm{~mL})$ and DMF (10 mL) in a 50 mL roundbottom flask wrapped in aluminum foil. The flask was cooled to $0{ }^{\circ} \mathrm{C}$. N-bromosuccinimide ($1.07 \mathrm{~g}, 6.00 \mathrm{mmol}, 1.50 \mathrm{eq}$.) was added in one portion, and the reaction mixture was allowed to stir at $0{ }^{\circ} \mathrm{C}$ for 2.5 h . At this time, saturated aq. $\mathrm{Na}_{2} \mathrm{SO}_{3}(20 \mathrm{~mL})$ and ether $(20 \mathrm{~mL})$ were added, and the organic phase was carefully removed with the aid of a rotary evaporator. The resulting suspension was diluted with ether (20 mL), and the phases were separated. The aqueous phase was further extracted with ether $(2 \times 20 \mathrm{~mL})$, and the combined organic phases were washed with water $(2 \times 20 \mathrm{~mL})$ and brine $(20 \mathrm{~mL})$, dried over MgSO_{4}, filtered, and concentrated, to afford 2-bromo-3,5-diphenylthiophene ($1.18 \mathrm{~g}, 94 \%$) as a thick yellow oil that solidified upon standing at $0{ }^{\circ} \mathrm{C}$. Melting Point: $54-56{ }^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.62(\mathrm{dd}, \mathrm{J}=9,2 \mathrm{~Hz}, 2 \mathrm{H}), 7.57(\mathrm{dd}, \mathrm{J}=9,1 \mathrm{~Hz}, 2 \mathrm{H}), 7.47(\mathrm{t}, \mathrm{J}=8 \mathrm{~Hz}, 2 \mathrm{H}), 7.38-7.43$ $(\mathrm{m}, 3 \mathrm{H}), 7.34(\mathrm{tt}, \mathrm{J}=8,2 \mathrm{~Hz}, 1 \mathrm{H}), 7.25(\mathrm{~s}, 1 \mathrm{H}) \mathrm{ppm} ;{ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$): δ $144.3,142.3,131.2,133.6,129.3,128.7,128.6,128.2,127.9,125.7,124.8,107.9 \mathrm{ppm}$. IR: $3054,3023,1598,1505,1487,1446,1215,1072,1030,992,951,837,751,687 \mathrm{~cm}^{-1}$. Anal. Calcd. for $\mathrm{C}_{16} \mathrm{H}_{11} \mathrm{BrS}$: C, 60.96 ; $\mathrm{H}, 3.52$; found: C, 60.98 ; H, 3.59.

This procedure was adapted from the literature. ${ }^{12} \mathrm{Pd}(\mathrm{OAc})_{2}(90.0 \mathrm{mg}, 0.40 \mathrm{mmol}, 5 \%)$, tricyclohexylphosphine tetrafluoroborate ($220 \mathrm{mg}, 0.60 \mathrm{mmol}, 6 \%$), and $\mathrm{K}_{2} \mathrm{CO}_{3}(2.08 \mathrm{~g}$, $15.0 \mathrm{mmol}, 1.50$ eq.) were combined in a 100 mL Schlenk tube equipped with a stir bar. The tube was placed under high vacuum and backfilled with argon. This process was repeated a total of three times. The screw-cap was replaced with a septum, and benzo[b]thiophene ($1.17 \mathrm{~mL}, 10.0 \mathrm{mmol}, 1.00$ eq., warmed gently prior to use), bromobenzene ($1.05 \mathrm{~mL}, 10.0 \mathrm{mmol}, 1.00 \mathrm{eq}$.), pivalic acid ($345 \mu \mathrm{~L}, 3.00 \mathrm{mmol}, 0.30$ eq.), and DMA (25 mL) were added. The septum was replaced with the screw-cap, and the tube was placed in an oil bath pre-heated to $100^{\circ} \mathrm{C}$ and allow to stir for 12 h . At this time, the tube was cooled to room temperature, and the reaction mixture was diluted with hexanes $(50 \mathrm{~mL})$ and water $(50 \mathrm{~mL})$. The phases were separated, and the aqueous phase was further extracted with hexanes $(2 \times 25 \mathrm{~mL})$. The combined organic phases were washed with water $(2 \times 25 \mathrm{~mL})$ and brine $(25 \mathrm{~mL})$, dried over MgSO_{4}, filtered through a silica gel plug, eluting with hexanes, and concentrated. The resulting solid was recrystallized from hot hexanes to afford 2-phenylbenzo[b]thiophene (22a-H) (1.15 g, 55%) as an off-white solid. Melting Point: $172{ }^{\circ} \mathrm{C}\left(\right.$ Lit. $\left.168-169{ }^{\circ} \mathrm{C}\right) .{ }^{36}{ }^{1} \mathrm{H}$ NMR (500 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 7.84(\mathrm{~d}, \mathrm{~J}=8 \mathrm{~Hz}, 1 \mathrm{H}), 7.79(\mathrm{~d}, \mathrm{~J}=8 \mathrm{~Hz}, 1 \mathrm{H}), 7.74(\mathrm{~d}, \mathrm{~J}=8 \mathrm{~Hz}, 2 \mathrm{H})$, $7.56(\mathrm{~s}, 1 \mathrm{H}), 7.44(\mathrm{t}, \mathrm{J}=8 \mathrm{~Hz}, 2 \mathrm{H}), 7.30-7.38(\mathrm{~m}, 3 \mathrm{H}) \mathrm{ppm} ;{ }^{13} \mathrm{C}$ NMR (125 MHz , $\left.\mathrm{CDCl}_{3}\right): \delta 144.4,140.8,139.6,134.4,129.1,128.4,126.6,124.7,124.5,123.7,122.4$,
119.6 ppm. IR: 3052, 1486, 1446, 1427, 1335, 1194, 1071, 1028, 944, 825, 756, 724, $685 \mathrm{~cm}^{-1}$. These spectra are consistent with those reported in the literature. ${ }^{36}$

22a-Br was prepared according to General Procedure A. Thus, 22a-H (1.00 g, 4.76 mmol, 1.00 eq.), N -bromosuccinimide ($933 \mathrm{mg}, 5.24 \mathrm{mmol}, 1.10$ eq.), and DMF (10 mL) were combined in a 50 mL roundbottom flask and allowed to stir at room temperature for 12 h . Purification of the crude reaction mixture by filtration through a silica gel plug, eluting with ether, followed by recrystallization of the resulting solid from MeOH , provided 3-bromo-2-phenylbenzo[b]thiophene ($1.27 \mathrm{~g}, 92 \%$) as a pale yellow solid. Melting Point: $62{ }^{\circ} \mathrm{C}\left(\right.$ Lit. $\left.62-63{ }^{\circ} \mathrm{C}\right) .{ }^{37}{ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.91(\mathrm{~d}, \mathrm{~J}=8 \mathrm{~Hz}$, $1 \mathrm{H}), 7.83(\mathrm{~d}, \mathrm{~J}=8 \mathrm{~Hz}, 1 \mathrm{H}), 7.79(\mathrm{dd}, \mathrm{J}=9,2 \mathrm{~Hz}, 2 \mathrm{H}), 7.41-7.47(\mathrm{~m}, 2 \mathrm{H}) \mathrm{ppm} ;{ }^{13} \mathrm{C}$ NMR (125 MHz, CDCl_{3}): $\delta 139.9,138.9,137.2,134.0,130.1,128.7,128.2,124.9,123.0$, $121.8,113.4$ ppm. IR: $3055,3021,1600,1481,1443,1431,1299,1249,1015,886,794$, $743,723,686 \mathrm{~cm}^{-1}$. These spectra are consistent with those reported in the literature. ${ }^{37}$

22b-H was prepared according to General Procedure D. Thus, benzo[b]furan ($576 \mu \mathrm{~L}$, $5.20 \mathrm{mmol}, 1.30 \mathrm{eq}$.$) , THF (10 \mathrm{~mL}$), $n \operatorname{BuLi}(2.5 \mathrm{M}$ in hexanes, $2.28 \mathrm{~mL}, 5.72 \mathrm{mmol}, 1.43$ eq.), ZnCl_{2} (1.9 M in $2 \mathrm{MeTHF}, 3.28 \mathrm{~mL}, 6.24 \mathrm{mmol}, 1.56$ eq.), bromobenzene ($420 \mu \mathrm{~L}$, $4.00 \mathrm{mmol}, 1.00 \mathrm{eq}$.$) , S17 (72.8 \mathrm{mg}, 0.08 \mathrm{mmol}, 2 \%$), and XPhos ($38.4 \mathrm{mg}, 0.08 \mathrm{mmol}$, 2%) were combined and allowed to stir atroom temperaturefor 12 h . Purification of the
crude reaction mixture by flash chromatography (hexanes) afforded 2phenylbenzo[b]furan ($\mathbf{2 2 b} \mathbf{- H}$) ($492 \mathrm{mg}, 60 \%$) as a fluffy white solid. Melting Point: 120 ${ }^{\circ} \mathrm{C}$ (Lit. 118-119). ${ }^{38}{ }^{1} \mathrm{H}$ NMR (500 MHz, CDCl_{3}): $\delta 7.88$ (dd, $\mathrm{J}=8,2 \mathrm{~Hz}, 2 \mathrm{H}$), 7.60 (ddd, $\mathrm{J}=8,2,1 \mathrm{~Hz}, 1 \mathrm{H}), 7.54(\mathrm{~d}, \mathrm{~J}=8 \mathrm{~Hz}, 1 \mathrm{H}), 7.46(\mathrm{pt}, \mathrm{J}=8 \mathrm{~Hz}, 2 \mathrm{H}), 7.36(\mathrm{tt}, \mathrm{J}=8,1 \mathrm{~Hz}$, 1H), 7.22-7.32 (m, 2H) ppm; ${ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 156.0,155.0,130.6,129.3$, $128.9,128.7,125.1,124.4,123.1,121.0,111.3,101.4 \mathrm{ppm}$. IR: $3035,1491,1470,1455$, $1441,1259,1208,1169,1105,1038,1020,919,882,806,762,739,689,646 \mathrm{~cm}^{-1}$. These spectra are consistent with those reported in the literature. ${ }^{38}$
$\mathbf{2 2 b}-\mathbf{B r}$ was prepared according to a modified General Procedure A. Thus, 22b-H (1.30 $\mathrm{g}, 6.69 \mathrm{mmol}, 1.00 \mathrm{eq}$.), N -bromosuccinimide ($1.52 \mathrm{~g}, 8.70 \mathrm{mmol}, 1.30 \mathrm{eq}$.), DMF (15 $\mathrm{mL})$ and $\mathrm{CH}_{2} \mathrm{Cl}_{2}(15 \mathrm{~mL}$, to solubilize the starting material) were combined in a 100 mL roundbottom flask and allowed to stir at room temperature for 12 h . At this time, the $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ was removed with the aid of a rotary evaporator. The resulting solution was diluted with water (30 mL) and ether (30 mL), and the phases were separated. The aqueous phase was further extracted with ether $(2 \times 30 \mathrm{~mL})$. The combined organic phases were washed with water $(2 \times 30 \mathrm{~mL})$ and brine (30 mL), dried over MgSO_{4}, filtered, and concentrated. The resulting yellow oil was purified by flash chromatography (hexanes) to afford 3-bromo-2-phenylbenzo[b]furan (1.33 g, 73\%) as a colorless oil that solidified to a white solid upon standing at $0{ }^{\circ} \mathrm{C}$. Melting Point: $63{ }^{\circ} \mathrm{C}\left(\right.$ Lit. $\left.62-63{ }^{\circ} \mathrm{C}\right) .{ }^{39}$ ${ }^{1} \mathrm{H} \operatorname{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 8.19(\mathrm{dd}, \mathrm{J}=8,1 \mathrm{~Hz}, 2 \mathrm{H}), 7.58(\mathrm{ddd}, \mathrm{J}=8,2,1 \mathrm{~Hz}, 1 \mathrm{H})$, 7.48-7.53 (m, 3H), $7.43(\mathrm{tt}, \mathrm{J}=8,1 \mathrm{~Hz}, 1 \mathrm{H}), 7.31-7.39(\mathrm{~m}, 2 \mathrm{H}) \mathrm{ppm} ;{ }^{13} \mathrm{C}$ NMR (125 $\mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 153.3,150.4,129.7,129.7,1299.2,128.7,126.9,125.7,123.6,120.0$,
$111.4,94.0$ ppm. IR: $3060,1490,1452,1442,1254,1205,1082,1065,1029,986,890$, $820,763,738,686,581 \mathrm{~cm}^{-1}$. These spectra are consistent with those reported in the literature. ${ }^{39}$

22c-H was prepared according to General Procedure D. Thus, 1-(phenylsulfonyl)-1Hindole ($1.42 \mathrm{~g}, 5.50 \mathrm{mmol}, 1.10 \mathrm{eq}$.$) , THF (10 \mathrm{~mL}$), $n \operatorname{BuLi}(2.5 \mathrm{M}$ in hexanes, 2.42 mL , $6.05 \mathrm{mmol}, 1.21 \mathrm{eq}.), \mathrm{ZnCl}_{2}(1.9 \mathrm{M}$ in $2 \mathrm{MeTHF}, 3.47 \mathrm{~mL}, 6.60 \mathrm{mmol}, 1.32$ eq.), bromobenzene ($527 \mu \mathrm{~L}, 5.00 \mathrm{mmol}, 1.00 \mathrm{eq}$.$) , \mathbf{S 1 7}$ ($84.6 \mathrm{mg}, 0.10 \mathrm{mmol}, 2 \%$), XPhos ($47.7 \mathrm{mg}, 0.10 \mathrm{mmol}, 2 \%$) were combined and allowed to stir at room temperature for 12 h. The crude reaction mixture was purified by flash chromatography ($2.5 \rightarrow 5 \%$ EtOAc/hexanes); all of the fractions containing $\mathbf{2 2 c} \mathbf{c} \mathbf{H}$ were collected and concentrated to afford a yellow solid, which was recrystallized from hot MeOH to afford 2-phenyl-1-(phenylsulfonyl)-1H-indole ($936 \mathrm{mg}, 56 \%$) as an off-white solid. Melting Point: 95-97 ${ }^{\circ} \mathrm{C}\left(\right.$ Lit. $\left.103-104{ }^{\circ} \mathrm{C}\right) .{ }^{40}{ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 8.33(\mathrm{~d}, \mathrm{~J}=9 \mathrm{~Hz}, 1 \mathrm{H}), 7.35-7.52$ $(\mathrm{m}, 10 \mathrm{H}), 7.24-7.30(\mathrm{~m}, 3 \mathrm{H}), 6.56(\mathrm{~d}, \mathrm{~J}=1 \mathrm{~Hz}, 1 \mathrm{H}) \mathrm{ppm} ;{ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 142.2,138.4,137.6,133.7,132.4,130.7,130.5,128.8,128.7,127.7,126.9,125.0$, 124.5, 120., 116.8, 113.9 ppm. IR: 3057, 1449, 1372, 11070, 1089, 1049, 979, 836, 761, 732, 698, $682,635 \mathrm{~cm}^{-1}$. These spectra are consistent with those reported in the literature. ${ }^{40}$
$\mathbf{2 2 c}-\mathbf{B r}$ was prepared according to General Procedure A. Thus, 22c-H (400 mg, 1.20 mmol, 1.00 eq.), N -bromosuccinimide ($235 \mathrm{mg}, 1.32 \mathrm{mmol}, 1.10 \mathrm{eq}$.), and DMF (5.0 mL) were combined at room temperature and allowed to stir overnight. The crude reaction mixture was filtered through a silica gel plug, eluting with ether, and concentrated to yield a red foam. Trituration of this foam with cold $\mathrm{MeOH}(4 \mathrm{~mL})$ resulted in precipitation of a white solid from solution. The resulting non-homogenous mixture was filtered, and the filtrate was washed with cold $\mathrm{MeOH}(2 \times 2 \mathrm{~mL})$ to afford 3-bromo-2-phenyl-1-(phenylsulfonyl)-1H-indole (376 mg, 76\%) as a white solid. Melting Point: $109-111{ }^{\circ} \mathrm{C}\left(\right.$ Lit. $\left.107-108{ }^{\circ} \mathrm{C}\right) .{ }^{41}{ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 8.36(\mathrm{~d}, \mathrm{~J}=8 \mathrm{~Hz}, 1 \mathrm{H})$, 7.36-7.53 (m, 11H), $7.30(\mathrm{pt}, \mathrm{J}=7 \mathrm{~Hz}, 2 \mathrm{H}) \mathrm{ppm} ;{ }^{13} \mathrm{C}$ NMR (125 MHz, $\left.\mathrm{CDCl}_{3}\right): \delta 137.7$, 137.7, 134.0, 131.7, 130.0, 129.9, 129.4, 129.0, 127.7, 127.0, 126.3, 124.9, 120.1, 116.3, 104.0 ppm . IR: 3066, 1446, 1373, 1183, 1121, 1086, 1009, 770, 751, 731, 684, 632, 589 cm^{-1}. These spectra are consistent with those reported in the literature. ${ }^{41}$

23-H was prepared according to General Procedure B. Thus, 3-bromobenzo[b]thiophene ($1.31 \mathrm{~mL}, 10.0 \mathrm{mmol}, 1.00 \mathrm{eq}$.$) , phenylboronic acid (1.46 \mathrm{~g}, 12.0 \mathrm{mmol}, 1.20 \mathrm{eq}$.$) , S17$ ($170 \mathrm{mg}, 0.20 \mathrm{mmol}, 2 \%$), THF (10 mL), aq. $\mathrm{K}_{3} \mathrm{PO}_{4}(2 \mathrm{M}, 10 \mathrm{~mL}, 20 \mathrm{mmol}, 2$ eq.) were combined in a 100 mL roundbottom flask and allowed to stir at room temperature for 12 h. Purification of the crude reaction mixture by flash chromatography (hexanes) provided 3-phenylbenzo[b]thiophene ($1.85 \mathrm{~g}, 88 \%$). ${ }^{1} \mathrm{H}$ NMR $\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta$
7.95-7.99 (m, 2H), 7.62-7.65 (m, 2H), 7.53 (pt, J = $10 \mathrm{~Hz}, 2 \mathrm{H}), ~ 7.42-7.47(\mathrm{~m}, 4 \mathrm{H}) \mathrm{ppm}$; ${ }^{13}{ }^{1} \mathrm{CNMR}\left(125 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 140.8,138.2,138.0,136.1,128.9,128.8,127.7,124.5$, $124.5,123.5,123.0 \mathrm{ppm}$. IR: $3055,1600,1524,1483,1441,1425,1347,1259,1073$, $1061,1027,940,914,833,760,729,696,637,573 \mathrm{~cm}^{-1}$. These spectra are consistent with those reported in the literature. ${ }^{42}$
$\mathbf{2 3 - B r}$ was prepared according to General Procedure B. Thus, $\mathbf{2 3 - H}(1.05 \mathrm{~g}, 5.00 \mathrm{mmol}$, 1.00 eq.), N-bromosuccinimide ($979 \mathrm{mg}, 5.50 \mathrm{mmol}, 1.10 \mathrm{eq}$.), and DMF (10 mL) were combined in a 50 mL roundbottom flask and allowed to stir at room temperature for 12 h . Purification of the crude reaction mixture by filtration through a silica gel plug, eluting with hexanes, provided 2-bromo-3-phenylbenzo[b]thiophene ($511 \mathrm{mg}, 35 \%$) as a white solid. Melting Point: $72{ }^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.79$ (ddd, $\mathrm{J}=8,2,1 \mathrm{~Hz}$, $1 \mathrm{H}), 7.47-7.61(\mathrm{~m}, 7 \mathrm{H}), 7.32-7.40(\mathrm{~m}, 2 \mathrm{H}) \mathrm{ppm} ;{ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 139.9$, $138.9,137.2,134.0,130.1,1128.7,128.2,124.9,123.0,121.8,113.4 \mathrm{ppm} . \operatorname{IR}: 3052$, $1598,1482,1455,1440,1427,1332,1259,1153,1130,1071,1027,990,886,858,758$, 729, 710, 696, 640, $609 \mathrm{~cm}^{-1}$. Anal. Calcd. for $\mathrm{C}_{14} \mathrm{H}_{9} \mathrm{BrS}: \mathrm{C}, 58.15 ; \mathrm{H}, 3.14$; found: C, 58.42; H, 3.25.

S3b-Br was prepared according to General Procedure A. Thus, 3methylbenzo[b]thiophene ($1.96 \mathrm{~g}, 11.0$
$\mathrm{mmol}, 1.10 \mathrm{eq}$.$) , and DMF (10 \mathrm{~mL}$) were combined in a 50 mL roundbottom flask and allowed to stir at room temperature for 12 h . Purification of the crude reaction mixture
by filtration through a silica gel plug, eluting with hexanes, provided 2-bromo-3methylbenzo[b]thiophene ($1.86 \mathrm{~g}, 82 \%$) as a colorless oil. ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.71-7.74(\mathrm{~m}, 1 \mathrm{H}), 7.62-7.65(\mathrm{~m}, 1 \mathrm{H}), 7.31-7.39(\mathrm{~m}, 2 \mathrm{H}), 2.39(\mathrm{~d}, \mathrm{~J}=1 \mathrm{~Hz}, 3 \mathrm{H}) \mathrm{ppm} ;$ ${ }^{13}{ }^{1} \mathrm{CNMR}\left(125 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 139.7,139.0,131.9,124.6,124.6,121.9,121.8,112.6$, 13.2 ppm. IR: $3060,2914,2853,1936,1899,1779,1569,1530,1458,1425,1377,1256$, $1136,1097,1052,1011,944,747,724,707,604,585 \mathrm{~cm}^{-1}$. These spectra are consistent with those reported in the literature. ${ }^{43}$

S6a-H was prepared according to General Procedure B. Thus, methyl 5-bromofuran-2carboxylate ($820 \mathrm{mg}, 4.00 \mathrm{mmol}, 1.00 \mathrm{eq}$.), phenylboronic acid ($731 \mathrm{mg}, 6.00 \mathrm{mmol}$, 1.50 eq.), S17 ($67.7 \mathrm{mg}, 0.08 \mathrm{mmol}, 2 \%$), THF (4 mL), and $a q . \mathrm{K}_{3} \mathrm{PO}_{4}(1 \mathrm{M}, 8.0 \mathrm{~mL}, 8.0$ $\mathrm{mmol}, 2.0$ eq.) were combined in a 50 mL Schlenk flask and allowed to stir at $60{ }^{\circ} \mathrm{C}$ overnight. Purification of the crude reaction mixture by flash chromatography $(0 \rightarrow 2.5$ $\rightarrow 5 \% \mathrm{EtOAc} /$ hexanes) yielded methyl 5-phenylfuran-2-carboxylate ($666 \mathrm{mg}, 82 \%$) as a white solid. Melting Point: $66^{\circ} \mathrm{C}\left(\right.$ Lit. $\left.58-60^{\circ} \mathrm{C}\right) .{ }^{44}{ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.78$ (dd, J = 9, $1 \mathrm{~Hz}, 2 \mathrm{H}), 7.40-7.44(\mathrm{~m}, 2 \mathrm{H}), 7.35(\mathrm{tt}, \mathrm{J}=8,2 \mathrm{~Hz}, 1 \mathrm{H}), 7.25(\mathrm{~d}, \mathrm{~J}=4 \mathrm{~Hz}, 1 \mathrm{H})$, $6.74(\mathrm{~d}, \mathrm{~J}=4 \mathrm{~Hz}, 1 \mathrm{H}), 3.92(\mathrm{~s}, 3 \mathrm{H}) \mathrm{ppm} ;{ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$): δ 159.3, 157.7, 143.7, 129.6, 129.1, 128.9, 124.9, 120.2, 107.0, 52.0 ppm. IR: 3124, 3030, 2954, 1713, $1525,1475,1452,1434,1374,1308,1276,1224,1196,1145,1035,989,917,811,797$, $758,764,670 \mathrm{~cm}^{-1}$. These spectra are consistent with those reported in the literature. ${ }^{44}$

S6a-Br was prepared according to General Procedure C. Thus, S6a-H (408 mg, 2.00 mmol, 1.00 eq.), $\mathrm{Br}_{2}(412 \mu \mathrm{~L}, 8.00 \mathrm{mmol}, 4.00 \mathrm{eq}$.$) , and DMF (10 \mathrm{~mL}$) were combined
and allowed to stir at $0{ }^{\circ} \mathrm{C}$ for 30 min . Purification of the crude reaction mixture by filtration through a silica gel plug, eluting with ether, provided 4-bromo-5-phenylfuran-2carboxylate ($461 \mathrm{mg}, 82 \%$) as a white solid. Melting Point: $89{ }^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR $(500 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}\right): \delta 8.05(\mathrm{dd}, \mathrm{J}=7,2 \mathrm{~Hz}, 2 \mathrm{H}), 7.46(\mathrm{pt}, \mathrm{J}=7 \mathrm{~Hz}, 2 \mathrm{H}), 7.41(\mathrm{tt}, \mathrm{J}=8,2 \mathrm{~Hz}, 1 \mathrm{H})$, $7.26(\mathrm{~s}, 1 \mathrm{H}), 3.92(\mathrm{~s}, 3 \mathrm{H}) \mathrm{ppm} ;{ }^{13} \mathrm{C}$ NMR (125 MHz, CDCl_{3}): $\delta 158.5,152.5,142.8$, 129.5, 128.7, 128.7, 126.6, 123.4, 97.2, 52.3 ppm. IR: 3128, 2953, 2845, 1723, 1568, $1532,1473,1444,1368,1303,1196,1116,990,956,881,798,772,758,688,665 \mathrm{~cm}^{-1}$. Anal. Calcd. for $\mathrm{C}_{12} \mathrm{H}_{9} \mathrm{BrO}_{3}$: C, 51.27; H, 3.23; found: C, 51.00 ; H, 3.31.
 stir bar and wrapped in aluminum foil was charged with 2,5-diphenylfuran ($220 \mathrm{mg}, 1.00$ $\mathrm{mmol}, 1.00$ eq.). $\mathrm{CHCl}_{3}(6 \mathrm{~mL})$ was added, followed by N -bromosuccinimide (214 mg , $1.20 \mathrm{mmol}, 1.20$ eq.), and the reaction mixture was allowed to stir at room temperature for 12 h . The solvent was removed, and the resulting solid was partitioned between $\mathrm{Et}_{2} \mathrm{O}$ $(10 \mathrm{~mL})$ and water $(10 \mathrm{~mL})$. The phases were separated, and the aqueous phase was further extracted with $\mathrm{Et}_{2} \mathrm{O}(2 \times 10 \mathrm{~mL})$. The combined organic phases were washed with brine (10 mL), dried over MgSO_{4}, and filtered through a silica gel plug, eluting with $\mathrm{Et}_{2} \mathrm{O}$. The solvent was removed in vacuo, and the resulting yellow solid was recrystallized from hot MeOH , which yielded 3-bromo-2,5-diphenylfuran ($127 \mathrm{mg}, 43 \%$) as a pale orange solid. Melting Point: $82{ }^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR $\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 8.06(\mathrm{~d}, \mathrm{~J}=$ $6 \mathrm{~Hz}, 2 \mathrm{H}), 7.71$ (d, J = $7 \mathrm{~Hz}, 2 \mathrm{H}), 7.40-7.49$ (m, 4H), 7.30-7.38 (m, 2H), 6.79 (s, 1H)
ppm; ${ }^{13} \mathrm{C}$ NMR (125 MHz, CDCl_{3}): $\delta 152.8,148.2,129.9,129.8,129.0,128.7,128.3$, $128.1,125.6,124.0,111.5,98.1 \mathrm{ppm}$. IR: $3125,3055,2981,1589,1448,1193,1068$, 1053, 1034, 953, 911, 802, 757, 685, $662 \mathrm{~cm}^{-1}$. Anal. Calcd. for $\mathrm{C}_{16} \mathrm{H}_{11} \mathrm{BrO}: \mathrm{C}, 64.24 ; \mathrm{H}$, 3.71; found: C, 64.21; H, 3.84.

$\mathbf{S 7 - B r}$ was prepared according to General Procedure A. Thus, 2ethylbenzo[b]furan (292 mg, 2.00
mmol, 1.00 eq.$)$, N -bromosuccinimide ($463 \mathrm{mg}, 2.60 \mathrm{mmol}, 1.30 \mathrm{eq}$.$) , and DMF (2.0 \mathrm{~mL}$) were combined in a 10 mL roundbottom flask and allowed to stir at room temperature overnight. ${ }^{45}$ Purification of the crude reaction mixture by flash chromatography (hexanes) afforded 3-bromo-2-ethylbenzo[b]furan ($185 \mathrm{mg}, 41 \%$) as a colorless oil. ${ }^{1} \mathrm{H}$ NMR (500 MHz, CDCl_{3}): $\delta 7.40-7.47(\mathrm{~m}, 2 \mathrm{H}), 7.27-7.31(\mathrm{~m}, 2 \mathrm{H}), 2.87(\mathrm{q}, \mathrm{J}=8 \mathrm{~Hz}, 2 \mathrm{H})$, $1.34(\mathrm{t}, \mathrm{J}=8 \mathrm{~Hz}, 3 \mathrm{H}) \mathrm{ppm} ;{ }^{13} \mathrm{C}$ NMR (125 MHz, $\left.\mathrm{CDCl}_{3}\right): \delta 156.8,153,5,128.5,124.5$, 123.2, 119.2, 111.2, 93.5 ppm . IR: 2975, 2939, 2877, 1599, 1450, 1261, 1173, 1106, 1010, 999, 838, $739 \mathrm{~cm}^{-1}$. HRMS (ESI) m/z calcd. for $\mathrm{C}_{10} \mathrm{H}_{8} \mathrm{BrO}\left[\mathrm{M}-\mathrm{H}^{+}, \mathrm{M}+2-\mathrm{H}^{+}\right]$: 222.9753, 224.9738; found: 222.9779, 224.9759.
 phenylthiazole ${ }^{12}$ ($611 \mathrm{mg}, 2.87 \mathrm{mmol}, 1.00$ eq.), N-bromosuccinimide ($668 \mathrm{mg}, 3.73$ mmol, 1.30 eq.), and DMF (5 mL) were combined and allowed to stir at room temperature for 12 h . The crude reaction mixture was filtered through a silica gel plug,
eluting with ether, and concentrated. The resulting oil was further purified by flash chromatography (2\% EtOAc/hexanes) to afford 4-bromo-2-iso-butyl-5-phenylthiazole ($714 \mathrm{mg}, 84 \%$) as a pale yellow oil. ${ }^{1} \mathrm{H} \operatorname{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 7.62(\mathrm{dd}, \mathrm{J}=9,2 \mathrm{~Hz}$, $2 \mathrm{H}), 7.36-7.45(\mathrm{~m}, 3 \mathrm{H}), 2.86(\mathrm{~d}, \mathrm{~J}=8 \mathrm{~Hz}, 2 \mathrm{H}), 2.13($ nonet, $\mathrm{J}=7 \mathrm{~Hz}, 1 \mathrm{H}), 1.03(\mathrm{~d}, \mathrm{~J}=7$ $\mathrm{Hz}, 6 \mathrm{H}) \mathrm{ppm} ;{ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 169.8,132.4,130.5,129.2,128.8,128.7$, $121.0,42.7,29.9,22.4 \mathrm{ppm} . \operatorname{IR}: 2956,2928,2868,1519,1480,1386,1206,1157,1066$, 965, 853, 755, $692 \mathrm{~cm}^{-1}$. Anal. Calcd. for $\mathrm{C}_{13} \mathrm{H}_{14} \mathrm{BrNS}: \mathrm{C}, 52.71 ; \mathrm{H}, 4.76$; found: C , 52.98; H, 4.78.

24b-H was prepared according to General Procedure D, followed by hydrolysis. Thus, 2-(1,1-dimethoxyethyl)thiazole ${ }^{46}(1.13 \mathrm{~g}, 6.50 \mathrm{mmol}, 1.30$ eq. $)$, THF $(13 \mathrm{~mL}), n \mathrm{BuLi}(2.5$ M in hexanes, $2.86 \mathrm{~mL}, 7.15 \mathrm{mmol}, 1.43 \mathrm{eq}.), \mathrm{ZnCl}_{2}$ (1.9 M in $2 \mathrm{MeTHF}, 4.11 \mathrm{~mL}, 7.80$ mmol, 1.56 eq.), bromobenzene ($525 \mu \mathrm{~L}, 5.00 \mathrm{mmol}, 1.00 \mathrm{eq}.), \mathbf{S 1 7}$ ($84.6 \mathrm{mg}, 0.10$ $\mathrm{mmol}, 2 \%)$ and XPhos ($47.7 \mathrm{mg}, 0.10 \mathrm{mmol}, 2 \%$) were combined and allowed to stir atroom temperaturefor 12 h . After workup and concentration, the crude product was dissolved in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(30 \mathrm{~mL})$ in a 100 mL roundbottom flask equipped with a stir bar. Then, $1 \mathrm{M} \mathrm{HCl}(30 \mathrm{~mL})$ was added, and the reaction mixture was allowed to vigorously stir atroom temperaturefor 12 h . At this time, the reaction mixture was carefully neutralized with saturated $a q . \mathrm{NaHCO}_{3}(\sim 50 \mathrm{~mL})$, and the phases were separated. The aqueous phase was further extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(2 \times 30 \mathrm{~mL})$. The combined organic phases were dried over MgSO_{4}, filtered, and concentrated. This material was further
purified by flash chromatography ($5 \rightarrow 10 \rightarrow 15 \%$ EtOAc/hexanes); all of the fractions containing the desired product were collected and concentrated to yield a pale yellow solid. This solid was triturated with cold hexanes and filtered to afford 2-acetyl-5phenylthiazole ($735 \mathrm{mg}, 72 \%$) as a white solid. Melting Point: $124{ }^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR (300 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 8.14(\mathrm{~s}, 1 \mathrm{H}), 7.61-7.65(\mathrm{~m}, 2 \mathrm{H}), 7.40-7.49(\mathrm{~m}, 3 \mathrm{H}), 2.72(\mathrm{~s}, 3 \mathrm{H}) \mathrm{ppm} ;$
${ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 191.8,165.6,147.2,140.3,130.6,129.7,129.5,127.3$, 25.8 ppm . IR: $3088,3026,1674,1574,1520,1451,1421,1397,1357,1282,1181,1160$, 1055, 1019, 933, 876, 758, 687, 662, $592 \mathrm{~cm}^{-1}$. Anal. calcd. for $\mathrm{C}_{11} \mathrm{H}_{9}$ NOS: C, 65.00; H, 4.46; found: C, 64.56, H, 4.52.
$\mathbf{2 4 b}-\mathbf{B r}$ was prepared according to General Procedure C. Thus, 24b-H ($406 \mathrm{mg}, 2.00$ mmol, 1.00 eq.), $\mathrm{Br}_{2}(412 \mu \mathrm{~L}, 8.00 \mathrm{mmol}, 4.00$ eq.), and DMF (5.0 mL) were combined at $0^{\circ} \mathrm{C}$ and allowed to stir atroom temperaturefor 12 h . The crude product mixture was filtered through a silica gel plug, eluting with ether, and concentrated. The resulting solid was recrystallized from hot methanol to afford 2-acetyl-4-bromo-5-phenylthiazole (222 $\mathrm{mg}, 39 \%$) as a white solid. Melting Point: $99{ }^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.63-$ $7.70(\mathrm{~m}, 2 \mathrm{H}), 7.42-7.51(\mathrm{~m}, 3 \mathrm{H}), 2.71(\mathrm{~s}, 3 \mathrm{H}) \mathrm{ppm} ;{ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 190.8$, $164.3,142.2,129.9,129.5,129.4,129.0,123.9,25.7$ ppm. IR: $3037,1684,1508,1446$, 1403, 1354, 1275, 1223, 1055, 1000, 935, 852, 751, 610, $596 \mathrm{~cm}^{-1}$. HRMS (ESI) m/z calcd. for $\mathrm{C}_{11} \mathrm{H}_{9} \operatorname{BrNOS}\left(\mathrm{M}+\mathrm{H}^{+}, \mathrm{M}+2+\mathrm{H}^{+}\right)$: 281.9583, 283.9563; found: 281.9583, 283.9549.

25-H was prepared according to General Procedure B. Thus, 2-bromo-4-phenylthiazole ($720 \mathrm{mg}, 3.00 \mathrm{mmol}, 1.00 \mathrm{eq}$.), phenylboronic acid ($549 \mathrm{mg}, 4.50 \mathrm{mmol}, 1.50 \mathrm{eq}$.), S17 $(102 \mathrm{mg}, 0.12 \mathrm{mmol}, 4 \%)$, THF (3.0 mL), and $a q . \mathrm{K}_{3} \mathrm{PO}_{4}(1 \mathrm{M}, 6.0 \mathrm{~mL}, 6.0 \mathrm{mmol}, 2.0$ eq.) were combined in a 50 mL Schlenk tube and allowed to stir at $60^{\circ} \mathrm{C}$ overnight. Purification of the crude reaction mixture by flash chromatography $(0 \rightarrow 2 \%$ EtOAc/hexanes) afforded 2,4-diphenylthiazole ($640 \mathrm{mg}, 90 \%$) as a white crystalline solid. Melting Point: $92{ }^{\circ} \mathrm{C}\left(\right.$ Lit. $\left.91-92{ }^{\circ} \mathrm{C}\right) .{ }^{47}{ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 8.06(\mathrm{dd}, \mathrm{J}=9,2$ $\mathrm{Hz}, 2 \mathrm{H}), 8.01(\mathrm{dd}, \mathrm{J}=9,2 \mathrm{~Hz}, 2 \mathrm{H}), 7.43-7.49(\mathrm{~m}, 6 \mathrm{H}), 7.37(\mathrm{tt}, \mathrm{J}=8,1 \mathrm{~Hz}, 1 \mathrm{H}) \mathrm{ppm} ;{ }^{13} \mathrm{C}$ NMR (125 MHz, CDCl_{3}): $\delta 168.0,156.4,134.6,133.8,130.2,129.0,128.9,128.3,126.7$, 126.6, 112.8 ppm . IR: 3116, 3047, 1479, 1443, 1070, 1056, 1027, 974, 921, 837, 757, $733,714,686,671,595 \mathrm{~cm}^{-1}$. These spectra are consistent with those reported in the literature. ${ }^{47}$
$\mathbf{2 5 - B r}$ was prepared according to General Procedure A. Thus, 25-H ($500 \mathrm{mg}, 2.11 \mathrm{mmol}$, 1.00 eq.), N -bromosuccinimide ($450 \mathrm{mg}, 2.53 \mathrm{mmol}, 1.20$ eq.), and DMF (5.0 mL) were combined and allowed to stir at $40^{\circ} \mathrm{C}$ for 12 h . Purification of the crude reaction mixture by filtration through a silica gel plug, eluting with ether, followed by recrystallization of the resulting solid from MeOH , afforded 5-bromo-2,4-diphenylthiazole ($540 \mathrm{mg}, 81 \%$) as a white solid. Melting Point: $88{ }^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 8.04(\mathrm{~d}, \mathrm{~J}=8 \mathrm{~Hz}$, $2 \mathrm{H}), 7.94(\mathrm{dd}, \mathrm{J}=7,2 \mathrm{~Hz}, 2 \mathrm{H}), 7.40-7.51(\mathrm{~m}, 6 \mathrm{H}) \mathrm{ppm} ;{ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$): δ
$167.3,153.3,133.6,133.2,130.7,129.2,128.8,128.7,128.5,126.4,103.5 \mathrm{ppm} . \operatorname{IR}:$ $3064,1477,1443,1271,1245,1068,997,975,907,857,757,710,676,633,598 \mathrm{~cm}^{-1}$. Anal. Calcd. for $\mathrm{C}_{15} \mathrm{H}_{10} \mathrm{BrNS}: \mathrm{C}, 56.97$; $\mathrm{H}, 3.19$; found: C, $56.88 ; \mathrm{H}, 3.28$.

26a-Br was prepared according to General Procedure E. Thus, 4-bromo-3-phenyl-1 H pyrazole ($223 \mathrm{mg}, 1.00 \mathrm{mmol}, 1.00$ eq.), triethylamine ($420 \mu \mathrm{~L}, 3.00 \mathrm{mmol}, 3.00$ eq.), trityl chloride ($420 \mathrm{mg}, 1.50 \mathrm{mmol}, 1.50$ eq.), and $\mathrm{CH}_{2} \mathrm{Cl}_{2}(2.0 \mathrm{~mL})$ were combined in a 10 mL roundbottom flask and allowed to stir at room temperature overnight. The crude reaction mixture was purified by filtration through a silica gel plug, eluting with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$, and concentrated to a minimal volume of $\mathrm{CH}_{2} \mathrm{Cl}_{2}(\sim 5 \mathrm{~mL})$. This solution was slowly triturated with methanol, which resulted in precipitation of a white crystalline solid from solution. Filtration of the non-homogenous mixture and washing the resulting solid with cold methanol $(2 \times 5 \mathrm{~mL})$ afforded 4 -bromo-3-phenyl-1-trityl-1H-pyrazole (398 mg, 69%) as a white crystalline solid. Melting Point: $182-184{ }^{\circ} \mathrm{C}\left(\right.$ Lit. $\left.181-183{ }^{\circ} \mathrm{C}\right) .{ }^{13}{ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.94$ (dd, $\mathrm{J}=7,2 \mathrm{~Hz}, 1 \mathrm{H}), 7.221-7.43(\mathrm{~m}, 20 \mathrm{H}) \mathrm{ppm} ;{ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$): δ 148.4, $142.9,134.5,132.4,130.4,128.3,128.1,128.0,127.9,127.8,91.1,79.6 \mathrm{ppm} . \operatorname{IR}: 3129$, $3059,1604,1490,1446,1363,1186,1161,1111,1086,1030,1000,903,871,813,749$, $693,654,642 \mathrm{~cm}^{-1}$. These spectra are consistent with those reported in the literature. ${ }^{13}$

26b-H was prepared using a procedure was adapted from the literature. ${ }^{48}$ Copper (I) iodide ($38.0 \mathrm{mg}, 0.20 \mathrm{mmol}, 10 \%$), $\mathrm{K}_{2} \mathrm{CO}_{3}(580 \mathrm{mg}, 4.20 \mathrm{mmol}, 2.10 \mathrm{eq}$.$) , 3-phenyl-1 \mathrm{H}$ pyrazole ($346 \mathrm{mg}, 2.40 \mathrm{mmol}, 1.20 \mathrm{eq}$), and 1-iodo-4-nitrobenzene ($498 \mathrm{mg}, 2.00 \mathrm{mmol}$, 1.00 eq.) were combined in a reaction tube equipped with a stir bar. The tube was placed under high vacuum and backfilled with argon. This process was repeated a total of three times. Then, (\pm)-trans-1,2-diaminocyclohexane ($96.0 \mu \mathrm{~L}, 0.40 \mathrm{mmol}, 20 \%$) and $1,4-$ dioxane $(4.0 \mathrm{~mL})$ were added to the tube. The cap was replaced with one that had not been punctured, and the tube was placed in an oil bath that had been pre-heated to $130{ }^{\circ} \mathrm{C}$ and allowed to stir for 12 h . At this time, the reaction mixture was cooled to room temperature and diluted with EtOAc $(10 \mathrm{~mL})$. The reaction mixture was filtered through a silica gel plug, eluting with EtOAc, and concentrated, to afford 1-(4-nitrophenyl)-3-phenyl-1H-pyrazole ($300 \mathrm{mg}, 57 \%$) as a yellow solid. Melting Point: $169-171{ }^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR (500 MHz, CDCl_{3}): $\delta 8.35(\mathrm{dt}, \mathrm{J}=9,3 \mathrm{~Hz}, 2 \mathrm{H}), 8.07(\mathrm{~d}, \mathrm{~J}=3 \mathrm{~Hz}, 1 \mathrm{H}), 7.91-7.97$ $(\mathrm{m}, 4 \mathrm{H}), 7.47(\mathrm{t}, \mathrm{J}=8 \mathrm{~Hz}, 2 \mathrm{H}), 7.39(\mathrm{tt}, \mathrm{J}=8,1 \mathrm{~Hz}, 1 \mathrm{H}), 6.88(\mathrm{~d}, \mathrm{~J}=3 \mathrm{~Hz}, 1 \mathrm{H}) \mathrm{ppm} ;{ }^{13} \mathrm{C}$ NMR (125 MHz, CDCl_{3}): $\delta 154.7,145.4,144.5,132.3,128.9,128.4,126.2,125.6,118.4$, 107.1 ppm . IR: $3143,3120,1599,1534,1509,1456,1394,1364,1329,1308,1286$, $1183,1111,1045,951,855,840,751,746,691,683 \mathrm{~cm}^{-1}$. Anal. Calcd. for $\mathrm{C}_{15} \mathrm{H}_{11} \mathrm{~N}_{3} \mathrm{O}_{2}$: C, 67.92; H, 4.18; found: C, 67.63; H, 4.25.

26b-Br was prepared according to General Procedure A. Thus, 26b-H (265 mg, 1.00 mmol, 1.00 eq.), N -bromosuccinimide ($196 \mathrm{mg}, 1.10 \mathrm{mmol}, 1.10 \mathrm{eq}$.$) , and DMF (4.0 \mathrm{~mL}$) were combined in a 25 mL roundbottom flask and allowed to stir at room temperature for 12 h . Purification of the crude reaction mixture by filtration through a silica gel plug, eluting with ether, afforded 1-(4-nitrophenyl)-3-phenyl-1H-pyrazole ($263 \mathrm{mg}, 76 \%$) as a golden yellow solid. Melting Point: $169{ }^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 8.34(\mathrm{~d}, \mathrm{~J}=$ $9,2 \mathrm{~Hz}, 2 \mathrm{H}), 8.12(\mathrm{~s}, 1 \mathrm{H}), 8.00(\mathrm{dt}, \mathrm{J}=7,1 \mathrm{~Hz}, 2 \mathrm{H}), 7.89(\mathrm{dt}, \mathrm{J}=10,3 \mathrm{~Hz}, 2 \mathrm{H}), 7.43-$ $7.51(\mathrm{~m}, 3 \mathrm{H}) \mathrm{ppm} ;{ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$): δ 151.7, 145.8, 143.6, 131.0, 129.2, 129.1, 128.6, 127.9, 125.6, 118.3, 96.6 ppm. IR: 3151, 1598, 1509, 1448, 1394, 1332, $1310,1227,1183,1111,1058,970,950,843,796,767,474,680 \mathrm{~cm}^{-1}$. Anal. Calcd. for $\mathrm{C}_{15} \mathrm{H}_{10} \mathrm{BrN}_{3} \mathrm{O}_{2}$: C, 52.35; H, 2.93; found: C, 52.36; H, 2.99.
 eq.), triethylamine ($0.80 \mathrm{~mL}, 6.00 \mathrm{mmol}, 2.00 \mathrm{eq}$.), 4-toluenesulfonyl chloride (630 mg , $3.30 \mathrm{mmol}, 1.10 \mathrm{eq}$.$) , and \mathrm{CH}_{2} \mathrm{Cl}_{2}(10 \mathrm{~mL})$ were combined and allowed to stir at room temperature overnight. Purification of the crude reaction mixture by filtration through a silica gel plug, eluting with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$, afforded 4-bromo-3-phenyl-1-(4-toluenesulfonyl)$1 H$-pyrazole ($1.05 \mathrm{~g}, 93 \%$) as a white solid. Melting Point: $111-113{ }^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR (500 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 8.19(\mathrm{~s}, 1 \mathrm{H}), 7.94(\mathrm{~d}, \mathrm{~J}=9 \mathrm{~Hz}, 2 \mathrm{H}), 7.83-7.86(\mathrm{~m}, 2 \mathrm{H}), 7.39-7.44(\mathrm{~m}$, $3 \mathrm{H}), 7.34(\mathrm{~d}, \mathrm{~J}=9 \mathrm{~Hz}, 2 \mathrm{H}), 2.42(\mathrm{~s}, 3 \mathrm{H}) \mathrm{ppm} ;{ }^{13} \mathrm{C} \operatorname{NMR}\left(125 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 154.2$, 146.4 133.6, 132.4, 130.3, 130.3, 129.5, 128.5, 128.5, 128.3, $96.8,21.9$ ppm. IR: 3126,
$3056,1594,1531,1590,1440,1381,1301,1175,1149,1071,981,816,764,693,671$, 591, $567 \mathrm{~cm}^{-1}$. Anal. Calcd. for $\mathrm{C}_{16} \mathrm{H}_{13} \mathrm{BrN}_{2} \mathrm{O}_{2} \mathrm{~S}: \mathrm{C}, 50.94$; $\mathrm{H}, 3.47$; found: C, 51.09 ; H , 3.52.

triethylamine ($1.40 \mathrm{~mL}, 10.0 \mathrm{mmol}, 2.00 \mathrm{eq}$.$) , 4-toluenesulfonyl chloride (1.05 \mathrm{~g}, 5.50$ mmol, 1.10 eq.), and $\mathrm{CH}_{2} \mathrm{Cl}_{2}(30 \mathrm{~mL})$ were combined and allowed to stir at room temperature overnight. Purification of the crude reaction mixture by filtration through a silica gel plug, eluting with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$, afforded 4-bromo-3,5-dimethyl-1-(4-toluenesulfonyl)- 1 H -pyrazole ($1.26 \mathrm{~g}, 76 \%$) as a white solid. Melting Point: $130-133{ }^{\circ} \mathrm{C}$. ${ }^{1} \mathrm{H} \operatorname{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 7.82(\mathrm{~d}, \mathrm{~J}=9 \mathrm{~Hz}, 2 \mathrm{H}), 7.30(\mathrm{~d}, \mathrm{~J}=8 \mathrm{~Hz}, 2 \mathrm{H}), 2.49(\mathrm{~s}$, $3 \mathrm{H}), 2.40(\mathrm{~s}, 3 \mathrm{H}), 2.20(\mathrm{~s}, 3 \mathrm{H}), 1.16(\mathrm{~d}, \mathrm{~J}=7 \mathrm{~Hz}, 12 \mathrm{H}) \mathrm{ppm} ;{ }^{13} \mathrm{C}$ NMR (125 MHz , $\left.\mathrm{CDCl}_{3}\right): \delta 152.1,145.8,141.1,134.7,130.1,127.8,101.0,21.8,12.9,12.3 \mathrm{ppm} . \mathrm{IR}:$ $2930,1592,1562,1449,1386,1368,1296,1188,1175,1141,1058,1015,975,813,779$, $702,668,604,585 \mathrm{~cm}^{-1}$. Anal. Calcd. for $\mathrm{C}_{12} \mathrm{H}_{13} \mathrm{BrN}_{2} \mathrm{O}_{2} \mathrm{~S}: \mathrm{C}, 43.78 ; \mathrm{H}, 3.98$; found: C, 44.01; H, 4.00.
 bromo-3,5-dimethyl-1 H-pyrazole ($525 \mathrm{mg}, 3.00 \mathrm{mmol}, 1.00$ eq.), triethylamine (0.80 mL ,
$6.00 \mathrm{mmol}, 2.00$ eq.), 2,4,6-triisopropylphenyl-1-sulfonyl chloride ($1.00 \mathrm{~g}, 3.30 \mathrm{mmol}$, 1.10 eq.), and $\mathrm{CH}_{2} \mathrm{Cl}_{2}(10 \mathrm{~mL})$ were combined and allowed to stir at room temperature overnight. Purification of the crude reaction mixture by flash chromatography $(0 \rightarrow 20$ $\rightarrow 40 \rightarrow 60 \% \quad \mathrm{CH}_{2} \mathrm{Cl}_{2} /$ hexanes $) \quad$ afforded 4 -bromo-3,5-dimethyl-1-(2,4,6-triisopropylphenyl-1-sulfonyl)-1H-pyrazole ($157 \mathrm{mg}, 12 \%$) as an oil that solidified to a white solid upon standing at $0{ }^{\circ} \mathrm{C}$. Melting Point: $68-70{ }^{\circ} \mathrm{C}$. ${ }^{1} \mathrm{H}$ NMR (500 MHz , $\left.\mathrm{CDCl}_{3}\right): \delta 7.19(\mathrm{~s}, 2 \mathrm{H}), 4.13($ septet, $\mathrm{J}=7 \mathrm{~Hz}, 2 \mathrm{H}), 2.92($ septet, $\mathrm{J}=7 \mathrm{~Hz}, 1 \mathrm{H}), 2.39(\mathrm{~s}$, $3 \mathrm{H}), 2.20(2,3 \mathrm{H}), 1.26(\mathrm{~d}, \mathrm{~J}=7 \mathrm{~Hz}, 6 \mathrm{H}) \mathrm{ppm} ;{ }^{13} \mathrm{C} \mathrm{NMR}\left(125 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 155.0$, $152.2,150.1,140.1,124.3,99.8,34.3,29.8,24.6,23.6,12.8,11.9 \mathrm{ppm} . \operatorname{IR}: 2958,2929$, $2866,1595,1558,1425,1373,1343,1299,1176,1141,1115,1062,1034,977,879,784$, 672, $588 \mathrm{~cm}^{-1}$. Anal. Calcd. for $\mathrm{C}_{20} \mathrm{H}_{29} \mathrm{BrN}_{2} \mathrm{O}_{2} \mathrm{~S}: \mathrm{C}, 54.42$; $\mathrm{H}, 6.62$; found: C, 54.62; H , 6.71.
 $9.00 \mathrm{mmol}, 4.00 \mathrm{eq}$.) and flame-dried under high vacuum. The flask was backfilled with nitrogen, and anhydrous $\mathrm{CH}_{2} \mathrm{Cl}_{2}(15 \mathrm{~mL})$ was added. Concentrated $\mathrm{H}_{2} \mathrm{SO}_{4}(\sim 128 \mu \mathrm{~L}$, $\sim 2.25 \mathrm{mmol}, \sim 1.00 \mathrm{eq}$.) was added dropwise, and the mixture was allowed to stir at for 10 min. Next, 2-bromo-4-methylthiazole-5-carboxylic acid ($500 \mathrm{mg}, 2.25 \mathrm{mmol}, 1.00 \mathrm{eq}$.) was added under a positive pressure of N_{2}, followed immediately by $t \mathrm{BuOH}(1.05 \mathrm{~mL}$, $11.3 \mathrm{mmol}, 5.00$ eq.). The reaction mixture was allowed to stir at room temperature for 12 h . At this time, saturated aq. $\mathrm{NaHCO}_{3}(10 \mathrm{~mL})$ was carefully added, followed by
additional $\mathrm{CH}_{2} \mathrm{Cl}_{2}(20 \mathrm{~mL})$. The phases were separated, and the aqueous phase was extracted with additional $\mathrm{CH}_{2} \mathrm{Cl}_{2}(2 \times 20 \mathrm{~mL})$. The combined organic extracts were washed with saturated $a q . \mathrm{NaHCO}_{3}(20 \mathrm{~mL}), \mathrm{H}_{2} \mathrm{O}(20 \mathrm{~mL})$, and brine $(20 \mathrm{~mL})$, dried over MgSO_{4}, filtered, and concentrated. The crude product mixture was purified by flash chromatography ($5 \% \mathrm{EtOAc} /$ hexanes) to yield tert-butyl 2-bromo-4-methylthiazole-5carboxylate ($\mathbf{2 7} \mathbf{c}-\mathbf{B r}$) ($334 \mathrm{mg}, \mathbf{5 3 \%}$) as a pale yellow solid. Melting Point: $48{ }^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 2.67(\mathrm{~s}, 3 \mathrm{H}), 1.54(\mathrm{~s}, 9 \mathrm{H}) \mathrm{ppm} ;{ }^{13} \mathrm{C}$ NMR (125 MHz , CDCl_{3}): $\delta 160.2,159.3,139.1,127.7,83.2,28.3,17.3 \mathrm{ppm}$. IR: $2978,2931,1714,1697$, $1532,1401,1368,1331,1303,1255,1163,1090,1050,1015,841,827,762 \mathrm{~cm}^{-1}$. HRMS (ESI) m/z calcd. for $\mathrm{C}_{9} \mathrm{H}_{13} \mathrm{BrNO}_{2} \mathrm{~S}\left(\mathrm{M}+\mathrm{H}^{+}, \mathrm{M}+2+\mathrm{H}^{+}\right):$277.9845, 279.9825; found: $277.9833,279.9817$.

mmol, 1.00 eq.), $\mathrm{K}_{2} \mathrm{CO}_{3}(415 \mathrm{mg}, 3.00 \mathrm{mmol}, 1.50 \mathrm{eq}$.), and tetrabutylammonium iodide ($148 \mathrm{mg}, 0.40 \mathrm{mmol}, 0.20 \mathrm{eq}$.). The tube was placed under high vacuum and backfilled with nitrogen. Next, benzyl bromide ($262 \mu \mathrm{~L}, 2.20 \mathrm{mmol}, 1.10 \mathrm{eq}$.) and EtOH (5.0 mL) were added, and the reaction mixture was placed in an oil bath that had been preheated to $80^{\circ} \mathrm{C}$ and allowed to vigorously stir for 12 h . The reaction mixture was allowed to cool to room temperature and diluted with water $(10 \mathrm{~mL})$ and EtOAc $(10 \mathrm{~mL})$. The phases were separated, and the aqueous phase was further extracted with EtOAc $(2 \times 10 \mathrm{~mL})$. The combined organic phases were washed with water $(10 \mathrm{~mL})$ and brine $(10 \mathrm{~mL})$, dried
over MgSO_{4}, filtered, and concentrated. The resulting yellow oil was purified by flash chromatography ($20 \rightarrow 40 \%$ EtOAc/hexanes) to afford a colorless oil, which was triturated with a minimal amount of ether, resulting in precipitation of a white solid from solution. The non-homogenous mixture was filtered, and the filtrate was washed with cold ether $(2 \times 5 \mathrm{~mL})$ to afford 1-benzyl-2-bromo-4-nitro-1 H-pyrazole ($\mathbf{2 8 b} \mathbf{- B r}$) (248 mg , 44%) as a white solid. Melting Point: $91-93{ }^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.70$ (s, $1 \mathrm{H}), 7.40-7.44(\mathrm{~m}, 3 \mathrm{H}), 7.23-7.26(\mathrm{~m}, 2 \mathrm{H}), 5.17(\mathrm{~s}, 2 \mathrm{H}) \mathrm{ppm} ;{ }^{13} \mathrm{C}$ NMR (125 MHz , CDCl_{3}): $\delta 133.1,129.6,129.5,128.1,121.5,120.7,52.8 \mathrm{ppm} . \operatorname{IR}: 3152,3112,1535$, $1504,1443,1393,1370,1337,1279,1179,1160,1136,1090,1079,992,824,781,753$, $709 \mathrm{~cm}^{-1}$. Anal. Calcd. for $\mathrm{C}_{10} \mathrm{H}_{8} \mathrm{BrN}_{3} \mathrm{O}_{2}$: C, 42.58; H, 2.86; found: C, $42.59 ; \mathrm{H}, 2.91$.

Synthesis of heteroaryl fluorides.

General Procedure for Pd-catalyzed fluorination reactions.

In a nitrogen-filled glovebox, an oven-dried screw-cap reaction tube equipped with a stir bar was charged (in this order) with silver fluoride ($26 \mathrm{mg}, 0.20 \mathrm{mmol}, 2.00$ eq.), additive ($0.05 \mathrm{mmol}, 0.50 \mathrm{eq}$), $\mathbf{P 1 - 3}(4.0 \mathrm{mg}, 2 \%)$, aryl bromide ($0.10 \mathrm{mmol}, 1.00$ eq.), and solvent (1.0 mL). The tube was capped, removed from the glovebox, and placed in an oil bath that had been pre-heated to $130^{\circ} \mathrm{C}$ and allowed to vigorously stir for 14 h (Caution: perform behind a barrier such as a blast shield!). At this time, the tube was allowed to cool to room temperature, and 1-fluoronaphthalene ($20 \mu \mathrm{~L}, 1.55 \mathrm{eq}$.) was added. The reaction mixture was analyzed directly by ${ }^{19} \mathrm{~F}$ NMR. Afterwards, the reaction mixture was filtered through a silica gel plug, eluting with EtOAc, and analyzed by GC (or GC/MS).

General Procedure F. Large scale Pd-catalyzed fluorination reactions.

For cases in which the reaction proceeded to full conversion on 0.5 mmol scale, the heteroaryl fluoride was prepared and isolated on this scale. In a nitrogen-filled glovebox, an oven-dried screw-cap reaction tube equipped with a stir bar was charged with silver fluoride ($127 \mathrm{mg}, 1.00 \mathrm{mmol}, 2.00 \mathrm{eq}$.), potassium fluoride ($14.5 \mathrm{mg}, 0.25$ mmol, 0.50 eq.$), \mathbf{P} 3(19.5 \mathrm{mg}, 0.01 \mathrm{mmol}, 2 \%)$, heteroaryl bromide ($0.50 \mathrm{mmol}, 1.00 \mathrm{eq}$.$) ,$ and solvent (5.0 mL). The tube was capped, removed from the glovebox, and placed in an oil bath that had been pre-heated to $130^{\circ} \mathrm{C}$ and allowed to vigorously stir for 14 h (Caution: perform behind a barrier such as a blast shield!). At this time, the tube was allowed to cool to room temperature, and the reaction mixture was diluted with EtOAc
$(10 \mathrm{~mL})$, and filtered through a pad of celite, eluting with EtOAc $(20 \mathrm{~mL})$. The resulting solution was concentrated, and the crude reaction mixture was purified by flash chromatography.

20f was prepared according to General Procedure F. Thus, 20f-Br ($187 \mathrm{mg}, 0.50 \mathrm{mmol}, 1.00$ eq.), silver fluoride $(127 \mathrm{mg}, 1.00 \mathrm{mmol}$, 2.00 eq.), potassium fluoride ($14.5 \mathrm{mg}, 0.25 \mathrm{mmol}, 0.50 \mathrm{eq}$.), P3 (19.5 $\mathrm{mg}, 0.01 \mathrm{mmol}, 2 \%)$, and toluene (5.0 mL) were combined and allowed to stir at $130^{\circ} \mathrm{C}$ for 14 h . Purification of the crude reaction mixture by flash chromatography ($5 \rightarrow 10 \%$ $\mathrm{Et}_{2} \mathrm{O} /$ hexanes) afforded 4-fluoro-5-phenyl- N, N-diethylthiophene-2-sulfonamide (146 mg , 93%) as a yellow oil contaminated with $<5 \%$ of a second fluorothiophene with the same mass as the desired product (likely 3-fluoro-5-phenyl- N, N-diethylthiophene-2sulfonamide). ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.62(\mathrm{~d}, \mathrm{~J}=8 \mathrm{~Hz}, 2 \mathrm{H})$, 7.41-7.49 (m, 2H), 7.37 (tt, J = $8 \mathrm{~Hz}, 2 \mathrm{~Hz}, 1 \mathrm{H}), 7.31(\mathrm{~s}, 1 \mathrm{H}), 3.29(\mathrm{bq}, \mathrm{J}=8 \mathrm{~Hz}, 4 \mathrm{H}), 1.22(\mathrm{bt}, \mathrm{J}=7 \mathrm{~Hz}, 6 \mathrm{H})$ ppm; ${ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 152.0(\mathrm{~d}, \mathrm{~J}=264 \mathrm{~Hz}), 136.1,134.8,128.9-129.9$ (m), $127.3(\mathrm{~d}, \mathrm{~J}=5 \mathrm{~Hz}), 121.9(\mathrm{~d}, \mathrm{~J}=27 \mathrm{~Hz}), 43.0,14.5 \mathrm{ppm} ;{ }^{19} \mathrm{~F}$ NMR (470 MHz , CDCl_{3}): $\delta-126.3 \mathrm{ppm}$ (a minor contaminant was detected at -126.4 ppm). IR: 2975, 2937, 2873, 1724, 1557, 1443, 1386, 1340, 1201, 1145, 1024, 984, 934, 839, 758, 725, 697, $583 \mathrm{~cm}^{-1}$. HRMS (ESI) m/z calcd. for $\mathrm{C}_{14} \mathrm{H}_{17} \mathrm{FNO}_{2} \mathrm{~S}_{2}\left(\mathrm{M}+\mathrm{H}^{+}\right): 314.0679$; found: 314.0661.

20g
$\mathbf{2 0 g}$ was prepared according to General Procedure F. Thus, $\mathbf{2 0 g} \mathbf{- B r}$ $(169 \mathrm{mg}, 0.50 \mathrm{mmol}, 1.00 \mathrm{eq}$.$) , silver fluoride (127 \mathrm{mg}, 1.00 \mathrm{mmol}$,
2.00 eq.), potassium fluoride ($14.5 \mathrm{mg}, 0.25 \mathrm{mmol}, 0.50 \mathrm{eq}.), \mathbf{P} 3(19.5 \mathrm{mg}, 0.01 \mathrm{mmol}$, 2%), and TBME (5.0 mL) were combined and allowed to stir at $130{ }^{\circ} \mathrm{C}$ for 14 h . Purification of the crude reaction mixture by flash chromatography (10 $\rightarrow 20 \%$ EtOAc/hexanes) afforded 4-fluoro-5-phenyl- N, N-diethylthiophene-2-carboxamide (131 $\mathrm{mg}, 94 \%$) as a yellow solid. Melting Point: $47{ }^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.65$ $(\mathrm{dd}, \mathrm{J}=9,2 \mathrm{~Hz}, 2 \mathrm{H}), 7.41(\mathrm{pt}, \mathrm{J}=8 \mathrm{~Hz}), 7.33(\mathrm{tt}, \mathrm{J}=7 \mathrm{~Hz}, 1 \mathrm{H}), 7.11(\mathrm{bs}, 1 \mathrm{H}), 3.56(\mathrm{bq}, \mathrm{J}$ $=7 \mathrm{~Hz}, 4 \mathrm{H}), 1.28(\mathrm{bt}, \mathrm{J}=7 \mathrm{~Hz}, 6 \mathrm{H}) \mathrm{ppm} ;{ }^{13} \mathrm{C} \operatorname{NMR}\left(125 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 162.5,152.0$ $(\mathrm{d}, \mathrm{J}=261 \mathrm{~Hz}), 133.8(\mathrm{~d}, \mathrm{~J}=7 \mathrm{~Hz}),, 130.5(\mathrm{~d}, \mathrm{~J}=4 \mathrm{~Hz}), 129.1,128.3(\mathrm{~d}, \mathrm{~J}=1 \mathrm{~Hz}), 127.2$ $(\mathrm{d}, \mathrm{J}=5 \mathrm{~Hz}), 125.2(\mathrm{~d}, \mathrm{~J}=11 \mathrm{~Hz}), 119.3(\mathrm{~d}, \mathrm{~J}=27 \mathrm{~Hz}), \sim 42(\mathrm{bs}), \sim 13(\mathrm{bs}) \mathrm{ppm} ;{ }^{19} \mathrm{~F}$ NMR (470 MHz, CDCl_{3}): δ-127.4 ppm. IR: 2970, 2931, 2871, 1599, 1575, 1522, 1468, $1428,1390,1363,1335,1311,1283,1259,1169,1087,1058,1007,981,939,905,854$, 829, 759, 728, 684, $641 \mathrm{~cm}^{-1}$. Anal. Calcd. for $\mathrm{C}_{15} \mathrm{H}_{16}$ FNOS: C, 64.96; H, 5.81; found: C, 64.90; H, 5.91.
 $\mathrm{mg}, 0.01 \mathrm{mmol}, 2 \%)$, and TBME (5.0 mL) were combined and allowed to stir at $130^{\circ} \mathrm{C}$ for 14 h . Purification of the crude reaction mixture by flash chromatography ($2 \rightarrow 4 \%$ $\mathrm{Et}_{2} \mathrm{O} /$ hexanes) afforded methyl 5-fluoro-4-phenylthiophene-2-carboxylate ($115 \mathrm{mg}, 97 \%$) as a pale yellow solid contaminated with 4% of the corresponding reduction product 21aH (confirmed by ${ }^{1} \mathrm{H}$ NMR and GC/MS analysis), which could not be readily separated from the desired product by flash chromatography. Melting Point: $57{ }^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR (500
$\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 7.80(\mathrm{~d}, \mathrm{~J}=5 \mathrm{~Hz}), 7.59(\mathrm{dd}, \mathrm{J}=8,1 \mathrm{~Hz}, 2 \mathrm{H}), 7.44(\mathrm{pt}, \mathrm{J}=8 \mathrm{~Hz}, 2 \mathrm{H})$, $7.34(\mathrm{tt}, \mathrm{J}=8,2 \mathrm{~Hz}, 1 \mathrm{H}), 3.90(\mathrm{~s}, 3 \mathrm{H}) \mathrm{ppm} ;{ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 164.4(\mathrm{~d}, \mathrm{~J}=$ $298 \mathrm{~Hz}), 162.4,131.7(\mathrm{~d}, \mathrm{~J}=2 \mathrm{~Hz}), 131.4(\mathrm{~d}, \mathrm{~J}=4 \mathrm{~Hz}), 129.0,128.0(\mathrm{~d}, \mathrm{~J}=1 \mathrm{~Hz}), 127.4$ $(\mathrm{d}, \mathrm{J}=4 \mathrm{~Hz}), 123.6(\mathrm{~d}, \mathrm{~J}=5 \mathrm{~Hz}), 120.2(\mathrm{~d}, \mathrm{~J}=4 \mathrm{~Hz}), 52.5 \mathrm{ppm} ;{ }^{19} \mathrm{~F}$ NMR (470 MHz , $\left.\mathrm{CDCl}_{3}\right): \delta-123.4 \mathrm{ppm} . \operatorname{IR}: 3063,2954,1711,1603,1585,1569,1469,1443,1374,1257$, 1127, 1073, 956, 892, 870, 764, 743, 725, 689, $613 \mathrm{~cm}^{-1}$. HRMS (ESI) m/z calcd. for $\mathrm{C}_{12} \mathrm{H}_{10} \mathrm{FO}_{2} \mathrm{~S}\left(\mathrm{M}+\mathrm{H}^{+}\right): 237.0380$; found: 237.0389.

22b

22b was prepared according to General Procedure F. Thus, 22b-Br (137 $\mathrm{mg}, 0.50 \mathrm{mmol}, 1.00 \mathrm{eq}$.$) , silver fluoride (127 \mathrm{mg}, 1.00 \mathrm{mmol}, 2.00 \mathrm{eq}$.$) ,$ potassium fluoride ($14.5 \mathrm{mg}, 0.25 \mathrm{mmol}, 0.50$ eq.), $\mathbf{P} 3(19.5 \mathrm{mg}, 0.01$ $\mathrm{mmol}, 2 \%$), and TBME (5.0 mL) were combined and allowed to stir at $130^{\circ} \mathrm{C}$ for 14 h . Purification of the crude reaction mixture by flash chromatography (hexanes) afforded 3-fluoro-2-phenylbenzo[b]furan ($93 \mathrm{mg}, 88 \%$) as a white solid. Melting Point: $61{ }^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR (500 MHz, CDCl_{3}): $\delta 7.93(\mathrm{~d}, \mathrm{~J}=9 \mathrm{~Hz}, 2 \mathrm{H}), 7.62(\mathrm{~d}, \mathrm{~J}=9 \mathrm{~Hz}, 1 \mathrm{H}), 7.46-7.52(\mathrm{~m}$, 3H), 7.25-7.38 (m, 3H) ppm; ${ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 151.3(\mathrm{~d}, \mathrm{~J}=9 \mathrm{~Hz}), 144.7$ $(\mathrm{d}, \mathrm{J}=256 \mathrm{~Hz}), 138.2(\mathrm{~d}, \mathrm{~J}=20 \mathrm{~Hz}), 128.9,128.8(\mathrm{~d}, \mathrm{~J}=5 \mathrm{~Hz}), 128.3(\mathrm{~d}, \mathrm{~J}=2 \mathrm{~Hz})$, $125.5(\mathrm{~d}, \mathrm{~J}=1 \mathrm{~Hz}), 124.9(\mathrm{~d}, \mathrm{~J}=6 \mathrm{~Hz}), 123.123 .4,120.8(\mathrm{~d}, \mathrm{~J}=19 \mathrm{~Hz}), 117.8(\mathrm{~d}, \mathrm{~J}=3$ HZ), 111.9 (d, $\mathrm{J}=2 \mathrm{~Hz}$) ppm; ${ }^{19} \mathrm{~F}$ NMR ($470 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta-170.4 \mathrm{ppm}$. IR: 3063, $1631,1497,1454,1443,1390,1258,1210,1136,1112,1073,1028,1007,913,895,830$,
$768,743,688,654,615 \mathrm{~cm}^{-1}$. Anal. Calcd. for $\mathrm{C}_{14} \mathrm{H}_{9} \mathrm{FO}: \mathrm{C}, 79.23$; H, 4.27; found: C, 79.17; H, 4.35.

27c

27c was prepared according to General Procedure F. Thus, 27c-Br ($139 \mathrm{mg}, 0.50 \mathrm{mmol}, 1.00$ eq.), silver fluoride $(127 \mathrm{mg}, 1.00 \mathrm{mmol}$, 2.00 eq.), potassium fluoride ($14.5 \mathrm{mg}, 0.25 \mathrm{mmol}, 0.50 \mathrm{eq}.), \mathbf{P} 3(19.5 \mathrm{mg}, 0.01 \mathrm{mmol}$, 2%), and toluene (5.0 mL) were combined and allowed to stir at $130{ }^{\circ} \mathrm{C}$ for 14 h . Purification of the crude reaction mixture by flash chromatography ($5 \% \mathrm{Et}_{2} \mathrm{O} /$ hexanes) afforded tert-butyl 2-fluoro-4-methylthiazole-5-carboxylate ($73 \mathrm{mg}, 67 \%$) as a yellow oil. ${ }^{1} \mathrm{H} \operatorname{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 2.58(\mathrm{~s}, 3 \mathrm{H}), 1.55(\mathrm{~s}, 9 \mathrm{H}) \mathrm{ppm} ;{ }^{13} \mathrm{C}$ NMR (125 MHz, $\left.\mathrm{CDCl}_{3}\right): \delta 170.2(\mathrm{~d}, \mathrm{~J}=286 \mathrm{~Hz}), 160.8,154.1(\mathrm{~d}, \mathrm{~J}=14 \mathrm{~Hz}), 120.4(\mathrm{~d}, \mathrm{~J}=2 \mathrm{~Hz}), 83.1$, 28.3, $17.4 \mathrm{ppm} ;{ }^{19} \mathrm{~F}$ NMR ($470 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta-74.4 \mathrm{ppm}$. IR (in CDCl_{3}): 2981, 1702, 1557, 1493, 1370, 1343, 1313, 1241, 1166, 905, 728, $650 \mathrm{~cm}^{-1}$. Anal. Calcd. for $\mathrm{C}_{9} \mathrm{H}_{12} \mathrm{FNO}_{2} \mathrm{~S}: \mathrm{C}, 49.75$; H, 5.57; found: C, 49.63 ; H, 5.62.

29 was prepared according to General Procedure F. Thus, 8bromocaffeine ($137 \mathrm{mg}, 0.50 \mathrm{mmol}, 1.00 \mathrm{eq}$.), silver fluoride (127 mg , $1.00 \mathrm{mmol}, 2.00 \mathrm{eq}$.$) , potassium fluoride (14.5 \mathrm{mg}, 0.25 \mathrm{mmol}, 0.50$ eq.), P3 ($19.5 \mathrm{mg}, 0.01 \mathrm{mmol}, 2 \%$), and toluene (5.0 mL) were combined and allowed to stir at $130{ }^{\circ} \mathrm{C}$ for 14 h . Purification of the crude reaction mixture by flash chromatography (1:1 EtOAc/hexanes) afforded 8 -fluorocaffeine ($91 \mathrm{mg}, 86 \%$) as an offwhite solid. Melting Point: $158-162{ }^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 3.83(\mathrm{~s}, 3 \mathrm{H})$, $3.49(\mathrm{~s}, 3 \mathrm{H}), 3.37(\mathrm{~s}, 3 \mathrm{H}) \mathrm{ppm} ;{ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 154.2(\mathrm{~d}, \mathrm{~J}=230 \mathrm{~Hz}$),
$151.5,151.3,144.5(\mathrm{~d}, \mathrm{~J}=15 \mathrm{~Hz}), 103.8(\mathrm{~d}, \mathrm{~J}=3 \mathrm{~Hz}), 30.7,30.0,28.0 \mathrm{ppm} ;{ }^{19} \mathrm{~F}$ NMR (470 MHz, CDCl_{3}): $\delta-107.8 \mathrm{ppm}$. IR (in CDCl_{3}): 2959, 1704, 1654, 1614, 1539, 1456, 1329, 1288, 1212, 1041, 971, 821, 783, 742, 733, $666 \mathrm{~cm}^{-1}$. Anal. Calcd. for $\mathrm{C}_{8} \mathrm{H}_{9} \mathrm{FN}_{4} \mathrm{O}_{2}$: C, 45.28; H, 4.28; found: C, 45.58; H, 4.18.

Determination of reduction product content in isolated products.

Preparation of authentic heteroaryl fluoride samples.

General Procedure G. Fluorination of lithiated heteroarenes.

An oven-dried reaction tube equipped with a stir bar was charged with the heteroaryl bromide ($0.20 \mathrm{mmol}, 1.00$ eq.) and evacuated. The tube was backfilled with argon, and anhydrous THF (1.0 mL) was added. The tube was cooled to $-78^{\circ} \mathrm{C}$, and n BuLi (2.5 M in hexanes, $0.08 \mathrm{~mL}, 0.22 \mathrm{mmol}, 1.10 \mathrm{eq}$.) was added dropwise. The reaction mixture was allowed to stir at $-78^{\circ} \mathrm{C}$ for 30 min . At this time, a separately prepared solution of N-fluorobenzenesulfonimide (NFSI) ($75.8 \mathrm{mg}, 0.24 \mathrm{mmol}, 1.20 \mathrm{eq}$.) in anhydrous THF (0.5 mL) was added dropwise to the heteroaryllithium reagent, and the reaction mixture was allowed to warm to room temperature and stir for 1 h . The reaction mixture was quenched with saturated $a q . \mathrm{NaHCO}_{3}(2 \mathrm{~mL})$ and $\mathrm{EtOAc}(5 \mathrm{~mL})$, and the phases were separated. The aqueous phase was further extracted with EtOAc $(2 \times 5 \mathrm{~mL})$, and the combined organic extracts were dried over MgSO_{4}, filtered, and concentrated. Purification of the crude reaction mixtures by preparative thin layer chromatography afforded the desired heteroaryl fluoride

20c was prepared according to a slightly modified General Procedure G. An oven-dried reaction tube equipped with a stir bar was charged with $\mathbf{2 0 c - B r}(47.8 \mathrm{mg}, 0.20 \mathrm{mmol}, 1.00 \mathrm{eq}$.) and evacuated. The tube was backfilled with argon, and anhydrous $\mathrm{Et}_{2} \mathrm{O}(1.0 \mathrm{~mL})$ was added. The tube was cooled to $-78{ }^{\circ} \mathrm{C}$, and $n \mathrm{BuLi}$ (2.5 M in hexanes, $0.08 \mathrm{~mL}, 0.22 \mathrm{mmol}, 1.10 \mathrm{eq}$.) was added dropwise. The reaction mixture was allowed to stir at $-78^{\circ} \mathrm{C}$ for 30 min . At this
time, a separately prepared solution of N-fluorobenzenesulfonimide (NFSI) (75.8 mg, 0.24 mmol, 1.20 eq.) in anhydrous THF (0.5 mL) was added dropwise to the heteroaryllithium reagent, and the reaction mixture was allowed to stir for at $-78^{\circ} \mathrm{C}$ for 2 h (allowing the reaction to warm to room temperature led to a complex mixture of products). The reaction mixture was quenched with saturated $a q . \mathrm{NaHCO}_{3}(2 \mathrm{~mL})$ and EtOAc (5 mL), and the phases were separated. The aqueous phase was further extracted with EtOAc $(2 \times 5 \mathrm{~mL})$, and the combined organic extracts were dried over MgSO_{4}, filtered, and concentrated. Purification of the crude reaction mixture by preparative thin layer chromatography (pentane) afforded 20c ($24.0 \mathrm{mg}, 67 \%$) as a pale yellow oil. ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.66(\mathrm{dd}, \mathrm{J}=8,2 \mathrm{~Hz}, 2 \mathrm{H}), 7.41(\mathrm{pt}, \mathrm{J}=8 \mathrm{~Hz}, 2 \mathrm{H}), 7.30(\mathrm{tt}, \mathrm{J}$ $=8,1 \mathrm{~Hz}, 1 \mathrm{H}), 7.13(\mathrm{dd}, \mathrm{J}=6,3 \mathrm{~Hz}, 1 \mathrm{H}), 6.89(\mathrm{~d}, \mathrm{~J}=6 \mathrm{~Hz}, 1 \mathrm{H}) \mathrm{ppm} ;{ }^{13} \mathrm{C}$ NMR (150 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 154.1(\mathrm{~d}, \mathrm{~J}=259 \mathrm{~Hz}), 131.4(\mathrm{~d}, \mathrm{~J}=4 \mathrm{~Hz}), 129.0,127.6,126.9(\mathrm{~d}, \mathrm{~J}=5$ $\mathrm{Hz}), 122.1(\mathrm{~d}, \mathrm{~J}=10 \mathrm{~Hz}), 121.5(\mathrm{~d}, \mathrm{~J}=13 \mathrm{~Hz}), 118.9(\mathrm{~d}, \mathrm{~J}=28 \mathrm{~Hz}) \mathrm{ppm} ;{ }^{19} \mathrm{~F}$ NMR (282 $\mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta-130.5 \mathrm{ppm} . \operatorname{IR}\left(\right.$ in CDCl_{3}): 3062, 1557, 1494, 1448, 1395, 983, 905, $760,730,690,633 \mathrm{~cm}^{-1} . \mathrm{GC} / \mathrm{MS} \mathrm{m} / \mathrm{z}$ calcd. for $\mathrm{C}_{10} \mathrm{H}_{7} \mathrm{FS}: 178.0$; found: 178.0. (Note: this compound should not be placed under high vacuum due to its volatility).

$\mathrm{mg}, 0.40 \mathrm{mmol}, 2.00 \mathrm{eq}$.$) , potassium fluoride (5.80 \mathrm{mg}, 0.10 \mathrm{mmol}, 0.50 \mathrm{eq}),. \mathbf{P 3}(8.00$ $\mathrm{mg}, 0.004 \mathrm{mmol}, 2 \%), \mathbf{2 0 d}-\mathrm{Br}(59.4 \mathrm{mg}, 0.20 \mathrm{mmol}, 1.00 \mathrm{eq}$.$) , and TBME (1.0 \mathrm{~mL}$) were combined and allowed to stir at $130{ }^{\circ} \mathrm{C}$ for 14 h . Purification of the crude reaction
mixture by preparative thin layer chromatography ($5 \% \mathrm{Et}_{2} \mathrm{O} /$ pentane $)$ afforded methyl 4-fluoro-5-phenylthiophene-2-carboxylate ($16.0 \mathrm{mg}, 34 \%$) as a white sold. Contaminated with $<5 \%$ of 20d-Br, as judged by ${ }^{1} \mathrm{H}$ NMR and GC analysis. Melting Point: $45{ }^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR (500 MHz, CDCl_{3}): $\delta 7.67(\mathrm{dd}, \mathrm{J}=8,2 \mathrm{~Hz}, 2 \mathrm{H}), 7.53(\mathrm{~s}, 1 \mathrm{H}), 7.43(\mathrm{pt}, \mathrm{J}=8 \mathrm{~Hz}$, $2 \mathrm{H}), 7.36(\mathrm{tt}, \mathrm{J}=8,2 \mathrm{~Hz}, 1 \mathrm{H}), 3.91(\mathrm{~s}, 3 \mathrm{H}) \mathrm{ppm} ;{ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$): δ 162.6, $153.6(\mathrm{~d}, \mathrm{~J}=261 \mathrm{~Hz}), 130.9(\mathrm{~d}, \mathrm{~J}=4 \mathrm{~Hz}), 129.8,129.5(\mathrm{~d}, \mathrm{~J}=1 \mathrm{~Hz}), 128.5(\mathrm{~d}, \mathrm{~J}=9 \mathrm{~Hz})$, $127.9(\mathrm{~d}, \mathrm{~J}=5 \mathrm{~Hz}), 125.5,124.4(\mathrm{~d}, \mathrm{~J}=26 \mathrm{~Hz}), 53.2 \mathrm{ppm} ;{ }^{19} \mathrm{~F}$ NMR ($470 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta-126.6 \mathrm{ppm}$. IR (in CDCl_{3}): 3097, 3000, 1713, 1576, 1561, 1461, 1434, 1400, 1287, 1246, 1166, 1069, 1006, 852, 758, 722, 687, $645 \mathrm{~cm}^{-1}$. HRMS (ESI) m / z calcd. for $\mathrm{C}_{12} \mathrm{H}_{10} \mathrm{FO}_{2} \mathrm{~S}\left(\mathrm{M}+\mathrm{H}^{+}\right): 237.0380$; found: 237.0378 .

mmol, 2.00 eq.), potassium fluoride ($5.80 \mathrm{mg}, 0.10 \mathrm{mmol}, 0.50 \mathrm{eq}.), \mathbf{P} 3(8.00 \mathrm{mg}, 0.004$ $\mathrm{mmol}, \mathbf{2 \%}$), 20e-Br ($68.6 \mathrm{mg}, 0.20 \mathrm{mmol}, 1.00 \mathrm{eq}$.$) , and TBME (1.0 \mathrm{~mL}$) were combined and allowed to stir at $130{ }^{\circ} \mathrm{C}$ for 14 h . Purification of the crude reaction mixture by preparative thin layer chromatography ($5 \% \mathrm{Et}_{2} \mathrm{O} /$ pentane) afforded 5-benzoyl-3-fluoro-2phenylthiophene ($41.0 \mathrm{mg}, 73 \%$) as a yellow sold. Melting Point: $83{ }^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR (500 $\mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.88(\mathrm{~d}, \mathrm{~J}=7 \mathrm{~Hz}, 2 \mathrm{H}), 7.73(\mathrm{~d}, \mathrm{~J}=8 \mathrm{~Hz}, 2 \mathrm{H}), 7.63(\mathrm{pt}, \mathrm{J}=8 \mathrm{~Hz}, 1 \mathrm{H})$, 7.53 (pt, J = $8 \mathrm{~Hz}, 2 \mathrm{H}$), $7.46(\mathrm{pt}, \mathrm{J}=8 \mathrm{~Hz}, 2 \mathrm{H}), 7.43(\mathrm{~s}, 1 \mathrm{H}), 7.39(\mathrm{pt}, \mathrm{J}=7 \mathrm{~Hz}, 1 \mathrm{H}) \mathrm{ppm}$; ${ }^{13} \mathrm{C}$ NMR (125 MHz, CDCl_{3}): $\delta 187.2(\mathrm{~d}, \mathrm{~J}=2 \mathrm{~Hz}), 153.1(\mathrm{~d}, \mathrm{~J}=263 \mathrm{~Hz}), 137.3$, 137.1 $(\mathrm{d}, \mathrm{J}=6 \mathrm{~Hz}), 132.8,130.3(\mathrm{~d}, \mathrm{~J}=4 \mathrm{~Hz}), 129.2,129.2,128.7,127.5(\mathrm{~d}, \mathrm{~J}=5 \mathrm{~Hz}), 126.9$
$(\mathrm{d}, \mathrm{J}=5 \mathrm{~Hz}), 125.1(\mathrm{~d}, \mathrm{~J}=26 \mathrm{~Hz}) \mathrm{ppm} ;{ }^{19} \mathrm{~F}$ NMR $\left(470 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta-125.8 \mathrm{ppm} . \mathrm{IR}$ (in CDCl_{3}): $3061,1634,1599,1575,1555,1455,1398,1287,1170,1118,1007,906,860$, $730,661,647 \mathrm{~cm}^{-1}$. Anal. Calcd. for $\mathrm{C}_{17} \mathrm{H}_{11} \mathrm{FOS}: \mathrm{C}, 72.32 ; \mathrm{H}, 3.93$; found: C, $72.27 ; \mathrm{H}$, 4.01.

20h was prepared according to General Procedure G. Thus, 20h-Br $(63.0 \mathrm{mg}, \quad 0.20 \mathrm{mmol}, 1.00 \mathrm{eq}$.$) ,$ $n \operatorname{BuLi}(2.5 \mathrm{M}$ in hexanes, $0.08 \mathrm{~mL}, 0.22 \mathrm{mmol}, 1.10 \mathrm{eq}$.$) , NFSI (75.8 \mathrm{mg}, 0.24 \mathrm{mmol}$, 1.20 eq.), and THF (1.5 mL) were combined and allowed to stir at room temperature for 1 h. Purification of the crude reaction mixture by preparative thin layer chromatography (pentane) afforded 3-fluoro-2,5-diphenylthiophene ($33 \mathrm{mg}, 65 \%$) as a white solid. Melting Point: $96{ }^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR (500 MHz, CDCl_{3}): $\delta 7.68(\mathrm{dd}, \mathrm{J}=9,2 \mathrm{~Hz}, 2 \mathrm{H}), 7.60$ $(\mathrm{dd}, \mathrm{J}=9,2 \mathrm{~Hz}, 2 \mathrm{H}), 7.39-7.45(\mathrm{~m}, 4 \mathrm{H}), 7.28-7.36(\mathrm{~m}, 2 \mathrm{H}), 7.12(\mathrm{~s}, 1 \mathrm{H}) \mathrm{ppm} ;{ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 153.9(\mathrm{~d}, \mathrm{~J}=260 \mathrm{~Hz}), 139.8(\mathrm{~d}, \mathrm{~J}=9 \mathrm{~Hz}), 133.6,131.3(\mathrm{~d}, \mathrm{~J}=4$ Hz), 129.1, 129.0, 128.4, 127.6 (d, J = 1 Hz), $126.8(\mathrm{~d}, \mathrm{~J}=5 \mathrm{~Hz}), 125.2,120.8,114.5(\mathrm{~d}$, $\mathrm{J}=28 \mathrm{~Hz}$), ppm; ${ }^{19} \mathrm{~F}$ NMR ($470 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta-126.7 \mathrm{ppm}$. IR: $3053,1596,1573$, 1562, 1487, 1466, 1449, 1395, 1331, 1307, 1184, 1074, 1011, 966, 910, 818, 754, 720, 690, $641 \mathrm{~cm}^{-1}$. HRMS (ESI) m/z calcd. for $\mathrm{C}_{16} \mathrm{H}_{11} \mathrm{FS}\left(\mathrm{M}^{+}\right): 254.0560$; found: 254.0579 .

$20 i$ was prepared according to General Procedure G. Thus, 20i-Br ($50.0 \mathrm{mg}, 0.15 \mathrm{mmol}, 1.00 \mathrm{eq}$.$) ,$
$n \operatorname{BuLi}(2.5 \mathrm{M}$ in hexanes, $0.06 \mathrm{~mL}, 0.17 \mathrm{mmol}, 1.10 \mathrm{eq}$.$) , NFSI (58.3 \mathrm{mg}, 0.18 \mathrm{mmol}$, 1.20 eq.), and THF (1.5 mL) were combined and allowed to stir at room temperature for 1 h. Purification of the crude reaction mixture by preparative thin layer chromatography (pentane) afforded 3-fluoro-4-methyl-2,5-diphenylthiophene ($32 \mathrm{mg}, 80 \%$) as a white solid. Melting Point: $104-106{ }^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.57(\mathrm{dd}, \mathrm{J}=9 \mathrm{~Hz}$, $2 H), 7.24-7.41(\mathrm{~m}, 7 \mathrm{H}), 7.19(\mathrm{tt}, \mathrm{J}=8,2 \mathrm{~Hz}, 1 \mathrm{H}), 2.17(\mathrm{~d}, \mathrm{~J}=1 \mathrm{~Hz}, 3 \mathrm{H}) \mathrm{ppm} ;{ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 152.7(\mathrm{~d}, \mathrm{~J}=262 \mathrm{~Hz}), 134.5(\mathrm{~d}, \mathrm{~J}=7 \mathrm{~Hz}), 134.4(\mathrm{~d}, \mathrm{~J}=2 \mathrm{~Hz})$, $131.6(\mathrm{~d}, \mathrm{~J}=4 \mathrm{~Hz}), 129.0,128.9,128.6,1278.0,127.4(\mathrm{~d}, \mathrm{~J}=1 \mathrm{~Hz}), 126.8(\mathrm{~d}, \mathrm{~J}=5 \mathrm{~Hz})$, $124.2(\mathrm{~d}, \mathrm{~J}=24 \mathrm{~Hz}), 11.6 \mathrm{ppm} ;{ }^{19} \mathrm{~F}$ NMR ($470 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta-126.9 \mathrm{ppm} . \quad$ IR (in CDCl_{3}): $3050,2926,1598,1487,1434,1405,1295,1113,974,902,753,731,694 \mathrm{~cm}^{-1}$. HRMS (ESI) m/z calcd. for $\mathrm{C}_{17} \mathrm{H}_{14} \mathrm{FS}\left(\mathrm{M}+\mathrm{H}^{+}\right)$: 269.0795; found: 269.0803.

21b was prepared according to General Procedure G. Thus, 21b-Br (63.0 mg , $0.20 \mathrm{mmol}, 1.00$ eq.), $n \mathrm{BuLi}$ (2.5 M in
hexanes, $0.08 \mathrm{~mL}, 0.22 \mathrm{mmol}, 1.10 \mathrm{eq}$.$) , NFSI (75.8 \mathrm{mg}, 0.24 \mathrm{mmol}, 1.20 \mathrm{eq}$.), and THF $(1.5 \mathrm{~mL})$ were combined and allowed to stir at room temperature for 1 h . Purification of the crude reaction mixture by preparative thin layer chromatography (pentane) afforded 2-fluoro-3,5-diphenylthiophene ($44 \mathrm{mg}, 86 \%$) as a white solid. Melting Point: $94-96{ }^{\circ} \mathrm{C}$. ${ }^{1} \mathrm{H} \operatorname{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 7.64(\mathrm{~d}, \mathrm{~J}=9 \mathrm{~Hz}, 2 \mathrm{H}), 7.54(\mathrm{dd}, \mathrm{J}=7,2 \mathrm{~Hz}, 2 \mathrm{H}), 7.44$ (pt, J = $8 \mathrm{~Hz}, 2 \mathrm{H}), 7.40(\mathrm{pt}, \mathrm{J}=8 \mathrm{~Hz}, 2 \mathrm{H}), 7.29-7.35(\mathrm{~m}, 2 \mathrm{H}), 7.21(\mathrm{~d}, \mathrm{~J}=4 \mathrm{~Hz}, 1 \mathrm{H}) \mathrm{ppm} ;$ ${ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 159.6(\mathrm{~d}, \mathrm{~J}=291 \mathrm{~Hz}), 133.9$, $132.5(\mathrm{~d}, \mathrm{~J}=4 \mathrm{~Hz}), 131.0$ $(\mathrm{d}, \mathrm{J}=3 \mathrm{~Hz}), 129.1,128.9,127.8(\mathrm{~d}, \mathrm{~J}=1 \mathrm{~Hz}), 127.5(\mathrm{~d}, \mathrm{~J}=1 \mathrm{~Hz}), 127.4(\mathrm{~d}, \mathrm{~J}=33 \mathrm{~Hz})$,
$125.4(\mathrm{~d}, \mathrm{~J}=2 \mathrm{~Hz}), 122.4(\mathrm{~d}, \mathrm{~J}=4 \mathrm{~Hz}), 120.1(\mathrm{~d}, \mathrm{~J}=1 \mathrm{~Hz}) \mathrm{ppm} ;{ }^{19} \mathrm{~F}$ NMR (470 MHz , CDCl_{3}): $\delta-133.1 \mathrm{ppm}$. IR (in CDCl_{3}): $3063,1587,1513,1494,1476,1450,1368,1234$, 1142, 905, 729, 691, $652 \mathrm{~cm}^{-1}$. HRMS (ESI) m/z calcd. for $\mathrm{C}_{16} \mathrm{H}_{12} \mathrm{FS}\left(\mathrm{M}^{+} \mathrm{H}^{+}\right): 255.0638$; found: 255.0631 .

mmol, 1.00 eq.), $n \operatorname{BuLi}(2.5 \mathrm{M}$ in hexanes, $0.08 \mathrm{~mL}, 0.22 \mathrm{mmol}, 1.10 \mathrm{eq}$.$) , NFSI (75.8$ $\mathrm{mg}, 0.24 \mathrm{mmol}, 1.20 \mathrm{eq}$.$) , and THF (1.5 \mathrm{~mL}$) were combined and allowed to stir at $78^{\circ} \mathrm{C}$ for 1 h (allowing the reaction to warm to room temperature led to a complex mixture of products). Purification of the crude reaction mixture by preparative thin layer chromatography (pentane) afforded 2-fluoro-3-phenylthiophene ($19 \mathrm{mg}, 53 \%$) as a pale yellow oil contaminated with $\sim 4 \%$ of a second fluorothiophene with the same mass as the desired product (likely 2-fluoro-4-phenylthiophene). ${ }^{1} \mathrm{H} \mathrm{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right.$): $\delta 7.60$ $(\mathrm{d}, \mathrm{J}=9 \mathrm{~Hz}, 2 \mathrm{H}), 7.43(\mathrm{pt}, \mathrm{J}=8 \mathrm{~Hz}, 2 \mathrm{H}), 7.31(\mathrm{tt}, \mathrm{J}=8,2 \mathrm{~Hz}, 1 \mathrm{H}), 7.00(\mathrm{dd}, \mathrm{J}=7,4 \mathrm{~Hz}$, $1 \mathrm{H}), 6.70(\mathrm{dd}, \mathrm{J}=7,4 \mathrm{~Hz}, 1 \mathrm{H}) \mathrm{ppm} ;{ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 160.7(\mathrm{~d}, \mathrm{~J}=288$ $\mathrm{Hz}), 132.6(\mathrm{~d}, \mathrm{~J}=4 \mathrm{~Hz}), 128.9,127.4(\mathrm{~d}, \mathrm{~J}=4 \mathrm{~Hz}), 127.4,124.8(\mathrm{~d}, \mathrm{~J}=3 \mathrm{~Hz}), 121.6(\mathrm{~d}, \mathrm{~J}$ $=48 \mathrm{~Hz}), 112.6(\mathrm{~d}, \mathrm{~J}=3 \mathrm{~Hz}) \mathrm{ppm} ;{ }^{19} \mathrm{~F}$ NMR $\left(470 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta-136.2 \mathrm{ppm}$ (a minor contaminant was detected at -130.4 ppm). IR (in CDCl_{3}): $3058,1605,1585,1568,1498$, 1442, 1275, 1188, 1124, 907, 880, 732, $707 \mathrm{~cm}^{-1} . \mathrm{GC} / \mathrm{MS} \mathrm{M} / \mathrm{z}$ for $\mathrm{C}_{10} \mathrm{H}_{7} \mathrm{FS}: 178.0$, found, 178.0. (Note: this compound should not be placed under high vacuum due to its volatility).

22a was prepared according to General Procedure G. Thus, 22a$\mathbf{B r}(57.8 \mathrm{mg}, 0.20 \mathrm{mmol}, 1.00$ eq.), $n \mathrm{BuLi}(2.5 \mathrm{M}$ in hexanes, $0.09 \mathrm{~mL}, 0.22 \mathrm{mmol}, 1.10 \mathrm{eq}$.$) , NFSI (75.8 \mathrm{mg}, 0.24$ mmol, 1.20 eq.), and $\operatorname{THF}(1.5 \mathrm{~mL})$ were combined and allowed to stir at room temperature for 1 h . Purification of the crude reaction mixture by preparative thin layer chromatography (pentane) afforded 3-fluoro-2-phenylbenzo[b]thiophene ($34 \mathrm{mg}, 75 \%$) as a white solid. Melting Point: $94{ }^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.74-7.80(\mathrm{~m}, 4 \mathrm{H})$, 7.34-7.49 (m, 5H) ppm; ${ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 147.6(\mathrm{~d}, \mathrm{~J}=264 \mathrm{~Hz}), 134.3(\mathrm{~d}$, $\mathrm{J}=9 \mathrm{~Hz}), 131.3(\mathrm{~d}, \mathrm{~J}=4 \mathrm{~Hz}), 130.8(\mathrm{~d}, \mathrm{~J}=24 \mathrm{~Hz}), 129.1,128.2,127.6(\mathrm{~d}, \mathrm{~J}=3 \mathrm{~Hz})$, $125.8,124.9,122.8,120.9(\mathrm{~d}, \mathrm{~J}=14 \mathrm{~Hz}), 120.2(\mathrm{~d}, \mathrm{~J}=2 \mathrm{~Hz}) \mathrm{ppm} ;{ }^{19} \mathrm{~F}$ NMR (470 MHz , CDCl_{3}): $\delta-135.5 \mathrm{ppm} . \quad$ IR: $3062,1586,1491,1445,1370,1277,1088,1018,955,850$, 749, 726, 691, $595 \mathrm{~cm}^{-1}$. Anal. Calcd. for $\mathrm{C}_{14} \mathrm{H}_{9} \mathrm{FS}: \mathrm{C}, 73.66$; $\mathrm{H}, 3.97$; found: C, 73.40; H, 4.07.

23 was prepared according to General Procedure G. Thus, 23-Br $(57.8 \mathrm{mg}, 0.20 \mathrm{mmol}, 1.00 \mathrm{eq}),. n \operatorname{BuLi}(2.5 \mathrm{M}$ in hexanes, $0.09 \mathrm{~mL}, 0.22 \mathrm{mmol}, 1.10$ eq.), NFSI ($75.8 \mathrm{mg}, 0.24 \mathrm{mmol}, 1.20 \mathrm{eq}$.) , and THF (1.5 mL) were combined and allowed to stir at room temperature for 1 h . Purification of the crude reaction mixture by preparative thin layer chromatography (pentane) afforded 2-fluoro-3-phenylbenzo[b]thiophene (42 $\mathrm{mg}, 92 \%) .{ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.73-7.76(\mathrm{~m}, 2 \mathrm{H}), 7.60(\mathrm{~d}, \mathrm{~J}=8 \mathrm{~Hz}, 2 \mathrm{H}), 7.54$ (pt, J $=8 \mathrm{~Hz}, 2 \mathrm{H}), 7.35-7.47(\mathrm{~m}, 3 \mathrm{H}) \mathrm{ppm} ;{ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 159.8(\mathrm{~d}, \mathrm{~J}=$
$290 \mathrm{~Hz})$, 136. (d, $\mathrm{J}=4 \mathrm{~Hz}), 131.2(\mathrm{~d}, \mathrm{~J}=42 \mathrm{~Hz}), 129.5(\mathrm{~d}, \mathrm{~J}=2 \mathrm{~Hz}), 128.9,128.0,125.8$, 125.3, $124.7(\mathrm{~d}, \mathrm{~J}=5 \mathrm{~Hz}), 122.7$, $122.7,117.1(\mathrm{~d}, \mathrm{~J}=7 \mathrm{~Hz}) \mathrm{ppm} ;{ }^{19}$ F NMR (470 MHz , CDCl_{3}): $\delta-131.0 \mathrm{ppm} . \quad$ IR: 3058, 1605, 1586, 1492, 1460, 1443, 1435, 1351, 1207, 1149, 1020, 907, 859, 763, 748, 728, 696, 679, 640, $622 \mathrm{~cm}^{-1}$. HRMS (ESI) m/z calcd. for $\mathrm{C}_{14} \mathrm{H}_{9} \mathrm{FS}\left(\mathrm{M}^{+}\right): 228.0404$; found: 228.0403 .

($50.8 \mathrm{mg}, 0.40 \mathrm{mmol}, 2.00 \mathrm{eq}$.), potassium fluoride ($5.80 \mathrm{mg}, 0.10 \mathrm{mmol}, 0.50 \mathrm{eq}.), \mathbf{P} 2$ $(7.40 \mathrm{mg}, 0.004 \mathrm{mmol}, 2 \%), 24 \mathrm{a}-\mathrm{Br}(59.2 \mathrm{mg}, 0.20 \mathrm{mmol}, 1.00 \mathrm{eq}$.$) , and TBME (1.0$ $\mathrm{mL})$. The tube was capped, removed from the glovebox, and placed in an oil bath that had been pre-heated to $130^{\circ} \mathrm{C}$ and allowed to vigorously stir for 14 h . At this time, the tube was allowed to cool to room temperature, and the reaction mixture was diluted with EtOAc (10 mL), and filtered through a pad of celite, eluting with EtOAc (20 mL). The resulting solution was concentrated and purified by preparative thin layer chromatography ($5 \% \mathrm{Et}_{2} \mathrm{O} /$ hexanes) to afford 2-iso-butyl-4-fluoro-5-phenylthiazole (13.0 $\mathrm{mg}, 28 \%$) as a yellow oil. ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.56(\mathrm{dd}, \mathrm{J}=9,2 \mathrm{~Hz}, 2 \mathrm{H}), 7.40$ (t, J = 8 Hz, 2H), $7.29(\mathrm{tt}, \mathrm{J}=7,2 \mathrm{~Hz}, 1 \mathrm{H}), 2.77(\mathrm{~d}, \mathrm{~J}=7 \mathrm{~Hz}, 2 \mathrm{H}), 2.13$ (septet, J = 7 Hz , $1 \mathrm{H}), 1.02(\mathrm{~d}, \mathrm{~J}=7 \mathrm{~Hz}, 6 \mathrm{H}) \mathrm{ppm} ;{ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 164.8(\mathrm{~d}, \mathrm{~J}=19 \mathrm{~Hz}$), $155.8(\mathrm{~d}, \mathrm{~J}=249 \mathrm{~Hz}), 129.5(\mathrm{~d}, \mathrm{~J}=6 \mathrm{~Hz}), 129.1,127.8(\mathrm{~d}, \mathrm{~J}=1 \mathrm{~Hz}), 127.0(\mathrm{~d}, \mathrm{~J}=5 \mathrm{~Hz})$, $112.2(\mathrm{~d}, \mathrm{~J}=26 \mathrm{~Hz}), 43.0,29.7,22.4 \mathrm{ppm} ;{ }^{19} \mathrm{~F}$ NMR ($470 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta-107.9 \mathrm{ppm}$.

IR (in CDCl_{3}): 2959, 1559, 1357, 1017, 907, 732, $692 \mathrm{~cm}^{-1}$. HRMS (ESI) m/z calcd. for $\mathrm{C}_{13} \mathrm{H}_{15} \mathrm{FNS}\left(\mathrm{M}+\mathrm{H}^{+}\right): 236.0904$; found: 236.0877 .

25 was prepared according to General Procedure G. Thus, $\mathbf{2 5}-\mathbf{B r}$ ($63.2 \mathrm{mg}, 0.20 \mathrm{mmol}, 1.00 \mathrm{eq}$.), $n \operatorname{BuLi}(2.5 \mathrm{M}$ in hexanes, $0.09 \mathrm{~mL}, 0.22 \mathrm{mmol}, 1.10 \mathrm{eq}$.$) , NFSI (75.8 \mathrm{mg}, 0.24 \mathrm{mmol}$, 1.20 eq.), and THF (1.5 mL) were combined and allowed to stir at room temperature for 1 h. Purification of the crude reaction mixture by preparative thin layer chromatography ($15 \% \mathrm{CH}_{2} \mathrm{Cl}_{2}$ /hexanes) afforded 5-fluoro-2,4-diphenylthiazole ($29 \mathrm{mg}, 57 \%$) as a white solid. Melting Point: $78{ }^{\circ} \mathrm{C}\left(\right.$ Lit. $\left.84-85^{\circ} \mathrm{C}\right) .{ }^{49}{ }^{1} \mathrm{H}$ NMR $\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 8.03(\mathrm{~d}, \mathrm{~J}=$ $8 \mathrm{~Hz}, 2 \mathrm{H}), 7.89-7.93(\mathrm{~m}, 2 \mathrm{H}), 7.44-7.51(\mathrm{~m}, 5 \mathrm{H}), 7.37(\mathrm{tt}, \mathrm{J}=8,1 \mathrm{~Hz}, 1 \mathrm{H}) \mathrm{ppm} ;{ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 157.4(\mathrm{~d}, \mathrm{~J}=301 \mathrm{~Hz}), 154.9(\mathrm{~d}, \mathrm{~J}=10 \mathrm{~Hz}), 135.9(\mathrm{~d}, \mathrm{~J}=5$ $\mathrm{Hz})$, 133.7, $132.1(\mathrm{~d}, \mathrm{~J}=6 \mathrm{~Hz}), 130.3(\mathrm{~d}, \mathrm{~J}=1 \mathrm{~Hz}), 129.1,128.8,128.2(\mathrm{~d}, \mathrm{~J}=2 \mathrm{~Hz})$, $127.1(\mathrm{~d}, \mathrm{~J}=6 \mathrm{~Hz}), 126.0(\mathrm{~d}, \mathrm{~J}=2 \mathrm{~Hz}) \mathrm{ppm} ;{ }^{19} \mathrm{~F} \operatorname{NMR}\left(470 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta-147.1$ ppm. IR: 3053, 3029, 1581, 1490, 1475, 1447, 1349, 1301, 1195, 1183, 1072, 1029, $1002,973,911,871,756,683,658,591 \mathrm{~cm}^{-1}$. These spectra are consistent with those reported in the literature. ${ }^{49}$

with a stir bar was charged with cesium fluoride ($152 \mathrm{mg}, 1.00 \mathrm{mmol}, 5.00 \mathrm{eq}$.$) , 2$ -bromo-4-phenylthiazole ($48.0 \mathrm{mg}, 0.20 \mathrm{mmol}, 1.00 \mathrm{eq}$.), and anhydrous DMF (2.0 mL).

The tube was capped, removed from the glovebox, and placed in an oil bath that had been pre-heated to $130{ }^{\circ} \mathrm{C}$ and allowed to stir for 14 h . The reaction tube was allowed to cool to room temperature and dilute with ether (5 mL) and water (5 mL). The phases were separated, and the aqueous phase was further extracted with ether $(2 \times 5 \mathrm{~mL})$. The combined organic phases were washed with brine (5 mL), dried over MgSO_{4}, filtered, and concentrated. The resulting yellow solid was purified by preparative thin layer chromatography ($2 \% \mathrm{Et}_{2} \mathrm{O} /$ hexanes) to afford 2-fluoro-4-phenylthiazole ($\mathbf{2 7 b}, 23 \mathrm{mg}$, 64%) as a white solid. Melting Point: $65{ }^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.80(\mathrm{dd}, \mathrm{J}$ $=8,2 \mathrm{~Hz}, 2 \mathrm{H}), 7.42(\mathrm{t}, \mathrm{J}=8 \mathrm{~Hz}, 2 \mathrm{H}), 7.35(\mathrm{tt}, \mathrm{J}=7,2 \mathrm{~Hz}, 1 \mathrm{H}), 7.06(\mathrm{~d}, \mathrm{~J}=2 \mathrm{~Hz}) \mathrm{ppm}$; ${ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 169.9(\mathrm{~d}, \mathrm{~J}=281 \mathrm{~Hz}), 148.4(\mathrm{~d}, \mathrm{~J}=15 \mathrm{~Hz}), 133.6,128.9$, 128.7, $126.0(\mathrm{~d}, \mathrm{~J}=1 \mathrm{~Hz}), 10.9(\mathrm{~d}, \mathrm{~J}=4 \mathrm{~Hz}) \mathrm{ppm} ;{ }^{19} \mathrm{~F}$ NMR ($470 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta-79.5$ ppm. IR: 3096, 3063, 3034, 1540, 1525, 1480, 1445, 1323, 1301, 1235, 1197, 1064, 1025, $914,843,743,688,669,656 \mathrm{~cm}^{-1}$. HRMS (ESI) m/z calcd. for $\mathrm{C}_{9} \mathrm{H}_{7} \mathrm{FNS}\left(\mathrm{M}+\mathrm{H}^{+}\right)$: 180.0278; found: 180.0283.

Computational Details.

The geometries of all intermediates and transition states were optimized with B3LYP ${ }^{50}$ in the gas phase. A basis set of $6-31 \mathrm{G}(\mathrm{d})$ for other atoms was used in geometry optimizations. Single point energy calculations were performed with the M06 ${ }^{51}$ functional and a basis set of $6-311+G(d, p)$. The SMD^{52} solvation model was used in M06 single point energy calculations with toluene as the solvent. The reported free energies and enthalpies include zero-point energies and thermal corrections calculated at 298 K by B3LYP. All calculations were performed with Gaussian $09 .{ }^{53}$ In this study, the calculations were performed at the M06/SDD-6-311+G(d,p)/SMD(THF)//B3LYP/SDD-6-31G(d) level. A similar level of theory has been used for recent computational studies on transition metal-catalyzed reactions. ${ }^{54}$

The Cartesian coordinates (\AA), SCF energies, and enthalpies at 298 K for the optimized structures.

16-GS

B3LYP SCF energy:
B3LYP enthalpy:
B3LYP free energy:
M06 SCF energy in solution:
Cartesian coordinates
ATOM X Y Z
Pd $-0.582335-0.141863-1.111913$
$\begin{array}{llll}\mathrm{P} & -2.461439 & 0.203040 & 0.284015\end{array}$
C $\quad-4.156259-0.269337-0.577820$
C $\quad-4.398517-1.796257-0.436779$
H $\quad-3.524473-2.345004-0.800204$
H $\quad-4.543094 \quad-2.066701 \quad 0.613274$
C $\quad-5.642232-2.234701-1.245336$
H $\quad-5.775739-3.317191 \quad-1.114878$
C $\quad-5.439297-1.910475-2.737545$
H $\quad-6.313608$-2.236400 -3.317988
H $\quad-4.571492$-2.457695 -3.129902
C $\quad-5.226124-0.393665-2.895712$
-3297.2346885500 a.u.
-3295.981899 a.u.
-3296.146654 a.u.
-3296.1192216900 a.u.

H	-5.055371	-0.149864	-3.952687
C	-3.980697	0.033964	-2.089011
H	-3.102978	-0.504227	-2.458833
H	-3.782383	1.098803	-2.249411
C	-5.427059	0.472623	-0.082989
H	-5.592184	0.271638	0.975384
H	-5.312916	1.554047	-0.197548
C	-6.669786	0.026030	-0.890453
H	-7.543410	0.569253	-0.504782
C	-6.884134	-1.489770	-0.720770
H	-7.780052	-1.810670	-1.270158
H	-7.053773	-1.733043	0.337787
C	-6.467601	0.357479	-2.380411
H	-6.338292	1.440601	-2.513212
H	-7.355815	0.067866	-2.958963
C	-2.544206	1.987445	1.041231
C	-2.880327	2.990088	-0.099708
H	-2.197518	2.849505	-0.940290
H	-3.893634	2.820258	-0.477292
C	-2.780096	4.446344	0.408927
H	-3.023610	5.119213	-0.423680
C	-1.346841	4.726526	0.899370
H	-0.637606	4.595524	0.072757
H	-1.259254	5.767716	1.240084
C	-1.010196	3.762721	2.053274
H	0.017465	3.939496	2.397792
C	-1.116296	2.302396	1.559709
H	-0.871851	1.624332	2.385842
H	-0.382752	2.124103	0.768940
C	-3.519555	2.230493	2.223638
H	-4.551099	2.015421	1.935192
H	-3.271448	1.562990	3.054124
C	-3.424946	3.696265	2.714142
H	-4.139350	3.828241	3.538575
C	-3.774537	4.660566	1.564897
H	-4.802923	4.483141	1.219304
H	-3.731247	5.700411	1.917741
C	-1.997346	3.984671	3.213968
H	-1.924716	5.016521	3.584703
H	-1.749594	3.322668	4.055824
C	-2.199289	-1.019146	1.699392
C	-3.167956	-1.241463	2.718455
C	-2.962693	-2.153178	3.757470
H	-3.712406	-2.293873	4.526033
C	-1.795349	-2.908276	3.785886
H	-1.636964	-3.631189	4.581431

	C	-0.848151	-2.745191
H	0.050688	-3.351929	2.787477
C	-1.019767	-1.806837	1.750297
O	-4.333793	-0.542695	2.615115
C	-5.310680	-0.653496	3.639925
H	-5.701598	-1.675732	3.715616
H	-6.119296	0.020344	3.351664
H	-4.908879	-0.342874	4.612229
C	0.122995	-1.813615	0.750156
C	1.355548	-1.139781	1.065511
C	2.495443	-1.399703	0.278946
C	2.463717	-2.368509	-0.752383
C	1.291954	-3.088763	-0.949003
H	1.280531	-3.856550	-1.715059
C	0.118459	-2.837565	-0.242653
C	1.403681	-0.263671	2.329897
H	0.361662	-0.100404	2.612461
C	2.034927	1.140720	2.208630
H	3.120383	1.116925	2.329695
H	1.638473	1.776515	3.009214
H	1.807517	1.617967	1.253065
C	2.057283	-1.015660	3.512760
H	1.513499	-1.930112	3.763726
H	2.058331	-0.373654	4.402434
H	3.091387	-1.293489	3.295404
C	3.671310	-2.679095	-1.631357
H	4.409810	-1.885721	-1.484098
C	3.314736	-2.682021	-3.130366
H	2.698230	-3.548279	-3.399370
H	4.231642	-2.737367	-3.729757
H	2.758492	-1.778953	-3.395147
C	4.334294	-4.005829	-1.204821
H	4.641427	-3.979865	-0.154192
H	5.221393	-4.204153	-1.818427
H	3.644213	-4.848816	-1.333558
C	-1.082908	-3.743258	-0.509816
H	-1.936167	-3.352615	0.050092
C	-1.469735	-3.774035	-2.001534
H	-1.602594	-2.762412	-2.398964
H	-2.402174	-4.335218	-2.139549
H	-0.699768	-4.263189	-2.608510
C	-0.823301	-5.172706	0.009843
H	0.030716	-5.631937	-0.501173
H	-1.700720	-5.806708	-0.166885
H	-0.613841	-5.176508	1.084650
C	3.785885	-0.661760	0.485101

C	4.836545	-1.194120	1.233491
F	4.680087	-2.380254	1.860072
C	6.059475	-0.541314	1.366577
F	7.019528	-1.121352	2.114703
C	6.307826	0.684163	0.749665
C	7.635154	1.394797	0.866968
H	8.155418	1.029790	1.758135
H	7.451617	2.465888	1.013301
C	8.534730	1.203515	-0.371697
H	8.000881	1.566687	-1.259523
H	8.710000	0.130343	-0.527752
C	9.877842	1.932452	-0.243847
H	9.693692	3.003247	-0.076818
H	10.404341	1.569571	0.650335
C	10.773880	1.753548	-1.474060
H	11.006086	0.695250	-1.645205
H	11.723299	2.288233	-1.356736
H	10.285028	2.135595	-2.378562
C	5.262166	1.212687	-0.009097
F	5.437073	2.395814	-0.631221
C	4.039244	0.562944	-0.142591
F	3.083178	1.153900	-0.873814
C	-0.707579	1.431471	-2.367420
C	-1.341522	1.368487	-3.613026
H	-1.905864	0.488991	-3.902670
C	-1.230894	2.425629	-4.524483
H	-1.733333	2.353590	-5.486981
C	-0.469923	3.552935	-4.214427
C	0.201193	3.603530	-2.991599
H	0.826295	4.459176	-2.744729
C	0.091578	2.547410	-2.080106
H	0.656471	2.596750	-1.154358
H	-0.383536	4.371572	-4.924435
F	0.925164	-0.579927	-2.326222
		8	

16-TS

B3LYP SCF energy: -3297.1982057900 a.u.
B3LYP enthalpy:
B3LYP free energy:
M06 SCF energy in solution:
-3295.947596 a.u.
-3296.112061 a.u.
-3296.0840389700 a.u.
Cartesian coordinates
ATOM X Y Z
$\begin{array}{llll}\text { Pd } & -0.768155 & -0.443773 & 1.111742\end{array}$
P $\quad-2.327250 \quad 0.342448 \quad-0.413266$

C	-1.971227	-0.584226	-2.028230
C	-2.802228	-0.460906	-3.176677
C	-2.575383	-1.184641	-4.351057
H	-3.224621	-1.064191	-5.209338
C	-1.519929	-2.087348	-4.404439
H	-1.348205	-2.668695	-5.306235
C	-0.695500	-2.244579	-3.300967
C	-0.884079	-1.500083	-2.119651
O	-3.864788	0.387844	-3.069779
C	-4.686254	0.628335	-4.202364
H	-4.106321	1.036167	-5.039563
H	-5.423742	1.366097	-3.881469
H	-5.204547	-0.282667	-4.527125
C	0.141504	-1.825296	-1.046570
C	-0.090803	-2.953291	-0.213347
C	0.932287	-3.385294	0.630921
C	2.171376	-2.755316	0.705694
C	2.426735	-1.678642	-0.174535
C	1.441684	-1.226493	-1.084052
C	-1.379763	-3.772636	-0.262200
H	-2.117507	-3.206327	-0.835993
C	-1.974810	-4.029380	1.135596
H	-1.346432	-4.703043	1.729443
H	-2.961647	-4.499767	1.046127
H	-2.081486	-3.093792	1.695251
C	-1.152616	-5.106221	-1.004265
H	-0.800537	-4.940786	-2.027871
H	-2.086627	-5.679128	-1.056156
H	-0.407754	-5.723213	-0.487743
C	3.215443	-3.289474	1.684460
H	4.011129	-2.543499	1.772299
C	3.860156	-4.582516	1.141230
H	3.113972	-5.380484	1.042211
H	4.642017	-4.938042	1.823322
H	4.310229	-4.420028	0.156681
C	2.650353	-3.502225	3.101539
H	2.147620	-2.600945	3.464774
H	3.463705	-3.756406	3.791852
H	1.928276	-4.326735	3.134202
C	1.742182	-0.195511	-2.188129
H	0.767561	0.121283	-2.566406
C	2.479038	1.102098	-1.788105
H	2.158785	1.481552	-0.815348
H	2.263583	1.873603	-2.537136
H	3.564041	0.974159	-1.767543
C	2.477371	-0.849680	-3.380825

H	3.445587	-1.260287	-3.083813
H	2.651647	-0.101214	-4.163882
H	1.893151	-1.662242	-3.820544
C	-0.609309	0.512116	3.023422
C	0.158934	1.690353	3.049965
H	1.008950	1.797196	2.385547
C	-0.187575	2.707037	3.940883
H	0.393227	3.626994	3.938334
C	-1.246067	2.548736	4.841794
C	-1.943938	1.335694	4.858806
H	-2.747030	1.179630	5.576090
C	-1.617097	0.303231	3.980184
H	-2.141169	-0.645635	4.020459
H	-1.501235	3.341569	5.538746
F	0.383219	-0.849468	2.848849
H	0.747507	-4.241096	1.271358
C	-4.171683	-0.048399	0.099559
C	-4.542644	-1.475302	-0.383709
C	-5.274128	0.932817	-0.381529
C	-4.189809	-0.060553	1.654774
H	-4.555314	-1.515631	-1.477528
H	-3.788337	-2.190886	-0.039920
C	-5.928706	-1.897464	0.156089
C	-6.660553	0.503853	0.155732
H	-5.066746	1.948419	-0.030983
H	-5.302383	0.963511	-1.470723
H	-3.427525	-0.757145	2.018068
H	-3.916064	0.922664	2.053272
C	-5.576506	-0.474634	2.193254
H	-6.152511	-2.908567	-0.210594
C	-6.998280	-0.911431	-0.350980
C	-5.914441	-1.893345	1.696868
H	-7.410380	1.217341	-0.213130
C	-6.647740	0.513272	1.695505
H	-5.541062	-0.463404	3.290847
H	-7.032230	-0.922272	-1.449768
H	-7.993482	-1.215161	0.002529
H	-5.171682	-2.611541	2.070381
H	-6.892015	-2.211680	2.085391
H	-7.636165	0.234125	2.086784
H	-6.431360	1.525081	2.065788
C	-2.083942	2.234007	-0.725230
C	-2.455487	2.980207	0.588649
C	-2.832916	2.894115	-1.911250
C	-0.565741	2.432982	-0.971553
H	-3.526748	2.887383	0.795452

	-2		
	-3.914764	2.777312	
	0.000614		
	-0.277260	92923	
	206609	3.931991	
	-2.88094	5.110627	
	-0.589122	4.640820	
	-3.046730	4.835516	
	-0.		
	0.874665	4.022146	-1.240185
	2978	8805	
	-2.659528	6.184879	
	-0.031982	4.208991	
	32272	0587	
	07	28	
	. 688380	,	
	3.779657		
	. 017306	. 04	
	90188	-1.52	
	883	-0.954107	
	768	848	
	8.511967	. 03663	
	013	0.989382	
	914009	05663	
		1.835190	
	653	12	
	3075	2.68607	
	.068517		
	5537	91936	0.742380
	9.471915	977649	
	10.472345	. 404	
	28916	96862	15
	8.741666	4.735810	-
	3.001157	0.585643	
	5.433644	1.668828	1.720856
	7.172466	-1.484184	-1.353934
	4.755584	-2.589003	-1.597595
	. 1208	.9	

17-GS
B3LYP SCF energy:
B3LYP enthalpy:
B3LYP free energy:
M06 SCF energy in solution:
-3617.9916779800 a.u.
-3616.772560 a.u.
-3616.937592 a.u.
-3616.9200301900 a.u.

Cartesian coordinates			
ATOM	X	Y	Z
Pd	-0.623171	-0.197469	-1.106670
P	-2.509858	0.189810	0.263052
C	-4.192407	-0.420072	-0.533228
C	-4.362873	-1.940497	-0.274647
H	-3.477152	-2.476061	-0.626638
H	-4.464116	-2.140292	0.796351
C	-5.605280	-2.490310	-1.014214
H	-5.687678	-3.564551	-0.800234
C	-5.448335	-2.270722	-2.530897
H	-6.319842	-2.675009	-3.064252
H	-4.566236	-2.809288	-2.902696
C	-5.304884	-0.762367	-2.807034
H	-5.168462	-0.592988	-3.883383
C	-4.062594	-0.218930	-2.066446
H	-3.165968	-0.736836	-2.423421
H	-3.924155	0.840416	-2.303342
C	-5.484078	0.302336	-0.062578
H	-5.617442	0.174076	1.011245
H	-5.421362	1.375974	-0.260072
C	-6.722906	-0.255361	-0.803933
H	-7.610634	0.278466	-0.437919
C	-6.867339	-1.761336	-0.516904
H	-7.759094	-2.160381	-1.019869
H	-7.004830	-1.931086	0.560468
C	-6.567227	-0.027880	-2.318884
H	-6.488965	1.046743	-2.534146
H	-7.453889	-0.398028	-2.852125
C	-2.643763	2.026313	0.870233
C	-3.057936	2.924625	-0.329983
H	-2.395787	2.747607	-1.180101
H	-4.073652	2.684572	-0.659351
C	-3.011181	4.417784	0.069089
H	-3.309598	5.014606	-0.802785
C	-1.580966	4.800223	0.494307
H	-0.886485	4.641662	-0.339037
H	-1.537813	5.866049	0.759266
C	-1.168636	3.938651	1.702600
H	-0.141035	4.184742	2.001240

	-1.217006	2.442968	1.314959
C	-0.913318	1.837997	2.177439
H	-0.501336	2.247722	0.511103
C	-3.595341	2.311611	2.062866
H	-4.622614	2.026401	1.824186
H	-3.288818	1.722804	2.932670
C	-3.558129	3.812825	2.441237
H	-4.255640	3.972495	3.275238
C	-3.984798	4.670729	1.235070
H	-5.012042	4.419016	0.934933
H	-3.983407	5.734889	1.509193
C	-2.132518	4.200438	2.874349
H	-2.097667	5.258989	3.167183
H	-1.831926	3.614527	3.754746
C	-2.175010	-0.906570	1.758939
C	-3.110135	-1.090520	2.815793
C	-2.840328	-1.911595	3.913848
H	-3.564740	-2.024778	4.710716
C	-1.640465	-2.612974	3.966927
H	-1.432061	-3.266225	4.809751
C	-0.724724	-2.487350	2.933972
C	-0.962884	-1.638644	1.834918
O	-4.306625	-0.450727	2.689754
C	-5.250289	-0.514050	3.749532
H	-5.599824	-1.540304	3.917095
H	-6.091357	0.105527	3.433861
H	-4.833371	-0.112803	4.681390
C	0.152050	-1.674528	0.802804
C	1.377390	-0.953617	1.055754
C	2.520560	-1.262933	0.294781
C	2.496953	-2.306985	-0.662276
C	1.337437	-3.059531	-0.798787
H	1.337906	-3.883689	-1.503655
C	0.165040	-2.779615	-0.102960
C	1.405868	0.046793	2.223851
H	0.360496	0.209667	2.493955
C	1.993786	1.445829	1.935625
H	3.080542	1.465236	2.045524
H	1.586331	2.158388	2.662537
H	1.744746	1.802397	0.933625
C	2.082538	-0.549958	3.479406
H	1.565023	-1.445894	3.832246
H	2.063620	0.187932	4.290927
H	3.124601	-0.819466	3.293548
C	3.706110	-2.667286	-1.519367
H	4.438836	-1.860555	-1.428278

C	3.345437	-2.774658	-3.013677
H	2.728927	-3.657755	-3.220709
H	4.260533	-2.869235	-3.610711
H	2.787719	-1.892610	-3.339743
C	4.379001	-3.956965	-1.003932
H	4.681953	-3.858930	0.043782
H	5.270215	-4.187389	-1.600033
H	3.697047	-4.812903	-1.078694
C	-1.012844	-3.735490	-0.280043
H	-1.868867	-3.324167	0.259532
C	-1.414312	-3.896089	-1.759452
H	-1.572973	-2.923575	-2.237167
H	-2.335628	-4.485921	-1.840204
H	-0.640414	-4.417850	-2.333342
C	-0.707931	-5.110908	0.349638
H	0.154711	-5.585927	-0.131377
H	-1.568369	-5.780985	0.233022
H	-0.490972	-5.023073	1.419378
C	3.813871	-0.517586	0.455655
C	4.846287	-0.998962	1.263059
C	6.073657	-0.350743	1.360911
C	6.348506	0.815166	0.647149
C	7.688341	1.505502	0.734058
H	8.081466	1.392266	1.750491
H	7.547629	2.576870	0.556248
C	8.715901	0.950476	-0.273767
H	8.312797	1.054489	-1.290151
H	8.845301	-0.125717	-0.096171
C	10.074778	1.655554	-0.182658
H	9.936117	2.732649	-0.352789
H	10.467145	1.555352	0.839338
C	11.099963	1.107335	-1.180899
H	11.282298	0.038529	-1.014777
H	12.060554	1.627292	-1.091732
H	10.750428	1.227025	-2.213646
C	5.325630	1.287231	-0.176389
C	4.094865	0.642705	-0.273565
F	0.914894	-0.644574	-2.265795
C	-0.884812	1.253006	-2.469589
C	-1.558703	1.306376	-3.665308
S	0.223150	2.607431	-2.365622
C	-1.230855	2.447998	-4.469424
H	-2.258111	0.547328	-3.993629
C	-0.290757	3.255874	-3.895899
H	-1.683009	2.645938	-5.436787
H	0.130459	4.177791	-4.275624

F	7.019447	-0.873775	2.167867
F	4.665719	-2.128833	1.980570
F	5.524891	2.405427	-0.900758
F	3.162809	1.173737	-1.074896
H	0.199385	-3.054499	2.958898

17-TS

B3LYP SCF energy:
B3LYP enthalpy:
B3LYP free energy:
M06 SCF energy in solution:
Cartesian coordinates

ATOM		X	Y
Pd	Z		
Pd	0.758086	-0.470790	-1.078329
P	2.353093	0.358529	0.390899
C	2.017675	-0.541448	2.021718
C	2.862563	-0.403485	3.157798
C	2.641226	-1.103586	4.347405
H	3.299516	-0.972858	5.197301
C	1.578747	-1.996398	4.427113
H	1.410699	-2.558751	5.341542
C	0.743298	-2.169934	3.334057
C	0.927339	-1.449802	2.137349
O	3.930703	0.433543	3.021579
C	4.766173	0.690816	4.140474
H	4.197919	1.119633	4.975130
H	5.505395	1.416467	3.796895
H	5.281111	-0.217418	4.477947
C	-0.102400	-1.792288	1.072854
C	0.121365	-2.944869	0.268613
C	-0.909109	-3.398568	-0.554973
C	-2.150340	-2.772704	-0.632702
C	-2.399280	-1.674300	0.222959
C	-1.405431	-1.195470	1.108429
C	1.410412	-3.763141	0.324944
H	2.154020	-3.183638	0.877571
C	1.989218	-4.052603	-1.073539
H	1.357906	-4.746278	-1.640625
H	2.980517	-4.513537	-0.985256
H	2.081235	-3.131982	-1.660136
C	1.191380	-5.078769	1.100667
H	0.849736	-4.889099	2.123581
H	2.126352	-5.649697	1.156503
H	0.441901	-5.708291	0.606515

C	-3.204981	-3.335261	-1.583695
H	-4.000621	-2.591178	-1.685720
C	-3.845039	-4.609890	-0.993083
H	-3.098910	-5.405621	-0.877023
H	-4.634756	-4.985192	-1.655153
H	-4.284178	-4.415708	-0.009368
C	-2.655989	-3.592896	-2.999564
H	-2.160448	-2.702759	-3.398773
H	-3.476841	-3.870257	-3.671651
H	-1.932448	-4.416641	-3.014722
C	-1.692951	-0.129303	2.181132
H	-0.713503	0.196178	2.538804
C	-2.429031	1.155953	1.741535
H	-2.121950	1.494234	0.749505
H	-2.198411	1.955087	2.456155
H	-3.514838	1.033310	1.742679
C	-2.417871	-0.739997	3.402685
H	-3.389231	-1.159746	3.129903
H	-2.584243	0.036336	4.159884
H	-1.830431	-1.536813	3.866439
F	-0.369064	-0.918277	-2.847308
H	-0.729692	-4.270409	-1.174833
C	4.181471	-0.056186	-0.156893
C	4.553334	-1.477051	0.342469
C	5.299097	0.924426	0.289078
C	4.168018	-0.092682	-1.711777
H	4.586854	-1.499097	1.436505
H	3.788818	-2.193288	0.024854
C	5.925975	-1.916544	-0.217728
C	6.671979	0.479194	-0.269427
H	5.090618	1.936324	-0.070643
H	5.349045	0.968755	1.377302
H	3.394581	-0.789544	-2.050453
H	3.891870	0.885091	-2.121254
C	5.541829	-0.523517	-2.269760
H	6.150328	-2.923278	0.160413
C	7.011777	-0.930025	0.252191
C	5.881314	-1.936254	-1.757889
H	7.432735	1.193936	0.073657
C	6.628378	0.465593	-1.808589
H	5.485245	-0.529436	-3.366508
H	7.068596	-0.924078	1.350048
H	7.997516	-1.245497	-0.117175
H	5.127400	-2.655705	-2.105631
H	6.849294	-2.266514	-2.160194
H	7.607175	0.174679	-2.215087

H	6.410378	1.473000	-2.189749
C	2.129074	2.257911	0.666845
C	2.481532	2.973336	-0.669464
C	2.909881	2.930453	1.825426
C	0.618446	2.480864	0.938754
H	3.546426	2.862828	-0.898918
H	1.924857	2.522393	-1.496699
C	2.150080	4.480701	-0.581211
C	2.585589	4.443109	1.891850
H	2.633207	2.464512	2.776246
H	3.987884	2.797185	1.704703
H	0.029134	2.008040	0.145590
H	0.341202	1.996897	1.882957
C	0.281486	3.986720	1.018581
H	2.417228	4.949388	-1.537573
C	2.962152	5.121097	0.560423
C	0.644422	4.666603	-0.315094
H	3.169455	4.885986	2.710791
C	1.081848	4.636476	2.162586
H	-0.794873	4.092973	1.208708
H	4.039128	5.010403	0.369388
H	2.757305	6.199567	0.614864
H	0.062120	4.227361	-1.134430
H	0.395851	5.736528	-0.273680
H	0.841874	5.706486	2.235162
H	0.809958	4.180464	3.125279
C	-3.756455	-1.040019	0.139412
C	-4.010608	0.015807	-0.741350
C	-4.853573	-1.515817	0.857388
C	-5.278113	0.572337	-0.872571
C	-6.121958	-0.954552	0.729619
C	-6.373189	0.102048	-0.145038
C	-7.742597	0.721483	-0.290628
H	-8.494771	-0.000608	0.042554
H	-7.929422	0.918446	-1.352877
C	-7.902896	2.036103	0.500547
H	-7.703385	1.844247	1.563694
H	-7.141726	2.751301	0.162100
C	-9.297652	2.653051	0.340305
H	-10.054933	1.929602	0.674224
H	-9.493786	2.830401	-0.726600
C	-9.464714	3.963897	1.116170
H	-10.469268	4.380879	0.982059
H	-9.307854	3.811470	2.191108
H	-8.742759	4.718032	0.779754
C	0.610252	0.401302	-3.004642

C	1.562220	0.360611	-4.013551
S	-0.393858	1.850310	-3.158299
C	1.570500	1.546355	-4.804740
H	2.225130	-0.482026	-4.165936
C	0.592984	2.447392	-4.478628
H	2.293486	1.720862	-5.596564
H	0.410811	3.431175	-4.889336
F	-3.007094	0.531510	-1.471437
F	-5.451377	1.596347	-1.730860
F	-7.127851	-1.467609	1.465654
F	-4.700929	-2.553212	1.707760
H	-0.077119	-2.876896	3.390709

18-GS

B3LYP SCF energy:
B3LYP enthalpy:
B3LYP free energy:
M06 SCF energy in solution:
Cartesian coordinates
ATOM X Y Z

Pd -0.593598 $-0.113043-1.090625$
$\begin{array}{llll}\mathrm{P} & -2.465210 & 0.160943 & 0.310938\end{array}$
C $\quad-4.155460-0.288607-0.564592$
C $-4.372489-1.823674-0.500372$
H $\quad-3.493273-2.339140-0.898136$
H
C $\quad-5.616067-2.240121-1.320050$
H $\quad-5.732064 \quad-3.329742-1.243793$
C $\quad-5.428858-1.837287-2.795181$
H $\quad-6.301456$-2.148199 -3.386184
H $\quad-4.554438$-2.348665 -3.219859
C $\quad-5.242615-0.311085-2.876997$
H $\quad-5.085525-0.011491 \quad-3.921853$
C $\quad-3.999085 \quad 0.100055-2.058675$
H $\quad-3.109120 \quad-0.390846-2.466318$
H
C $\quad-5.433076 \quad 0.407992 \quad-0.022465$
H $\quad-5.585903 \quad 0.151190 \quad 1.025592$
H $\quad-5.334984 \quad 1.495469 \quad-0.082225$
C $\quad-6.675538-0.016302-0.842671$
H $\quad-7.554198$ 0.492370 -0.422905
С $-6.864782-1.541985-0.749432$
H $\quad-7.760063-1.848625-1.307844$
H $\quad-7.022105$-1.841637 0.296465
-3617.9912734100 a.u.
-3616.772282 a.u.
-3616.935958 a.u.
-3616.9180288500 a.u.

C	-6.491750	0.392832	-2.315555
H	-6.381068	1.483142	-2.395401
H	-7.380105	0.117991	-2.901019
C	-2.547699	1.917379	1.130657
C	-2.914241	2.964990	0.040193
H	-2.246507	2.869320	-0.818672
H	-3.933029	2.801798	-0.326007
C	-2.819134	4.398176	0.611368
H	-3.084394	5.103868	-0.186591
C	-1.379988	4.671560	1.087804
H	-0.685057	4.580700	0.243732
H	-1.295771	5.698138	1.470996
C	-1.014791	3.662856	2.193687
H	0.016711	3.835273	2.528817
C	-1.113560	2.225196	1.636412
H	-0.845653	1.512856	2.425520
H	-0.393805	2.093427	0.823675
C	-3.505722	2.096784	2.338406
H	-4.539431	1.883536	2.055644
H	-3.237464	1.394864	3.133644
C	-3.417330	3.540236	2.891723
H	-4.118560	3.628147	3.733173
C	-3.795727	4.550428	1.792257
H	-4.828120	4.377738	1.456241
H	-3.756700	5.574023	2.190142
C	-1.984260	3.822270	3.379238
H	-1.916541	4.837833	3.793327
H	-1.714861	3.127613	4.187546
C	-2.182181	-1.115882	1.672462
C	-3.140050	-1.392341	2.688119
C	-2.918141	-2.349008	3.682268
H	-3.659743	-2.531560	4.450008
C	-1.744361	-3.094483	3.665740
H	-1.573168	-3.852173	4.425445
C	-0.806854	-2.877431	2.668246
C	-0.995252	-1.893892	1.676969
O	-4.311361	-0.698582	2.626264
C	-5.277063	-0.859722	3.655209
H	-5.661325	-1.886640	3.690321
H	-6.092390	-0.178909	3.404743
H	-4.866571	-0.589064	4.635726
C	0.139455	-1.840077	0.668516
C	1.372215	-1.177080	1.013504
C	2.509638	-1.392702	0.211851
C	2.476878	-2.304338	-0.871439
C	1.309745	-3.022371	-1.097814

H	1.298541	-3.750800	-1.901271
C	0.138306	-2.815895	-0.373199
C	1.420324	-0.360415	2.317354
H	0.378490	-0.215435	2.610680
C	2.043005	1.051558	2.256074
H	3.129342	1.029008	2.369514
H	1.647732	1.648311	3.086692
H	1.807278	1.570226	1.324471
C	2.082149	-1.160207	3.463569
H	1.544822	-2.088148	3.675640
H	2.081889	-0.557785	4.380450
H	3.117302	-1.421799	3.231878
C	3.680462	-2.556678	-1.774275
H	4.409401	-1.761108	-1.594886
C	3.311032	-2.491811	-3.268766
H	2.704529	-3.352571	-3.575389
H	4.223638	-2.504931	-3.876956
H	2.740995	-1.584408	-3.484925
C	4.364696	-3.893402	-1.418200
H	4.679344	-3.915168	-0.369806
H	5.249449	-4.048236	-2.047337
H	3.685260	-4.738558	-1.583866
C	-1.052741	-3.725738	-0.671700
H	-1.909329	-3.368008	-0.095336
C	-1.444342	-3.707575	-2.162321
H	-1.591200	-2.684561	-2.523872
H	-2.370396	-4.274769	-2.317209
H	-0.671206	-4.166004	-2.788894
C	-0.771063	-5.170237	-0.207373
H	0.087934	-5.596655	-0.738125
H	-1.639896	-5.809480	-0.406187
H	-0.558257	-5.212803	0.865889
C	3.802243	-0.670118	0.456546
C	4.850234	-1.247888	1.174611
C	6.077755	-0.611202	1.339889
C	6.333788	0.642958	0.787088
C	7.667126	1.336036	0.936622
H	8.187723	0.920435	1.805108
H	7.492967	2.399351	1.139823
C	8.559541	1.2023333	-0.314679
H	8.025802	1.618203	-1.179109
H	8.722658	0.137309	-0.528871
C	9.911167	1.909153	-0.154836
H	9.739571	2.971169	0.071146
H	10.438157	1.492461	0.715249
C	10.798457	1.787647	-1.398287

H	11.018643	0.737804	-1.627478
H	11.754006	2.305605	-1.258119
H	10.308545	2.222745	-2.277891
C	5.290808	1.217298	0.058504
C	4.063288	0.583794	-0.106579
F	0.933041	-0.447491	-2.308111
F	7.034698	-1.236267	2.054711
F	4.687144	-2.465734	1.735454
F	5.473260	2.429222	-0.502999
F	3.111365	1.217474	-0.807630
H	0.096679	-3.476425	2.637478
C	-0.747035	1.545002	-2.218881
C	-1.450428	1.736898	-3.373867
C	0.169510	2.630256	-1.972129
S	-1.040335	3.248377	-4.156113
H	-2.161787	1.086719	-3.860040
C	0.113153	3.618928	-2.914605
H	0.864486	2.653283	-1.141208
H	0.693219	4.531485	-2.962122

18-TS

B3LYP SCF energy:
B3LYP enthalpy:
B3LYP free energy:
M06 SCF energy in solution:
-3617.9456817400 a.u.
-3616.729167 a.u.
-3616.894207 a.u.
-3616.8734820300 a.u.

Cartesian coordinates

ATOM		X	Y
P	Z		
Pd	-0.665658	-0.031118	-1.077706
P	-2.438100	0.104377	0.387122
C	-4.159173	-0.247556	-0.469610
C	-4.429932	-1.774704	-0.467342
H	-3.570470	-2.303608	-0.891567
H	-4.561019	-2.136694	0.557112
C	-5.693642	-2.113624	-1.291065
H	-5.849017	-3.200761	-1.260593
C	-5.506525	-1.654488	-2.749691
H	-6.395321	-1.909693	-3.343638
H	-4.654860	-2.178099	-3.205004
C	-5.266829	-0.132771	-2.771019
H	-5.110924	0.203851	-3.804883
C	-4.000820	0.198905	-1.951041
H	-3.131462	-0.303690	-2.388763
H	-3.789269	1.272159	-2.008215
C	-5.405785	0.470430	0.112688

	-5.558013	0.177354	1.152160
H	-5.267027	1.555977	0.096230
C	-6.670440	0.124921	-0.710622
H	-7.528177	0.644682	-0.261749
C	-6.911849	-1.396367	-0.679437
H	-7.822669	-1.648349	-1.240371
H	-7.069960	-1.733918	0.354816
C	-6.485372	0.589496	-2.166964
H	-6.336490	1.677653	-2.201406
H	-7.388483	0.371368	-2.754128
C	-2.449545	1.815434	1.288374
C	-2.717948	2.902721	0.207828
H	-2.027158	2.774190	-0.631436
H	-3.732580	2.807777	-0.193983
C	-2.552917	4.317461	0.806718
H	-2.755410	5.053694	0.017767
C	-1.113332	4.495068	1.325336
H	-0.401669	4.379962	0.497648
H	-0.977769	5.507287	1.731854
C	-0.836235	3.444081	2.417149
H	0.195343	3.547717	2.779704
C	-1.009740	2.027733	1.826160
H	-0.792785	1.280950	2.599770
H	-0.289397	1.871033	1.015665
C	-3.420552	2.031079	2.477954
H	-4.458595	1.882140	2.170451
H	-3.211783	1.299389	3.264082
C	-3.258942	3.457273	3.058543
H	-3.972976	3.577113	3.885234
C	-3.548672	4.505891	1.967468
H	-4.580155	4.399046	1.602745
H	-3.460535	5.519018	2.384190
C	-1.82857	3.642160	3.583255
H	-1.702159	4.644103	4.018430
H	-1.616101	2.917739	4.383804
C	-2.147246	-1.256982	1.673523
C	-3.096997	-1.555804	2.689111
C	-2.908346	-2.585019	3.615928
H	-3.647569	-2.784299	4.382006
C	-1.768407	-3.376544	3.533627
H	-1.621427	-4.190385	4.238448
C	-0.829112	-3.128239	2.544304
C	-0.982604	-2.075398	1.620269
O	-4.231803	-0.798067	2.698257
C	-5.191780	-0.988477	3.726569
H	-5.628451	-1.994473	3.690367

H	-5.973878	-0.250062	3.541817
H	-4.756953	-0.815132	4.718792
C	0.161910	-1.983981	0.624307
C	1.385880	-1.335697	0.986626
C	2.484582	-1.407460	0.097918
C	2.412892	-2.164303	-1.094109
C	1.244756	-2.877427	-1.350125
H	1.204528	-3.502474	-2.235811
C	0.119191	-2.814666	-0.528828
C	1.483232	-0.680454	2.376566
H	0.452760	-0.572689	2.721871
C	2.107420	0.729467	2.469636
H	3.197481	0.696637	2.541317
H	1.742566	1.216914	3.381634
H	1.837359	1.361035	1.620480
C	2.183572	-1.615543	3.389520
H	1.651707	-2.564268	3.500226
H	2.218589	-1.134912	4.375167
H	3.209224	-1.843457	3.088154
C	3.580846	-2.285058	-2.071638
H	4.308296	-1.504360	-1.829827
C	3.157190	-2.057739	-3.535167
H	2.514215	-2.865228	-3.904881
H	4.044163	-2.028512	-4.179499
H	2.610467	-1.116530	-3.645862
C	4.295762	-3.642515	-1.902457
H	4.645635	-3.782385	-0.874707
H	5.161151	-3.707725	-2.573197
H	3.621658	-4.473343	-2.144346
C	-1.066909	-3.719925	-0.861255
H	-1.910934	-3.418782	-0.235413
C	-1.514435	-3.610079	-2.331480
H	-1.694672	-2.567817	-2.615103
H	-2.438381	-4.180194	-2.487331
H	-0.763371	-4.016938	-3.018250
C	-0.743546	-5.187526	-0.509471
H	0.108782	-5.553830	-1.093891
H	-1.604046	-5.831820	-0.727908
H	-0.497067	-5.301124	0.551276
C	3.771573	-0.685626	0.370904
C	4.863160	-1.305905	0.981204
C	6.071819	-0.644714	1.179527
C	6.267798	0.674096	0.769838
C	7.588162	1.378973	0.969178
H	8.018207	1.061804	1.925836
H	7.408479	2.457110	1.034490

C	8.599459	1.094319	-0.160301
H	8.166129	1.410276	-1.118852
H	8.760775	0.010257	-0.230833
C	9.942629	1.802022	0.057805
H	9.772460	2.884933	0.139549
H	10.365701	1.485199	1.021636
C	10.952428	1.525172	-1.060916
H	11.169762	0.453139	-1.142525
H	11.900198	2.044452	-0.879214
H	10.569206	1.860388	-2.032399
C	5.185040	1.289151	0.139777
C	3.976422	0.628623	-0.056311
F	0.676418	0.257559	-2.715478
F	7.080209	-1.306851	1.781209
F	4.761900	-2.585568	1.397410
F	5.301258	2.561493	-0.288167
F	2.975250	1.298858	-0.656950
H	0.051644	-3.756673	2.469839
C	-0.387918	1.513376	-2.572222
C	-1.284963	1.722945	-3.594059
C	0.290353	2.718817	-2.161525
S	-1.399925	3.424883	-3.982493
H	-1.880695	1.000248	-4.129952
C	-0.176838	3.822610	-2.811742
H	1.082453	2.731960	-1.423607
H	0.135196	4.850614	-2.681416

19-GS

B3LYP SCF energy:
B3LYP enthalpy:
B3LYP free energy:
M06 SCF energy in solution:
Cartesian coordinates

ATOM	X	Y	Z
AT	-0.455192	0.651811	0.073448
P	-2.284702	-0.860939	0.034073
C	-3.997732	0.034813	-0.243485
C	-4.146747	0.341708	-1.756352
H	-3.264772	0.885317	-2.107492
H	-4.210619	-0.588973	-2.329703
C	-5.406753	1.197014	-2.023364
H	-5.474535	1.386955	-3.103335
C	-5.302771	2.531416	-1.260975
H	-6.188526	3.150090	-1.462516

-3849.0435984200 a.u.
-3847.738272 a.u.
-3847.911568 a.u.
-3847.8566966800 a.u.

H	-4.429050	3.102587	-1.600805
C	-5.185942	2.241346	0.246797
H	-5.081065	3.183922	0.795752
C	-3.921699	1.392120	0.506608
H	-3.041556	1.946980	0.176218
H	-3.798016	1.232891	1.583561
C	-5.276596	-0.702752	0.239353
H	-5.374513	-1.663320	-0.263579
H	-5.225263	-0.898839	1.314267
C	-6.536471	0.153180	-0.039351
H	-7.415284	-0.410314	0.303792
C	-6.655763	0.429684	-1.550316
H	-7.561729	1.015985	-1.757000
H	-6.752754	-0.515765	-2.103026
C	-6.437307	1.485046	0.725507
H	-6.379040	1.297004	1.806833
H	-7.338768	2.089948	0.554178
C	-2.375820	-2.056232	1.559927
C	-2.816550	-1.240218	2.808380
H	-2.181635	-0.360060	2.933533
H	-3.843123	-0.881258	2.688179
C	-2.745122	-2.113568	4.082034
H	-3.061332	-1.501993	4.937172
C	-1.299248	-2.598813	4.297592
H	-0.632343	-1.737952	4.429543
H	-1.233102	-3.201673	5.214027
C	-0.860240	-3.437849	3.082160
H	0.177185	-3.772396	3.216117
C	-0.937614	-2.583558	1.796932
H	-0.628926	-3.195497	0.941016
H	-0.237237	-1.747597	1.859816
C	-3.295097	-3.301405	1.430531
H	-4.330733	-3.007753	1.245951
H	-2.975098	-3.914446	0.582343
C	-3.230093	-4.161076	2.716750
H	-3.901977	-5.020856	2.587743
C	-3.681776	-3.327193	3.929861
H	-4.719541	-2.991179	3.794506
H	-3.661421	-3.942135	4.840383
C	-1.789611	-4.657664	2.938768
H	-1.737645	-5.285171	3.839295
H	-1.469559	-5.283059	2.093319
C	-1.925672	-1.930882	-1.480355
C	-2.835734	-2.905826	-1.981583
C	-2.522796	-3.732490	-3.064348
H	-3.227496	-4.477990	-3.410337

C	-1.306979	-3.575507	-3.719740
H	-1.063865	-4.205894	-4.570632
C	-0.424138	-2.594734	-3.297250
C	-0.705708	-1.772632	-2.188268
O	-4.053250	-2.978395	-1.375143
C	-4.977335	-3.981052	-1.773103
H	-5.282777	-3.854532	-2.818958
H	-5.847454	-3.854064	-1.126741
H	-4.563371	-4.986996	-1.631518
C	0.362628	-0.719408	-1.949462
C	1.609362	-1.083517	-1.324465
C	2.697387	-0.191316	-1.399023
C	2.603216	1.007738	-2.144958
C	1.427866	1.268485	-2.840557
H	1.377488	2.165110	-3.448534
C	0.302979	0.453103	-2.764300
C	1.734062	-2.487821	-0.708662
H	0.713109	-2.869129	-0.643529
C	2.320036	-2.590228	0.716912
H	3.411973	-2.630624	0.71149
H	1.967966	-3.520043	1.178997
H	2.013991	-1.756530	1.352384
C	2.495431	-3.455590	-1.644258
H	1.994518	-3.568286	-2.609311
H	2.550241	-4.447742	-1.179417
H	3.516364	-3.117355	-1.837099
C	3.750141	2.008440	-2.252449
H	4.504720	1.742621	-1.506937
C	3.296518	3.445507	-1.931544
H	2.639280	3.847865	-2.711908
H	4.169759	4.105972	-1.868606
H	2.751873	3.473322	-0.984146
C	4.425732	1.924433	-3.637381
H	4.799847	0.915330	-3.838144
H	5.270335	2.621810	-3.692497
H	3.722169	2.189307	-4.436241
C	-0.891158	0.799165	-3.653867
H	-1.726909	0.153265	-3.375131
C	-1.352172	2.260309	-3.489272
H	-1.529931	2.514784	-2.439894
H	-2.279879	2.426344	-4.050161
H	-0.608332	2.965290	-3.877780
C	-0.568994	0.506880	-5.135108
H	0.272978	1.116349	-5.483322
H	-1.436237	0.739287	-5.765091
H	-0.310656	-0.545336	-5.291133

C	3.995508	-0.453868	-0.692726
C	5.101006	-0.987907	-1.356881
C	6.334441	-1.152883	-0.732878
C	6.538391	-0.786027	0.596759
C	7.878542	-0.932778	1.276467
H	8.439769	-1.735384	0.787030
H	7.716993	-1.235127	2.317388
C	8.709034	0.367175	1.250274
H	8.133564	1.167698	1.733715
H	8.860307	0.675594	0.206828
C	10.067375	0.216492	1.945909
H	9.907907	-0.099103	2.986739
H	10.634055	-0.592907	1.464044
C	10.895264	1.505822	1.923057
H	11.101289	1.826452	0.894500
H	11.857853	1.370306	2.429074
H	10.366361	2.324871	2.425487
C	5.437702	-0.241026	1.259566
C	4.203063	-0.075388	0.638489
F	1.024565	1.975373	-0.054813
F	7.351624	-1.679369	-1.444333
F	4.988690	-1.358152	-2.650745
F	5.568228	0.136848	2.546566
F	3.196670	0.439482	1.357905
H	0.505915	-2.438796	-3.83288
C	-0.671231	1.508814	1.894842
C	-1.160074	2.757354	2.213315
C	-0.019998	0.881028	3.011806
S	-0.874213	3.117237	3.925470
C	-0.063147	1.611412	4.167138
H	0.478850	-0.078389	2.952487
H	0.343338	1.353336	5.136679
C	-1.731109	3.840967	1.391898
C	-2.792003	4.633994	1.867976
C	-1.179932	4.144005	0.131431
C	-3.299801	5.685985	1.104998
H	-3.227542	4.414455	2.839651
C	-1.701997	5.189437	-0.632189
H	-0.320320	3.571270	-0.205371
C	-2.762390	5.963994	-0.153981
H	-4.119555	6.285325	1.493674
H	-1.260143	5.414592	-1.600179
H	-3.157756	6.782760	-0.749813

19-TS
B3LYP SCF energy:
B3LYP enthalpy:
B3LYP free energy:
M06 SCF energy in solution:
-3849.0021233000 a.u.
-3847.699366 a.u.
-3847.874358 a.u.
-3847.8177627700 a.u.

Cartesian coordinates			
ATOM	X	Y	Z
Pd	-0.563493	0.677717	-0.044164
P	-2.213798	-0.947827	0.103011
C	-4.011496	-0.249464	-0.195658
C	-4.287480	-0.206968	-1.722226
H	-3.480965	0.332309	-2.230141
H	-4.313933	-1.221019	-2.134584
C	-5.631836	0.496085	-2.019359
H	-5.789684	0.499911	-3.106712
C	-5.592923	1.942313	-1.490339
H	-6.540293	2.452543	-1.714870
H	-4.796956	2.511670	-1.988075
C	-5.348336	1.916627	0.030324
H	-5.289426	2.942641	0.411765
C	-4.002526	1.216707	0.323089
H	-3.188295	1.771883	-0.151153
H	-3.801336	1.241840	1.400250
C	-5.187689	-0.988469	0.497031
H	-5.237728	-2.023354	0.159402
H	-5.044213	-1.003652	1.581898
C	-6.532124	-0.285713	0.190595
H	-7.335533	-0.846300	0.688608
C	-6.775601	-0.272769	-1.330795
H	-7.741242	0.200692	-1.556907
H	-6.826756	-1.301603	-1.715333
C	-6.495703	1.158572	0.722345
H	-6.347815	1.156395	1.81452
H	-7.455121	1.659685	0.531092
C	-2.107479	-1.887303	1.790177
C	-2.487050	-0.883447	2.915609
H	-1.893209	0.030474	2.817947
H	-3.540145	-0.594712	2.836303
C	-2.247824	-1.511318	4.307374
H	-2.531906	-0.776706	5.072426
C	-0.758422	-1.873122	4.462133
H	-0.143769	-0.968459	4.372420
H	-0.570896	-2.296614	5.458869
C	-0.370271	-2.890385	3.371936
H	0.695614	-3.140371	3.459702

C	-0.617113	-2.272427	1.978284
H	-0.324140	-2.991380	1.203828
H	0.010613	-1.384446	1.846606
C	-2.940521	-3.183966	1.964789
H	-4.006842	-2.987887	1.830146
H	-2.650533	-3.915960	1.204729
C	-2.706677	-3.795159	3.367868
H	-3.325044	-4.698941	3.458706
C	-3.107689	-2.780953	4.456254
H	-4.173841	-2.529196	4.365018
H	-2.968365	-3.221379	5.453537
C	-1.220540	-4.164409	3.530524
H	-1.046079	-4.619061	4.515742
H	-0.931370	-4.910761	2.777052
C	-1.817541	-2.190760	-1.272219
C	-2.678223	-3.280104	-1.587306
C	-2.403092	-4.183299	-2.618425
H	-3.076499	-5.005223	-2.826587
C	-1.265370	-4.007148	-3.396753
H	-1.052378	-4.694610	-4.210787
C	-0.413990	-2.945325	-3.134183
C	-0.655782	-2.039722	-2.082168
O	-3.815810	-3.393161	-0.843691
C	-4.680483	-4.500417	-1.049175
H	-5.110014	-4.495575	-2.058729
H	-5.482112	-4.389102	-0.317048
H	-4.161861	-5.451801	-0.877444
C	0.395758	-0.947299	-1.989891
C	1.658221	-1.205438	-1.363823
C	2.674468	-0.224777	-1.449478
C	2.487888	0.960011	-2.198345
C	1.289184	1.118887	-2.889431
H	1.163614	1.997796	-3.512879
C	0.240231	0.201604	-2.814753
C	1.887745	-2.584846	-0.718183
H	0.893377	-3.022395	-0.606402
C	2.529092	-2.627418	0.686679
H	3.620833	-2.607525	0.644167
H	2.246818	-3.567376	1.175641
H	2.195533	-1.804795	1.322697
C	2.669635	-3.529576	-1.660399
H	2.150508	-3.678350	-2.610694
H	2.784244	-4.511869	-1.185405
H	3.667819	-3.145526	-1.884741
C	3.569090	2.030310	-2.335950
H	4.330225	1.844848	-1.572073

C	3.033272	3.453232	-2.089674
H	2.338751	3.771010	-2.876368
H	3.864584	4.168333	-2.082985
H	2.509013	3.516174	-1.131441
C	4.267343	1.927435	-3.708833
H	4.697750	0.932791	-3.862958
H	5.073260	2.667333	-3.785760
H	3.559266	2.118046	-4.524579
C	-0.976710	0.416069	-3.715908
H	-1.764783	-0.266688	-3.388756
C	-1.542188	1.845968	-3.644386
H	-1.746527	2.145408	-2.612026
H	-2.476931	1.907704	-4.214561
H	-0.851744	2.579856	-4.076828
C	-0.634983	0.052168	-5.176715
H	0.162340	0.696822	-5.565437
H	-1.515536	0.181746	-5.817705
H	-0.301541	-0.986625	-5.265893
C	3.994446	-0.394556	-0.755692
C	5.117195	-0.912978	-1.402079
C	6.350885	-1.028808	-0.765987
C	6.539066	-0.620811	0.554178
C	7.874536	-0.733097	1.249760
H	8.452371	-1.535026	0.779048
H	7.705838	-1.022754	2.293285
C	8.688492	0.576800	1.214831
H	8.097935	1.377008	1.680316
H	8.849537	0.872680	0.169259
C	10.039157	0.449584	1.929911
H	9.869008	0.144507	2.972196
H	10.620368	-0.359615	1.465382
C	10.854496	1.746694	1.902844
H	11.070925	2.057653	0.873488
H	11.811620	1.626075	2.422739
H	10.311470	2.566161	2.389265
C	5.423633	-0.078006	1.194217
C	4.191878	0.036008	0.559364
F	0.729490	2.349736	0.290243
F	7.383670	-1.551309	-1.456191
F	5.022371	-1.323825	-2.683924
F	5.536411	0.342900	2.469510
F	3.163293	0.554813	1.255047
H	0.463955	-2.794644	-3.752379
C	-0.353898	2.120402	1.543773
C	-1.228784	3.167149	1.824487
C	0.338204	1.613716	2.701585

S	-1.307219	3.393134	3.584643
C	-0.099259	2.177323	3.860093
H	1.112844	0.860524	2.639719
H	0.218165	1.948689	4.869388
C	-1.970021	4.061073	0.944049
C	-3.064220	4.820159	1.414805
C	-1.603009	4.220539	-0.411233
C	-3.759290	5.687048	0.575034
H	-3.381855	4.719691	2.449567
C	-2.311435	5.080075	-1.249363
H	-0.739891	3.685281	-0.786253
C	-3.393574	5.820333	-0.767223
H	-4.595713	6.257489	0.971740
H	-2.002195	5.183136	-2.286929
H	-3.937257	6.495407	-1.422482

References.

${ }^{1}$ Su, M.; Buchwald, S. L. Angew. Chem. Int. Ed. 2012, 51, 4710.
${ }^{2}$ Lee, H. G.; Milner, P. J.; Buchwald, S. L. J. Am. Chem. Soc. 2014, 136, 3792
${ }^{3}$ Sather, A. C.; Lee, H. G.; De La Rosa, V. Y.; Buchwald, S. L. Submitted.
${ }^{4}$ Lee, H. G.; Milner, P. J.; Buchwald, S. L. Org. Lett. 2013, 15, 3602
${ }^{5}$ Kollhofer, A.; Plenio, H. Chem. Eur. J. 2003, 9, 1416.
${ }^{6}$ McAtee, J. R.; Martin, S. E. S.; Ahneman, D. T.; Johnson, K. A.; Watson, D. A. Angew. Chem. Int. Ed. 2012, 51, 3663.
${ }^{7}$ Bruno, N. C.; Tudge, M. T.; Buchwald, S. L. Chem. Sci. 2013, 4, 916.
${ }^{8}$ Mouri, K.; Saito, S.; Yamaguchi, S. Angew. Chem. Int. Ed. 2012, 51, 5971.
${ }^{9}$ Anderson, E. D.; Boger, D. L. J. Am. Chem. Soc. 2011, 133, 12285.
${ }^{10}$ Dolle, Roland E.; Le Bourdonnec, Bertrand; Ajello, Christopher W.; Gu, Minghua; Chu, Guo-Hua; Tuthill, Paul Anson; Leister, Lara K.; Zhou, Jean Q. Preparation of 3azaspiro[5.5]undecanes and related compounds as δ opioid receptor ligand. WO2005033073, Apr 14, 2005
${ }^{11}$ Xie, L.-H.; Fu, T.; Hou, X.-Y.; Tang, C.; Hua, Y.-R.; Wang, R.-J.; Fan, Q.-L.; Peng, B.; Wei, W.; Huang, W. Tetrahedron Lett. 2006, 47, 6421.
${ }^{12}$ Liégault, B.; Lapointe, D.; Caron, L.; Vlassova, A.; Fagnou, K. J. Org. Chem., 2009, 74, 1826-1834.
${ }^{13}$ Taniguchi, T.; Kawada, A.; Kondo, M.; Quinn, J. F.; Kunitomo, J.; Yoshikawa, M.; Fushimi, M. Preparation of pyridazinone compounds as phosphodiesterase 10A inhibitors for preventing and treating schizophrenia. US 20100197651, Aug. 5, 2010.
${ }_{15}^{14}$ Canivet, J.; Yamaguchi, J.; Ban, I.; Itami, K. Org. Lett. 2009, 11, 1733.
${ }^{15}$ Urban, S.; Beiring, B.; Ortega, N.; Paul, D.; Glorius, F. J. Am. Chem. Soc. 2012, 134, 15241.
${ }^{16}$ Wang, R.; Pu, S.; Liu, G.; Cui, S.; Li, H. Tetrahedron Lett. 2013, 54, 5307.
${ }^{17}$ Carter, M. D.; Hadden, M.; Weaver, D. F.; Jacobo, S. M. H.; Lu, E. Treatment of protein folding disorders. WO2006125324, May 27, 2005.
${ }^{18}$ Cheung, C. W.; Surry, D. S.; Buchwald, S. L. Org. Lett. 2013, 15, 3734.
${ }^{19}$ Zornik, D.; Meudtner, R. M.; El Malah, T.; Thiele, C. M.; Hecht, S. Chem. Eur. J. 2011, 17, 1473.
${ }^{20}$ Kinzel, T.; Zhang, Y.; Buchwald, S. L. J. Am. Chem. Soc. 2010, 132, 14073.
${ }^{21}$ Yang, Y.; Oldenhuis, N. J.; Buchwald, S. L. Angew. Chem. Int. Ed. 2013, 52, 615.
${ }^{22}$ Lohou, E.; Collot, V.; Stiebing, S.; Rault, S. Synthesis, 2011, 16, 2651.
${ }^{23}$ Pereira, R.; Iglesias, B.; de Lara, A. R. Tetrahedron 2001, 57, 7871.
${ }^{24}$ In the case of 4,5 -dibromothiophenes bearing electron-withdrawing groups at the 5position, a catalyst based on XantPhos was found to provide superior regioselectivity as well as improved selectivity for the monoarylation product compared to a catalyst based on XPhos.
${ }^{25}$ Pfister-Guillouzo, G.; Lozac'h, N. Bull. Soc. Chim. Fr. 1963, 1, 153.
${ }^{26}$ Rao, M. L. N.; Banerjee, D.; Dhanorkar, R. J. Synlett 2011, 9, 1324.
${ }^{27}$ Shridhar, D. R.; Jogibhukta, M.; Rao, P. S.; Handa, V. K. Synthesis 1982, 12, 1061.
${ }^{28}$ Jiang, H.; Zeng, W.; Li, Y.; Wu, W.; Huang, L.; Fu, W. J. Org. Chem. 2012, 77, 5179.
${ }^{29}$ Boyer, J.-C.; Carling, C.-J.; Gates, B. D.; Branda, N. R. J. Am. Chem. Soc. 2010, 132, 15766.
${ }^{30}$ Zhou, W.-J.; Wang, K.-H.; Wang, J.-X. Adv. Syn. Cat. 2009, 351, 1378.
${ }^{31}$ Okamoto, K.; Watanabe, M.; Murai, M.; Hatano, R.; Ohe, K. Chem. Comm. 2012, 48, 3127.
${ }^{32}$ Nagano, T.; Kimoto, H.; Nakatsuji, H.; Motoyoshiya, J.; Aoyama, H.; Tanabe, Y.; Nishii, Y. Chem. Lett. 2007, 36, 62.
${ }^{33}$ Nakano, M.; Satoh, T.; Miura, M. J. Org. Chem. 2006, 71, 8309.
${ }^{34}$ Eichinger, K.; Mayr, P.; Nussbaumer, P. Synthesis 1989, 3, 210.
${ }^{35}$ Ueda, K.; Yanagisawa, S.; Yamaguchi, J.; Itami, K. Angew. Chem. Int. Ed. 2010, 49, 8946.
${ }^{36}$ Biro, A. B.; Kotschy, Andras. Eur. J. Org. Chem. 2007, 8, 1364.
${ }^{37}$ Lu, W.-D.; Wu, M.-J. Tetrahedron 2007, 63, 356.
${ }^{38}$ Isono, N; Lautens, M. Org. Lett. 2009, 11, 1329.
${ }^{39}$ Liang, Y.; Tang, S.; Zhang, X.-D.; Mao, L.-Q.; Xie, Y.-X.; Li, J.-H. Org. Lett. 2006, 8, 3017.
${ }^{40}$ Yin, Y.; Ma, W.; Chai, Z.; Zhao, G. J. Org. Chem. 2007, 72, 5731.
${ }^{41}$ Dalton, L.; Humphrey, G. L.; Cooper, M. M.; Joule, J. A. J. Chem. Soc., Perkin Trans. 1 1983, 2417.
${ }^{42}$ Tang, D.-T. D.; Collins, K. D.; Glorius, F. J. Am. Chem. Soc. 2013, 135, 7450.
${ }^{43}$ Rafiq, S. M.; Sivasakthikumaran, R.; Mohanakrishnan, A. K. Org. Lett. 2014, 16, 2720.
${ }^{44}$ Bai, L.; Wang, J.-X. Adv. Syn. Cat. 2008, 350, 315.
${ }^{45}$ Under these conditions, the starting material was not fully consumed, but dibrominated side products were not observed.
${ }^{46}$ Nair, A. G.; Keertikar, K. M.; Kim, S. H.; Kozlowski, J. A.; Rosenblum, S.; Selyutin, O. B.; Wong, M.; Yu, W.; Zeng, Q. Preparation of fused tricyclic silyl compounds endcapped with amino acid and peptide derivatives as antiviral agents for treating especially hepatitis C virus infection. WO2011112429, Sep. 15, 2011.
${ }^{47}$ Ishiwata, Y.; Togo, H. Synlett 2008, 17, 2637.
${ }^{48}$ Klapars, A.; Antilla, J.; Huang, X.; Buchwald, S. L. J. Am. Chem. Soc. 2001, 123, 7727.
${ }^{49}$ Campbell, T. F.; Stephens, C. E. J. Fluor. Chem. 2006, 127, 1591.
${ }^{50}$ (a) Becke, A. D. J. Chem. Phys. 1993, 98, 5648. (b) Lee, C.; Yang, W.; Parr, R. G. Phys. Rev. B 1988, 37, 785.
${ }^{51}$ (a) Zhao, Y.; Truhlar, D. G. Theor. Chem. Acc. 2008, 120, 215. (b) Zhao, Y.; Truhlar, D. G. Acc. Chem. Res. 2008, 41, 157.
${ }^{52}$ Marenich, A. V.; Cramer, C. J.; Truhlar, D. G., J. Phys. Chem. B 2009, 113, 6378.
${ }^{53}$ Gaussian 09, Revision D.01, Frisch, M. J.; Trucks, G. W.; Schlegel, H. B.; Scuseria, G. E.; Robb, M. A.; Cheeseman, J. R.; Scalmani, G.; Barone, V.; Mennucci, B.; Petersson, G. A.; Nakatsuji, H.; Caricato, M.; Li, X.; Hratchian, H. P.; Izmaylov, A. F.; Bloino, J.; Zheng, G.; Sonnenberg, J. L.; Hada, M.; Ehara, M.; Toyota, K.; Fukuda, R.; Hasegawa, J.; Ishida, M.; Nakajima, T.; Honda, Y.; Kitao, O.; Nakai, H.; Vreven, T.; Montgomery, Jr., J. A.; Peralta, J. E.; Ogliaro, F.; Bearpark, M.; Heyd, J. J.; Brothers, E.; Kudin, K. N.;

Staroverov, V. N.; Keith, T.; Kobayashi, R.; Normand, J.; Raghavachari, K.; Rendell, A.; Burant, J. C.; Iyengar, S. S.; Tomasi, J.; Cossi, M.; Rega, N.; Millam, J. M.; Klene, M.; Knox, J. E.; Cross, J. B.; Bakken, V.; Adamo, C.; Jaramillo, J.; Gomperts, R.; Stratmann, R. E.; Yazyev, O.; Austin, A. J.; Cammi, R.; Pomelli, C.; Ochterski, J. W.; Martin, R. L.; Morokuma, K.; Zakrzewski, V. G.; Voth, G. A.; Salvador, P.; Dannenberg, J. J.; Dapprich, S.; Daniels, A. D.; Farkas, O.; Foresman, J. B.; Ortiz, J. V.; Cioslowski, J.; Fox, D. J. Gaussian, Inc., Wallingford CT, 2010.
${ }^{54}$ (a) Cannon, J. S.; Zou, L.; Liu, P.; Lan, Y.; O'Leary, D. J.; Houk, K. N.; Grubbs, R. H. J. Am. Chem. Soc. 2014, 136, 6733. (b) Green, A. G.; Liu, P.; Merlic, C. A.; Houk, K. N. J. Am. Chem. Soc. 2014, 136, 4575. (c) Cheng, G.-J.; Yang, Y.-F.; Liu, P.; Chen, P.; Sun, T.-Y.; Li, G.; Zhang, X.; Houk, K. N.; Yu, J.-Q.; Wu, Y.-D. J. Am. Chem. Soc. 2014, 136, 894. (d) Yang, Y.-F.; Cheng, G.-J.; Liu, P.; Leow, D.; Sun, T.-Y.; Chen, P.; Zhang, X.; Yu, J.-Q.; Wu, Y.-D.; Houk, K. N. J. Am. Chem. Soc. 2014, 136, 344.

NMR spectra of complexes, new heteroaryl bromides, and heteroaryl fluorides.

