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Additional 1H NMR Spectra for the Copolymerization of Allyl Glycidyl Ether and Phenyl Glycidyl Ether 

 

Figure S1. Time resolved 1H NMR spectra of a Vandenberg-catalyzed copolymerization of allyl glycidyl ether 
and phenyl glycidyl ether. Bottom spectra represents t = 0 with spectra of increasing time from bottom to top.  



Forcing Ideal Behavior for Determined Reactivity Ratios 

As noted in the discussion, the reactivity ratios for L-LAC and ε-CL obtained from the non-terminal model 

give a better fit to the observed compositional drift than was found using Kelen-Tudos (a terminal model). Yet, 

the product of the obtained reactivity ratios differs slightly from unity. However, as this was a fit achieved 

through error minimization we can alter the parameters of our fit and examine how well the non-terminal model 

can fit the data when ideal behavior is prescribed.  As the smaller reactivity ratio (that of ε-CL) is the most 

sensitive qualitatively to changes in value we re-fit the compositional drift and continue to fit to 0-100% 

conversion but do not include the data points beyond the initial 100% conversion point. This refines the fit to 

the data points at lower conversions and rebalances the error regression away from its 100% conversion bias. 

The result is the fit below in Figure X. Note, this fit gives an accurate representation of the compositional drift 

(indeed much better again than Kelen-Tudos) while constraining the copolymerization to perfectly ideal 

behavior.  

	  
Figure S2. Total polymerization conversion plotted against monomer conversion, (n) L-LAC and (l) ε-CL. 
Solid green (⎯) and brown lines (⎯) represent fits to the experimental data using the non-terminal model, 
Equations 12 and 13, the initial compositions: 𝑛"#"$% = 𝑛'#%" = 0.5. The dotted blue line (����) represents the 
random copolymerization case; 𝑟"#"$% = 𝑟'#%" = 1. 
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Reactivity Ratios Determination for the Copolymerization of Styrene and Isoprene 

Here is an enlarged Figure for the compositional drift for styrene and isoprene where the non-terminal model 

values are compared to those of Worsfold1 and of Quinebèche et al.2. Fitting the compositional drift data for 

isoprene up to ~60% total conversion where 100% I conversion is reached yields the dotted black line. 

 

Figure S3. Compositional drift data taken from the literature for the copolymerization (n) isoprene (I) and (l) 
styrene (S)3. (����) Dotted blue lines represent the hypothetical random copolymerization case; 𝑟$ = 𝑟- = 1. (⎯) 
Solid yellow and (⎯) grey lines represent fits to the experimental data using Equations 12 and 13. Dotted lines 
represent compositional drifts obtained using previously reported reactivity ratios. Dotted green (����) and dark 
brown (����) for the values of Worsfold1 and dotted pink (����) and dark blue (����) for those of Quinebèche et al.2 
Dotted black (����) represents fit using the non-terminal model using the compositional drift data for isoprene up 
to ~60% total conversion where 100% I conversion is reached. 
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