Supporting Information For:

Two-Dimensional, Acene-Containing Conjugated Polymers That Show Ratiometric Fluorescent Response to Singlet Oxygen

Esra Altinok, Zach Smith, and Samuel W. Thomas III*
Department of Chemistry, Tufts University, Medford, MA 02155 USA
*To whom correspondence should be addressed. E-mail: sam.thomas@tufts.edu

1. General Considerations...............................S2
2. Optical Experiments.................................S2
3. Detailed Synthetic Procedures.......................S3
4. References...S25
5. NMR Spectra..S26
6. DFT calculations....................................... S98

1. General Considerations

All synthetic manipulations were performed under standard air-free conditions under an atmosphere of argon gas with magnetic stirring unless otherwise mentioned. Flash chromatography was performed using silica gel (230-400 mesh) as the stationary phase. NMR spectra were acquired on a Bruker Avance III 500 or Bruker DPX-300 spectrometer. Chemical shifts are reported relative to residual protonated solvent for CHCl_{3}. High-resolution mass spectra (HRMS) were obtained at the MIT Department of Chemistry Instrumentation Facility using a peak-matching protocol to determine the mass and error range of the molecular ion. Molecular weight distribution measurements of the polymers were conducted with a Shimadzu Gel Permeation Chromatography (GPC) system equipped with a Tosoh TSKgel GMHhr-M mixed-bed column and guard column using either UV or refractive index detectors. The column was calibrated with low polydispersity poly(styrene) standards (Tosoh, PSt Quick Kit) with THF as the mobile phase eluting at $0.75 \mathrm{~mL} / \mathrm{min}$. All reactants and solvents were purchased from commercial suppliers and used without further purification, unless otherwise noted.

2. Optical Experiments

All solution optical spectra were acquired of samples in quartz cuvettes (NSG Precision Cells). Electronic absorbance spectra were acquired with a Varian Cary-100 instrument in double-beam mode using a solvent-containing cuvette for background subtraction spectra. Fluorescence emission spectra were obtained by using a PTI Quantum Master 4 equipped with a 75 W Xe lamp. All fluorescence spectra are corrected for the output of the lamp and the dependence of detector response to the wavelength of emitted light. Fluorescence spectra were acquired using sample absorbances less than 0.1 OD. Fluorescence quantum yields were determined relative to either quinine sulfate in 0.1 N $\mathrm{H}_{2} \mathrm{SO}_{4}$ or Coumarin 6 in ethanol. Irradiation of the methylene blue photosensitizer to generate ${ }^{1} \mathrm{O}_{2}$ was performed with $200 \mathrm{~W} \mathrm{Hg} / \mathrm{Xe}$ lamp (Newport-Oriel) equipped with either 1) a condensing lens, recirculating water, shutter, and 635 nm high-pass filters, or 2) a 635 nm laser diode (4.5 mW). Time-resolved fluorescence data was collected using a PTI time-correlated single-photon counting instrument with a pulsed LED operating at 403 nm . The instrumental response function (IRF) was determined using a diluted suspension of Ludox colloidal silica.

2a. Fluorescence response to singlet oxygen

A cuvette containing the test sample solution was irradiated for numerous timed intervals. Both the absorbance and fluorescence spectra were taken after each interval of irradiation. The absorbance for both methylene blue and samples was approximately 0.1 OD.

2b. Kinetics

A stock solution of methylene blue was prepared in CHCl_{3} to give an absorbance of ~ 1.0 at its peak. 9,10-diphenylanthracene (DPA) was used as a reference. DPA, A2, or P2 was dissolved in 3.5 mL MB solution; the final concentration of the corresponding compound in the sample was $32 \mu \mathrm{M}$. The solution was irradiated for timed intervals, with
acquisition of an absorbance spectrum after each interval until the spectra stopped changing between intervals of irradiation. The wavelengths used for the analysis of kinetics were the peaks of the highest absorbance of the compounds.

3. Detailed synthetic procedures:

3a. Synthesis of P1 and P2:

Synthesis of 3,4,5-trialkoxyethynylbenzene

S1. Prepared following the established literature procedure. ${ }^{1}$ JACS, 2008, 130 (8), 2535.
S2. Compound S1 (562 mg, $2.23 \mathrm{mmol}, 1.0 \mathrm{eq})$ and $\mathrm{K}_{2} \mathrm{CO}_{3}(2.5 \mathrm{~g}, 18 \mathrm{mmol}, 8.0 \mathrm{eq})$ were dissolved in 12 mL of dry DMF at room temperature under argon. 2-ethylhexylbromide $(1.8 \mathrm{~mL}, 10 \mathrm{mmol}, 4.5 \mathrm{eq})$ was then added to this solution under an argon atmosphere. The mixture was heated to $95^{\circ} \mathrm{C}$ and stirred for 4 days. The mixture was then cooled to room temperature and quenched with 10% aq NaOH . Organics were extracted twice with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$, and combined organic phases were washed with brine, dried over MgSO_{4}, filtered and concentrated using rotary evaporation. The crude product was purified via flash chromatography using hexanes and dichloromethane (2.5:1) to yield S2. Yield: 1.05 $\mathrm{g}(80 \%) .{ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 6.86(\mathrm{~s}, 2 \mathrm{H}), 3.84-3.78(\mathrm{~m}, 6 \mathrm{H}), 1.77-1.73(\mathrm{~m}$, $2 \mathrm{H}), 1.71-1.66(\mathrm{~m}, 1 \mathrm{H}), 1.56-1.33(\mathrm{~m}, 24 \mathrm{H}), 0.96-0.91(\mathrm{~m}, 18 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (125 MHz , CDCl_{3}): $\delta 154.2,138.2,115.6,85.6,75.9,71.4,40.6,39.6,30.5,29.3,29.1,23.8,23.7$, 23.1, 23.0, 14.1, 14.1, 11.2, 11.01.

S3. A round bottom flask was charged with $\mathrm{Pd}\left(\mathrm{PPh}_{3}\right)_{2} \mathrm{Cl}_{2}(25 \mathrm{mg}, 0.036 \mathrm{mmol}, 0.02 \mathrm{eq})$ and $\mathrm{CuI}(14 \mathrm{mg}, 0.072 \mathrm{mmol}, 0.04 \mathrm{eq})$ and evacuated and refilled with argon three times. In another flask, $\mathbf{S 2}(1.05 \mathrm{~g}, 1.8 \mathrm{mmol}, 1 \mathrm{eq})$ was dissolved in 63 mL of $\mathrm{Et}_{3} \mathrm{~N}: \operatorname{THF}(1: 3$, v / v) and this solution was added to flask containing catalysts via cannula transfer after deoxygenating for 1 hour with argon. While stirring, trimethylsilylacetylene (0.31 mL , $2.2 \mathrm{mmol}, 1.2 \mathrm{eq}$) was added dropwise to the flask. The reaction mixture was stirred for 2 days at room temperature. The solvent was removed in vacuo. The crude product was purified via flash chromatography using hexanes and dichloromethane (2.5:1) to yield $\mathbf{S 3}$. Yield: $940 \mathrm{mg}(94 \%) .{ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl} 3$): $\delta 6.65(\mathrm{~s}, 2 \mathrm{H}), 3.81(\mathrm{~m}, 6 \mathrm{H}), 1.72-$ $1.64(\mathrm{~m}, 3 \mathrm{H}), 1.5-1.31(\mathrm{~m}, 24 \mathrm{H}), 0.92-0.88(\mathrm{~m}, 18 \mathrm{H}), 0.23(\mathrm{~s}, 9 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (125 MHz , CDCl3): $\delta 153.2,139.3,117.5,110.1,105.8,92.6,76.1,71.3,40.8,39.7,30.7,29.48$, 29.47, 29.3, 23.97, 23.9, 23.3, 23.2, 14.29, 14.25, 11.37, 11.35, 11.2, 0.20 .

S4. Compound $\mathbf{S 3}$ ($940 \mathrm{mg}, 1.7 \mathrm{mmol}, 1 \mathrm{eq}$) was dissolved in a mixture of MeOH (17 $\mathrm{mL}), \mathrm{Et}_{2} \mathrm{O}(17 \mathrm{~mL})$ and $10 \% \mathrm{NaOH}_{(\mathrm{aq})}(7 \mathrm{~mL})$. The reaction mixture was stirred overnight at room temperature. The reaction was stopped by acidification with 10% aq

HCl . Organics were extracted twice with $\mathrm{Et}_{2} \mathrm{O}$, and combined organic phases were washed with brine, dried over MgSO_{4}, filtered and concentrated using rotary evaporation. The crude product was purified via flash chromatography using hexanes and dichloromethane (2.5:1) to yield S4. Yield: $652 \mathrm{~g}(79 \%) .{ }^{1} \mathrm{H}$ NMR ($\left.500 \mathrm{MHz}, \mathrm{CDCl} 3\right): \delta$ $6.71(\mathrm{~s}, 2 \mathrm{H}), 3.88-3.81(\mathrm{~m}, 6 \mathrm{H}), 3.02(\mathrm{~s}, 1 \mathrm{H}), 1.79-1.67(\mathrm{~m}, 3 \mathrm{H}), 1.55-1.28(\mathrm{~m}, 24 \mathrm{H})$, 0.96-0.91 (m, 18H). ${ }^{13} \mathrm{C}$ NMR (125 MHz, CDCl3): $\delta 153.2,139.4,116.3,110.1,84.2,76$, 75.7, 71.2, 40.6, 39.6, 30.5, 29.3, 29.1, 23.8, 23.7, 23.2, 23.1, 14.2, 14.1, 11.2, 11.1.

Compound 1.

Compound 3,4,5-triethylhexyloxyethynylbenzene ($195 \mathrm{mg}, 0.4 \mathrm{mmol}$, 1eq) was dissolved in 2.1 mL of dry THF, followed by dropwise addition of n-butyllithium (0.23 $\mathrm{mL}, 0.36 \mathrm{mmol}, 1.6 \mathrm{M}$ in hexanes) at $-78^{\circ} \mathrm{C}$. The reaction mixture was stirred at $-78^{\circ} \mathrm{C}$ for 1 hour and then transferred to the flask containing 5,12- naphthacenequinone (104 $\mathrm{mg}, 0.4 \mathrm{mmol}, 1 \mathrm{eq}$), which was dissolved in 1.8 mL of dry THF and cooled to $\mathrm{O}^{\circ} \mathrm{C}$, dropwisely via syringe. Upon completion of transfer, the reaction mixture was allowed to warm to room temperature and stirred overnight under argon. The reaction was quenched by addition of 10 mL of ice cold $\mathrm{DI} \mathrm{H}_{2} \mathrm{O}$ and then filtered via vacuum filtration by washing about 30 mL of THF: $\mathrm{H}_{2} \mathrm{O}(1: 1, \mathrm{v} / \mathrm{v})$. Saturated $\mathrm{NH}_{4} \mathrm{Cl}$ was added to filtrate and let it stir for 30 min . Organics were extracted twice with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$, and combined organic phases were washed with $\mathrm{H}_{2} \mathrm{O}$ and brine, dried over MgSO_{4}, filtered and concentrated using rotary evaporation. The crude product was purified via flash chromatography using pure dichloromethane to yield $\mathbf{1}$. Yield: $190 \mathrm{mg}(63 \%) .{ }^{1} \mathrm{H}$ NMR ($\left.500 \mathrm{MHz}, \mathrm{CDCl} 3\right): \delta$ $8.71(\mathrm{~s}, 1 \mathrm{H}), 8.66(\mathrm{~s}, 1 \mathrm{H}), 8.28(\mathrm{~d}, \mathrm{~J}=8 \mathrm{~Hz}, 1 \mathrm{H}), 8.2(\mathrm{~m}, 1 \mathrm{H}), 7.97-7.94(\mathrm{~m}, 2 \mathrm{H}), 7.75-$ $7.72(\mathrm{~m}, 1 \mathrm{H}), 7.63-7.6(\mathrm{~m}, 1 \mathrm{H}), 7.57-7.54(\mathrm{~m}, 1 \mathrm{H}), 7.5-7.47(\mathrm{~m}, 1 \mathrm{H}), 6.63(\mathrm{~s}, 2 \mathrm{H}), 3.84-$ $3.74(\mathrm{~m}, 6 \mathrm{H}), 1.74-1.57(\mathrm{~m}, 3 \mathrm{H}), 1.54-1.28(\mathrm{~m}, 24 \mathrm{H}), 0.96-0.89(\mathrm{~m}, 9 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (125 $\mathrm{MHz}, \mathrm{CDCl} 3): ~ \delta 183.5,153.1,144.4,139.6,139.3,135.9,134.3,132.7,129.9,129.8$, 129.3, 129, 128.9, 128.2, 128.1, 127.7, 127.4, 127.2, 127.1, 116.2, 109.7, 89.9, 86.9, 76.1, $71.3,67,40.6,39.6,30.5,29.31,29.29,29.1,23.8,23.7,23.1,23.06,14.13,14.1,11.19$, 11.18, 11.16, 11.07.

S5
S5. 1-Ethynyl-4 -trimethylsilylethynyl)benzene: Prepared following the established literature procedure. ${ }^{2}$

2a

2

Compound 2.

Compound 2a. Compound 1-Ethynyl-4`-(trimethylsilylethynyl)benzene ($271 \mathrm{mg}, 1.37$ mmol, 4eq) was dissolved in 4.3 mL of dry THF, followed by dropwise addition of n butyllithium ($0.83 \mathrm{~mL}, 1.33 \mathrm{mmol}, 1.6 \mathrm{M}$ in hexanes) at $-78{ }^{\circ} \mathrm{C}$. The reaction mixture was stirred at $-78^{\circ} \mathrm{C}$ for 75 minutes and then transferred to the flask containing compound 1 ($255 \mathrm{mg}, 0.34 \mathrm{mmol}, 1 \mathrm{eq}$), which was dissolved in 2.2 mL of dry THF and cooled to $-78{ }^{\circ} \mathrm{C}$, via cannula transfer. Upon completion of transfer, the reaction mixture was allowed to warm to room temperature and stirred overnight under argon. The reaction mixture was then treated with $10 \% \mathrm{HCl}$ aqueous solution saturated with SnCl_{2} dihydrate and left overnight stirring. Organics were extracted twice with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$, and combined organic phases were washed with $\mathrm{H}_{2} \mathrm{O}$ and brine, dried over MgSO_{4}, filtered and concentrated using rotary evaporation. The crude product was purified via flash chromatography using hexanes and dichloromethane (3:1) to yield 2a. Yield: 210 mg (67\%). ${ }^{1} \mathrm{H}$ NMR ($\left.500 \mathrm{MHz}, \mathrm{CDCl} 3\right): \delta 9.33(\mathrm{~s}, 1 \mathrm{H}), 9.3(\mathrm{~s}, 1 \mathrm{H}), 8.72-8.68(\mathrm{~m}, 2 \mathrm{H}), 8.16-$ $8.13(\mathrm{~m}, 2 \mathrm{H}), 7.84-7.8(\mathrm{~m}, 2 \mathrm{H}), 7.65-7.61(\mathrm{~m}, 4 \mathrm{H}), 7.53-7.51(\mathrm{~m}, 2 \mathrm{H}), 7.05(\mathrm{~s}, 2 \mathrm{H}), 4.02-$ $3.95(\mathrm{~m}, 6 \mathrm{H}), 1.87-1.83(\mathrm{~m}, 2 \mathrm{H}), 1.8-1.74(\mathrm{~m}, 1 \mathrm{H}), 1.68-1.28(\mathrm{~m}, 24 \mathrm{H}), 1.02-0.94(\mathrm{~m}$, $18 \mathrm{H}), 0.33(\mathrm{~s}, 9 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl} 3$): $\delta 153.5,139.6,132.5,132.4,132.34$, $132.28,132.26,132.24,132.17,132.14,131.6,131.5,129.9,128.6,128.5,127.6,127.3$, 127.2, 126.83, 126.79, 126.58, 126.24, 126.14, 126.11, 126.05, 125.96, 125.93, 123.9, 123.6, 123.4, 122.3, 119.1, 118.9, 117.7, 117.6, 117.5, 110.1, 109.8, 104.7, 104.14, 104.1, $102.9,102.6,96.8,89.2,89.1,85.7,83.3,79.3,76.2,71.5,40.7,39.7,30.6,30.5,29.38$, $29.36,29.35,29.18,23.89,23.75,23.19,23.13,14.19,14.14,11.27,11.25,11.23,11.19$. HRMS (ESI) calcd for $\mathrm{C}_{63} \mathrm{H}_{76} \mathrm{O}_{3} \mathrm{Si}(\mathrm{M}+\mathrm{H})^{+}, 909.5636$, found, 909.5630.

Compound 2a ($207 \mathrm{mg}, 0.23 \mathrm{mmol}, 1 \mathrm{eq}$) and $\mathrm{K}_{2} \mathrm{CO}_{3}(94 \mathrm{mg}, 0.68 \mathrm{mmol}, 3 \mathrm{eq})$ were dissolved in mixture of THF $(4 \mathrm{~mL})$, and $\mathrm{MeOH}(4 \mathrm{~mL})$. The reaction mixture was stirred overnight at room temperature. The solvent was removed in vacuo. Organics were extracted twice with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$, and combined organic phases were washed with $\mathrm{H}_{2} \mathrm{O}$ and brine, dried over MgSO_{4}, filtered and concentrated using rotary evaporation. The crude product was used without further purification. Yield: $180 \mathrm{mg}(94 \%) .{ }^{1} \mathrm{H}$ NMR (300 MHz , CDCl3): $\delta 9.29(\mathrm{~s}, 1 \mathrm{H}), 9.26(\mathrm{~s}, 1 \mathrm{H}), 8.67(\mathrm{~m}, 2 \mathrm{H}), 8.12(\mathrm{~m}, 2 \mathrm{H}), 7.80-7.78(\mathrm{~m}, 2 \mathrm{H})$,
7.62-7.60 (m, 4H), $7.5(\mathrm{~m}, 2 \mathrm{H}), 7.01(\mathrm{~m}, 2 \mathrm{H}), 3.97-3.93(\mathrm{~m}, 6 \mathrm{H}), 3.24(\mathrm{~s}, 1 \mathrm{H}), 1.82-1.74$ (m, 3H), 1.54-1.24 (m, 24H), 0.99-0.92 (m, 18H).

S6. Ethynyl-4`-(trimethylsilylethynyl)biphenyl: Prepared following the established literature procedure. ${ }^{3}$ Eur. J. Org. Chem. 2007, 5244-5249.

3a

3

Compound 3.

Compound 3a. Compound 4-Ethynyl-4`-(trimethylsilylethynyl)biphenyl (505 mg , $1.83 \mathrm{mmol}, 7 \mathrm{eq}$) was dissolved in 3.2 mL of dry THF, followed by dropwise addition of n-butyllithium ($1.11 \mathrm{~mL}, 1.78 \mathrm{mmol}, 1.6 \mathrm{M}$ in hexanes) at $-78^{\circ} \mathrm{C}$. The reaction mixture was stirred at $-78^{\circ} \mathrm{C}$ for 75 minutes and then transferred to the flask containing compound 1 ($190 \mathrm{mg}, 0.26 \mathrm{mmol}, 1 \mathrm{eq}$), which was dissolved in 1.6 mL of dry THF and cooled to $-78{ }^{\circ} \mathrm{C}$, via cannula transfer. Upon completion of transfer, the reaction mixture was allowed to warm to room temperature and stirred overnight under argon. The reaction mixture was then treated with $10 \% \mathrm{HCl}$ aqueous solution saturated with SnCl_{2} dihydrate and left overnight stirring. Organics were extracted twice with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$, and combined organic phases were washed with $\mathrm{H}_{2} \mathrm{O}$ and brine, dried over MgSO_{4}, filtered and concentrated using rotary evaporation. The crude product was purified via flash chromatography using hexanes and dichloromethane (3:1) to yield 3a. Yield: 179 mg (70\%). ${ }^{1} \mathrm{H}$ NMR ($\left.500 \mathrm{MHz}, \mathrm{CDCl} 3\right)$: $\delta 9.29(\mathrm{~s}, 2 \mathrm{H}), 8.70-8.69(\mathrm{~m}, 2 \mathrm{H}), 8.13-8.12(\mathrm{~m}$, 2H), 7.92 (d, J=8 Hz, 2H), 7.74 (d, J=8 Hz, 2H), 7.66-7.56 (m, 6H), 7.52-7.49 (m, 2H), $7.07(\mathrm{~s}, 2 \mathrm{H}), 4.04-3.98(\mathrm{~m}, 6 \mathrm{H}), 1.89-1.78(\mathrm{~m}, 3 \mathrm{H}), 1.68-1.41(\mathrm{~m}, 24 \mathrm{H}), 1.04-0.96(\mathrm{~m}$, $18 \mathrm{H}), 0.34(\mathrm{~s}, 9 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (125 MHz, CDCl3): $\delta 153.5,140.4,140.3,139.7,132.8$, 132.7, 132.6, 132.4, 132.3, 132.2, 132.1, 129.99, 129.97, 128.6, 128.56, 127.5, 127.4, 127.2, 127.1, 126.9, 126.89, 126.8, 126.7, 126.6, 126.2, 126, 125.9, 122.9, 122.6, 118.7, $117.9,117.8,109.9,104.9,104,103.1,95.4,88.3,85.8,40.7,39.8,30.6,30.5,29.4,29.2$, $23.9,23.8,23.2,23.15,14.2,14.1,11.3,11.2,0.02$.

Compound 3a ($179 \mathrm{mg}, 0.18 \mathrm{mmol}, 1 \mathrm{eq}$) and $\mathrm{K}_{2} \mathrm{CO}_{3}(115 \mathrm{mg}, 0.83 \mathrm{mmol}, 3 \mathrm{eq})$ were dissolved in mixture of THF (1.5 mL), and $\mathrm{MeOH}(3 \mathrm{~mL})$. The reaction mixture was stirred overnight at room temperature. The solvent was removed in vacuo. Organics were extracted twice with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$, and combined organic phases were washed with $\mathrm{H}_{2} \mathrm{O}$ and brine, dried over MgSO_{4}, filtered and concentrated using rotary evaporation. The crude product was used without further purification. Yield: $159 \mathrm{mg}(94 \%) .{ }^{1} \mathrm{H}$ NMR (500 MHz ,

CDCl3): $\delta 9.34(\mathrm{~s}, 1 \mathrm{H}), 9.33(\mathrm{~s}, 1 \mathrm{H}), 8.75-8.71(\mathrm{~m}, 2 \mathrm{H}), 8.18-8.14(\mathrm{~m}, 2 \mathrm{H}), 7.95(\mathrm{~d}$, $\mathrm{J}=8.5 \mathrm{~Hz}, 2 \mathrm{H}), 7.75(\mathrm{~d}, \mathrm{~J}=8 \mathrm{~Hz}, 2 \mathrm{H}), 7.69-7.62(\mathrm{~m}, 6 \mathrm{H}), 7.54-7.51(\mathrm{~m}, 2 \mathrm{H}), 7.06(\mathrm{~s}, 2 \mathrm{H})$, 3.99-3.94 (m, 6H), 3.2 ($\mathrm{s}, 1 \mathrm{H}$), 1.88-1.82 (m, 2H), 1.8-1.77 (m 1H), 1.68-1.23 (m, 24H), 1.02-0.94 (m, 18H). ${ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl} 3$): $\delta 153.6,140.8,140.6,139.8,132.9$, $132.6,132.5,132.4,132.37,132.3,130.2,128.8,128.7,127.7,127.5,127.4,127.1,126.9$, 126.7, 126.4, 126.2, 126.19, 123.1, 121.7, 118.9, 118.1, 117.9, 109.9, 104.2, 103.2, 88.4, $85.9,83.6,78.3,76.4,71.6,40.8,39.8,30.7,30.68,29.5,29.3,24,23.9,23.3,23.28$, 14.33, 14.28, 11.39, 11.37, 11.34. HRMS (ESI) calcd for $\mathrm{C}_{66} \mathrm{H}_{72} \mathrm{O}_{3}(\mathrm{M}+\mathrm{H})^{+}, 913.5554$, found, 913.5566

4
Compound 4. Prepared following the established literature procedure. ${ }^{4}$

5a

5

Compound 5.

Compound 5a. A round bottom flask was charged with $2(180 \mathrm{mg}, 0.22 \mathrm{mmol}, 1 \mathrm{eq}), 4$ ($196 \mathrm{mg}, 0.49 \mathrm{mmol}, 2.3 \mathrm{eq}$), $\mathrm{Pd}\left(\mathrm{PPh}_{3}\right)_{2} \mathrm{Cl}_{2}(3 \mathrm{mg}, 4.3 \mathrm{umol}, 0.02 \mathrm{eq})$ and $\mathrm{CuI}(1.7 \mathrm{mg}$, $8.6 \mathrm{umol}, 0.04 \mathrm{eq})$ and evacuated and refilled with argon three times. In another flask, 11 mL of deoxygenated $\mathrm{Et}_{3} \mathrm{~N}:$ THF $(1: 3, \mathrm{v} / \mathrm{v})$ was transferred to reaction flask. The reaction mixture was stirred for overnight at room temperature. The solvent was removed in vacuo. The crude product was purified via flash chromatography using hexanes and dichloromethane (3:1) to yield 5a. Yield: $135 \mathrm{mg}(56 \%)$. ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl} 3$): δ $9.31(\mathrm{~s}, 1 \mathrm{H}), 9.30(\mathrm{~s}, 1 \mathrm{H}), 8.72-8.69(\mathrm{~m}, 2 \mathrm{H}), 8.17-8.13(\mathrm{~m}, 2 \mathrm{H}), 7.86(\mathrm{~d}, \mathrm{~J}=8 \mathrm{~Hz}, 2 \mathrm{H})$, 7.72-7.68 (m, 3H), 7.63-7.61 (m, 2H), 7.53-7.49 (m, 3H), 7.41-7.39 (m, 1H), 7.06 (s, $2 \mathrm{H}), 4.05-3.94(\mathrm{~m}, 6 \mathrm{H}), 1.89-1.76(\mathrm{~m}, 3 \mathrm{H}), 1.69-1.35(\mathrm{~m}, 24 \mathrm{H}), 1.03-0.95(\mathrm{~m}, 18 \mathrm{H}), 0.36$ (s, 9H), $0.30(\mathrm{~s}, 9 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl} 3$): $\delta 153.6,141.8,139.8,135.3,132.6$, 132.4, 132.38, 132.28, 132.2, 132, 131.8, 131.5, 131.2, 130.1, 128.8, 128.7, 127.7, 127.5, $126.9,126.7,126.4,126.3,126.2,126.1,125.6,123.8,123.5,123.4,119.1,117.9,117.8$, $109.9,104.3,103.8,103.2,103.1,100.9,97.2,93.7,89.8,89.5,85.9,76.4,71.6,40.8$, $39.8,30.7,30.6,29.53,29.51,29.5,29.3,24,23.9,23.3,23.28,14.3,14.28,11.41,11.40$, $11.38,11.34,0.18,0.02$.

Compound 5a ($135 \mathrm{mg}, 0.12 \mathrm{mmol}, 1 \mathrm{eq}$) and $\mathrm{K}_{2} \mathrm{CO}_{3}(135 \mathrm{mg}, 0.98 \mathrm{mmol}, 8 \mathrm{eq})$ were dissolved in mixture of THF $(2 \mathrm{~mL})$, and $\mathrm{MeOH}(4 \mathrm{~mL})$. The reaction mixture was stirred overnight at room temperature. The solvent was removed in vacuo. Organics were extracted twice with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$, and combined organic phases were washed with $\mathrm{H}_{2} \mathrm{O}$ and
brine, dried over MgSO_{4}, filtered and concentrated using rotary evaporation. The crude product was purified via flash chromatography using hexanes and dichloromethane (2.25:1) to yield 5. Yield: $80 \mathrm{mg}(68 \%) .{ }^{1} \mathrm{H}$ NMR ($\left.500 \mathrm{MHz}, \mathrm{CDCl} 3\right): ~ \delta 9.34(\mathrm{~s}, 1 \mathrm{H})$, $9.32(\mathrm{~s}, 1 \mathrm{H}), 8.73-8.70(\mathrm{~m}, 2 \mathrm{H}), 8.18-8.14(\mathrm{~m}, 2 \mathrm{H}), 7.87(\mathrm{~d}, \mathrm{~J}=8.5 \mathrm{~Hz}, 2 \mathrm{H}), 7.74(\mathrm{~s}, 1 \mathrm{H})$, $7.71(\mathrm{~d}, \mathrm{~J}=8.5,2 \mathrm{H}), 7.64-7.62(\mathrm{~m}, 2 \mathrm{H}), 7.56-7.52(\mathrm{~m}, 3 \mathrm{H}), 7.46-7.44(\mathrm{~m}, 1 \mathrm{H}), 7.08(\mathrm{~s}$, 2 H), 4.04-3.93 (m, 6H), $3.52(\mathrm{~s}, 1 \mathrm{H}), 3.24(\mathrm{~s}, 1 \mathrm{H}), 1.90-1.73(\mathrm{~m}, 3 \mathrm{H}), 1.66-1.37$ (m, 24 H), 1.02-0.89 (m, 18H). ${ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl} 3$): $\delta 153.5,139.7,135.3,132.7$, $132.5,132.29,132.27,132.16,132,131.7,131.6,130,128.6,127.6,127.3,126.8,126.6$, 126.4, 126.3, 126.2, 126.1, 125.9, 124.9, 123.8, 123.1, 122.7, 119, 117.7, 117.6, 109.8, 104.2, 102.9, 93.9, 89.4, 89.1, 85.7, 83.1, 82.2, 81.7, 79.7, 76.2, 71.5, 40.7, 39.7, 30.6, 30.5, 29.4, 29.2, 23.9, 23.8, 23.2, 23.1, 14.2, 14.1, 11.25, 11.23, 11.2. HRMS (ESI) calcd for $\mathrm{C}_{70} \mathrm{H}_{72} \mathrm{O}_{3}(\mathrm{M}+\mathrm{H})^{+}, 961.5554$, found, 961.5554 .

6a

6

Compound 6.

Compound 6a. A round bottom flask was charged with $\mathbf{3}(159 \mathrm{mg}, 0.17 \mathrm{mmol}, 1 \mathrm{eq}), 4$ $(165 \mathrm{mg}, 0.42 \mathrm{mmol}, 2.4 \mathrm{eq}), \mathrm{Pd}\left(\mathrm{PPh}_{3}\right)_{2} \mathrm{Cl}_{2}(2.4 \mathrm{mg}, 3.4 \mathrm{umol}, 0.02 \mathrm{eq})$ and $\mathrm{CuI}(1.3 \mathrm{mg}$, $6.8 \mathrm{umol}, 0.04 \mathrm{eq})$ and evacuated and refilled with argon three times. In another flask, 10 mL of deoxygenated $\mathrm{Et}_{3} \mathrm{~N}$:THF (1:3, v/v) was transferred to reaction flask. The reaction mixture was stirred for overnight at room temperature. The solvent was removed in vacuo. The crude product was purified via flash chromatography using hexanes and dichloromethane (3:1) to yield 6a. Yield: $110 \mathrm{mg}(55 \%) .{ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl} 3$): δ $9.29(\mathrm{~s}, 2 \mathrm{H}), 8.71-8.69(\mathrm{~m}, 2 \mathrm{H}), 8.14-8.11(\mathrm{~m}, 2 \mathrm{H}), 7.93$ (d, J=8.5 Hz, 2H), 7.77 (d, $\mathrm{J}=8.5,2 \mathrm{H}), 7.73-7.71(\mathrm{~m}, 5 \mathrm{H}), 7.62-7.60(\mathrm{~m}, 2 \mathrm{H}), 7.52-7.50(\mathrm{~m}, 3 \mathrm{H}), 7.42-7.40(\mathrm{~m}, 1 \mathrm{H})$, $7.08(\mathrm{~s}, 2 \mathrm{H}), 4.06-3.99(\mathrm{~m}, 6 \mathrm{H}), 1.90-1.79(\mathrm{~m}, 2 \mathrm{H}), 1.68-1.39(\mathrm{~m}, 24 \mathrm{H}), 1.05-0.97(\mathrm{~m}$, $18 \mathrm{H}), 0.37(\mathrm{~s}, 9 \mathrm{H}), 0.32(\mathrm{~s}, 9 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($\left.125 \mathrm{MHz}, \mathrm{CDCl} 3\right): \delta 153.6,140.5,140.4$, $139.8,135.2,132.5,132.4,132.36,132.3,132.25,131.3,130.1,130,128.7,127.2,127.1$, $126.8,126.6,126.3,126.29,126.16,126.13,126.10,125.6,123.4,123.1,122.7,118.8$, $118.1,117.9,109.9,104,103.9,103.3,103.26,100.9,97.1,93.9,88.7,88.5,85.9,76.4$, $71.6,40.8,39.9,30.8,30.7,29.54,29.53,29.51,29.3,24.1,23.9,23.4,23.3,14.33,14.28$, $11.43,11.41,11.39,11.35,0.18,0.02$.

Compound 6a ($105 \mathrm{mg}, 0.09 \mathrm{mmol}, 1 \mathrm{eq}$) and $\mathrm{K}_{2} \mathrm{CO}_{3}(104 \mathrm{mg}, 0.75 \mathrm{mmol}, 8.4 \mathrm{eq})$ were dissolved in mixture of THF (1.5 mL), and $\mathrm{MeOH}(3 \mathrm{~mL})$. The reaction mixture was stirred overnight at room temperature. The solvent was removed in vacuo. Organics were extracted twice with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$, and combined organic phases were washed with $\mathrm{H}_{2} \mathrm{O}$ and brine, dried over MgSO_{4}, filtered and concentrated using rotary evaporation. The crude product was purified via flash chromatography using hexanes and dichloromethane (2.75:1) to yield 5. Yield: $78 \mathrm{mg}(85 \%) .{ }^{1} \mathrm{H}$ NMR ($\left.500 \mathrm{MHz}, \mathrm{CDCl} 3\right): \delta 9.29(\mathrm{~s}, 2 \mathrm{H})$, 8.71-8.69 (m, 2H), 8.13-8.11 (m, 2H), 7.91 (d, J=8 Hz, 2H), 7.75-7.72 (m, 3H), 7.69 (s, $4 \mathrm{H}), 7.61-7.59(\mathrm{~m}, 2 \mathrm{H}), 7.52-7.42(\mathrm{~m}, 3 \mathrm{H}), 7.41-7.40(\mathrm{~m}, 1 \mathrm{H}), 7.1(\mathrm{~s}, 2 \mathrm{H}), 4.03-3.96(\mathrm{~m}$,
$6 \mathrm{H}), 3.51(\mathrm{~s}, 1 \mathrm{H}), 3.22(\mathrm{~s}, 1 \mathrm{H}), 1.87-1.77(\mathrm{~m}, 3 \mathrm{H}), 1.68-1.39(\mathrm{~m}, 24 \mathrm{H}), 1.03-0.94(\mathrm{~m}$, $18 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl} 3$): $\delta 153.5,140.5,140.4,139.7,135.2,132.6,132.4$, $132.39,132.3,132.25,132.2,132.1,131.4,130,129.9,128.6,128.5,127.2,126.9,126.7$, 126.6, 126.5, 126.2, 126.04, 126, 124.9, 122.9, 122.7, 122.3, 118.7, 117.9, 117.8, 109.9, $104,103,94.1,88.4,88,85.8,82.9,82.3,81.8,79.6,76.3,71.5,40.7,39.7,30.62,30.6$, 29.41, 29.39, 29.38, 29.2, 23.9, 23.8, 23.2, 23.15, 14.2, 14.15, 11.29, 11.27, 11.25,11.21.

7
Compound 7. Prepared following the established literature procedure. ${ }^{5}$

3b. Synthesis of P3:

8

Compound 8.

A round bottom flask was charged with 3,4,5-triethylhexyloxyethynylbenzene (652 mg , $1.34 \mathrm{mmol}, 1 \mathrm{eq}), \mathbf{1 , 4}$-diiodobenzene ($1.33 \mathrm{~g}, 4 \mathrm{mmol}, 3 \mathrm{eq}$), $\mathrm{Pd}\left(\mathrm{PPh}_{3}\right)_{4}(46 \mathrm{mg}, 0.04$ $\mathrm{mmol}, 0.03 \mathrm{eq})$ and $\mathrm{CuI}(15 \mathrm{mg}, 0.08 \mathrm{mmol}, 0.06 \mathrm{eq})$ and evacuated and refilled with argon three times. In another flask, 51 mL of deoxygenated $\mathrm{Et}_{3} \mathrm{~N}$:Toluene ($1: 5, \mathrm{v} / \mathrm{v}$) was transferred to reaction flask. The reaction mixture was stirred for overnight at $40^{\circ} \mathrm{C}$. The solvent was removed in vacuo. The crude product was purified via flash chromatography using hexanes and dichloromethane (2.75:1) to yield 5a. Yield: $230 \mathrm{mg}(25 \%) .{ }^{1} \mathrm{H}$ NMR (500 MHz, CDCl3): $\delta 7.70$ (d, J=9 Hz, 2H), 7.26 (d, J=10 Hz, 2H), 6.75 (s, 2H), 3.90$3.84(\mathrm{~m}, 6 \mathrm{H}), 1.80-1.69(\mathrm{~m}, 3 \mathrm{H}), 1.60-1.41(\mathrm{~m}, 24 \mathrm{H}), 0.97-0.92(\mathrm{~m}, 18 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl} 3$): $\delta 153.27,137.5,133,122.9,117.1,110.4,109.5,93.8,91.4,87.1$, $76,71.3,40.6,39.6,30.5,29.3,29.1,23.82,23.79,23.71,23.2,23.1,14.15,14.11,11.21$, 11.19, 11.10.

9a

9

Compound 9.

Compound 9a. A round bottom flask was charged with 4-Ethynyl-4(trimethylsilylethynyl)biphenyl (S6) ($120 \mathrm{mg}, 0.44 \mathrm{mmol}, 1.3 \mathrm{eq}$), $\mathrm{Pd}\left(\mathrm{PPh}_{3}\right)_{2} \mathrm{Cl}_{2}(5 \mathrm{mg}$, 6.8 umol, 0.02 eq) and $\mathrm{CuI}(2.6 \mathrm{mg}, 13.6 \mathrm{umol}, 0.04 \mathrm{eq})$ and evacuated and refilled with argon three times. In another flask, $\mathbf{8}(230 \mathrm{mg}, 0.34 \mathrm{mmol}, 1 \mathrm{eq})$ was dissolved in 20 mL of $E t_{3} \mathrm{~N}$:THF ($1: 3, \mathrm{v} / \mathrm{v}$) and this solution was added to flask containing catalysts and other starting material via cannula transfer after deoxygenating for 1 hour with argon. The reaction mixture was stirred for overweekend at room temperature. The solvent was removed in vacuo. The crude product was purified via flash chromatography using hexanes and dichloromethane (2.75:1) to yield 9a. Yield: $251 \mathrm{mg}(90 \%) .{ }^{1} \mathrm{H}$ NMR (500 $\mathrm{MHz}, \mathrm{CDCl} 3): ~ \delta 7.62-7.54(\mathrm{~m}, 12 \mathrm{H}), 6.78(\mathrm{~s}, 2 \mathrm{H}), 3.93-3.84(\mathrm{~m}, 6 \mathrm{H}), 1.82-1.70(\mathrm{~m}, 3 \mathrm{H})$, $1.61-1.35(\mathrm{~m}, 24 \mathrm{H}), 0.99-0.93(\mathrm{~m}, 18 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($\left.125 \mathrm{MHz}, \mathrm{CDCl} 3\right): \delta 153.4,140.4$, 140.3, 139.4, 132.6, 132.3, 131.7, 131.6, 127.1, 126.9, 123.5, 122.9, 122.7, 122.5, 117.4, $109.8,104.9,95.4,92.1,91.2,90.3,87.9,76.9,76.2,71.5,40.8,39.8,30.7,29.5,29.49$, $29.47,29.3,23.9,23.88,23.3,23.2,14.3,14.25,11.38,11.37,11.35,11.25,0.13$.

Compound 9a ($251 \mathrm{mg}, 0.3 \mathrm{mmol}, 1 \mathrm{eq}$) and $\mathrm{K}_{2} \mathrm{CO}_{3}(120 \mathrm{mg}, 0.9 \mathrm{mmol}, 3 \mathrm{eq})$ were dissolved in mixture of THF (1.8 mL), and $\mathrm{MeOH}(3.6 \mathrm{~mL})$. The reaction mixture was stirred overnight at room temperature. The solvent was removed in vacuo. Organics were extracted twice with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$, and combined organic phases were washed with $\mathrm{H}_{2} \mathrm{O}$ and brine, dried over MgSO_{4}, filtered and concentrated using rotary evaporation. The crude product was purified via flash chromatography using hexanes and ethylacetate (9:1) to yield 9. Yield: $194 \mathrm{mg}(84 \%) .{ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl3}$): $\delta 7.65-7.62(\mathrm{~m}, 4 \mathrm{H}), 7.60$ (s, 4H), 7.56-7.52 (m, 4H), 6.77 (s, 2H), 3.92-3.86 (m, 6H), 3.17 (s, 1H), 1.81-1.70 (m, 3H), $1.60-1.35(\mathrm{~m}, 24 \mathrm{H}), 0.98-0.92(\mathrm{~m}, 18 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl} 3$): $\delta 153.3,140.6$, $140.1,139.2,132.7,132.1,131.5,131.4,126.9,126.8,123.4,122.8,122.5,121.5,117.2$, $109.6,91.9,90.9,90.2,87.8,83.4,78.1,76.1,71.3,40.6,39.6,30.5,29.34,29.33,29.32$, 29.1, 23.8, 23.7, 23.1, 23.09, 14.13,14.09, 11.22, 11.20, 11.1. HRMS (ESI) calcd for $\mathrm{C}_{54} \mathrm{H}_{66} \mathrm{O} 3(\mathrm{M}+\mathrm{H})^{+}, 763.5085$, found, 763.5081.

Compound 10.
Compound 10a. A round bottom flask was charged with 9 ($194 \mathrm{mg}, 0.25 \mathrm{mmol}, 1 \mathrm{eq}$), 4 ($131 \mathrm{mg}, 0.33 \mathrm{mmol}, 1.3 \mathrm{eq}$), $\mathrm{Pd}\left(\mathrm{PPh}_{3}\right)_{2} \mathrm{Cl}_{2}(3.6 \mathrm{mg}, 5.1 \mathrm{umol}, 0.02 \mathrm{eq})$ and $\mathrm{CuI}(2 \mathrm{mg}$, $0.01 \mathrm{mmol}, 0.04 \mathrm{eq})$ and evacuated and refilled with argon three times. In another flask, 12 mL of deoxygenated $\mathrm{Et}_{3} \mathrm{~N}:$ THF ($1: 3, \mathrm{v} / \mathrm{v}$) was transferred to reaction flask. The reaction mixture was stirred for overnight at room temperature. The solvent was removed in vacuo. The crude product was purified via flash chromatography using hexanes and dichloromethane (3:1) to yield 10a. Yield: $166 \mathrm{mg}(63 \%) .{ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl} 3$): $\delta 7.68-7.63(\mathrm{~m}, 9 \mathrm{H}), 7.56-7.53(\mathrm{~m}, 4 \mathrm{H}), 7.48-7.46(\mathrm{~m}, 2 \mathrm{H}), 7.38-7.36(\mathrm{~m}, 2 \mathrm{H}), 6.78(\mathrm{~s}$, $2 \mathrm{H}), 3.92-3.87(\mathrm{~m}, 6 \mathrm{H}), 1.82-1.70(\mathrm{~m}, 3 \mathrm{H}), 1.60-1.36(\mathrm{~m}, 24 \mathrm{H}), 1.01-0.90(\mathrm{~m}, 18 \mathrm{H})$, 0.32 (s, 9H), 0.29 (s, 9H). ${ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl} 3$): $\delta 153.4,140.4,140.3,139.4$,
$135.2,132.4,132.36,132.29,131.7,131.6,131.3,127.1,127,126.3,125.6,123.5,123.4$, $122.9,122.6,117.4,109.8,103.9,103.3,100.8,97.1,93.9,92.1,91.2,90.4,88.6,87.9$, $76.2,71.5,40.8,39.8,30.7,29.5,29.3,23.99,23.88,23.3,23.25,14.3,14.2,11.4,11.3$, $0.15,0.01$.

Compound 10a ($166 \mathrm{mg}, 0.16 \mathrm{mmol}, 1 \mathrm{eq}$) and $\mathrm{K}_{2} \mathrm{CO}_{3}(133 \mathrm{mg}, 0.9 \mathrm{mmol}, 8.4 \mathrm{eq})$ were dissolved in mixture of THF $(1.8 \mathrm{~mL})$, and $\mathrm{MeOH}(3.6 \mathrm{~mL})$. The reaction mixture was stirred overnight at room temperature. The solvent was removed in vacuo. Organics were extracted twice with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$, and combined organic phases were washed with $\mathrm{H}_{2} \mathrm{O}$ and brine, dried over MgSO_{4}, filtered and concentrated using rotary evaporation. The crude product was used without further purification. Yield: $111 \mathrm{mg}(78 \%) .{ }^{1} \mathrm{H}$ NMR (500 MHz , $\mathrm{CDCl} 3): ~ \delta ~ 7.71-7.70(\mathrm{~m}, 1 \mathrm{H}), 7.68-7.64(\mathrm{~m}, 8 \mathrm{H}), 7.56-7.52(\mathrm{~m}, 5 \mathrm{H}), 7.43-7.41(\mathrm{~m}, 1 \mathrm{H})$, $6.77(\mathrm{~s}, 2 \mathrm{H}), 3.92-3.86(\mathrm{~m}, 6 \mathrm{H}), 3.5(\mathrm{~s}, 1 \mathrm{H}), 3.22(\mathrm{~s}, 1 \mathrm{H}), 1.81-1.70(\mathrm{~m}, 3 \mathrm{H}), 1.61-1.35$ (m, 24H), 0.98-0.92 (m, 18 H$).{ }^{13} \mathrm{C}$ NMR (125 MHz, CDCl3): $\delta 153.3,140.5,140.2$, $139.2,135.2,132.6,132.4,132.2,131.6,131.5,131.4,126.97,126.94,126.6,124.9$, $123.4,122.8,122.7,122.5,122.2,117.2,109.6,94,91.9,91,90.2,87.9,87.8,82.9,82.3$, 81.7, 79.6, 76.1, 71.3, 40.6, 39.6, 30.5, 29.3, 29.1, 23.8, 23.7, 23.2, 23.1, 14.16, 14.12, 11.24, 11.22, 11.11. HRMS (ESI) calcd for $\mathrm{C}_{64} \mathrm{H}_{70} \mathrm{O}_{3}(\mathrm{M}+\mathrm{H})+$, 887.5398, found, 887.5418 .

P1. A Schlenk tube was charged with $<1 \mathrm{mg} \operatorname{Pd}\left(\mathrm{PPh}_{3}\right)_{4}$, and $<1 \mathrm{mg} \mathrm{CuI}$, and evacuated and refilled with argon three times. $5(19.5 \mathrm{mg}, 0.02 \mathrm{mmol}, 1 \mathrm{eq})$ and $7(12 \mathrm{mg}, 0.02$ $\mathrm{mmol}, 1 \mathrm{eq}$) was dissolved in $2.5 \mathrm{~mL} 4: 1(\mathrm{v}: \mathrm{v})$ toluene:diisopropylamine and sparged with argon for 30 minutes. The solution was added to the reaction vessel and the mixture stirred for 72 hours at room tempareture. The reaction mixture was precipitated into 200 mL methanol and collected by centrifugation and decanting. The polymer was then dissolved in 2 mL of toluene and passed through a syringe filter to remove insoluble catalyst residues, reprecipitated into 100 mL of methanol and isolated by centrifugation and decanting. $\mathrm{Mn}[\mathrm{g} / \mathrm{mol}]: 26 \mathrm{k}, \mathrm{Mw}[\mathrm{g} / \mathrm{mol}]: 47 \mathrm{k}$. Yield: $20 \mathrm{mg}(76 \%){ }^{1} \mathrm{H}$ NMR (500 $\mathrm{MHz}, \mathrm{CDCl} 3): \delta 9.34-9.32(\mathrm{~m}, 1 \mathrm{H}), 8.95(\mathrm{~m}, 0.5 \mathrm{H}), 8.81(\mathrm{~m}, 0.5 \mathrm{H}), 8.72(\mathrm{~m}, 1 \mathrm{H}), 8.46$ $(\mathrm{m}, 0.5 \mathrm{H}), 8.29(\mathrm{~m}, 0.5 \mathrm{H}), 8.16(\mathrm{~m}, 1 \mathrm{H}), 8.00(\mathrm{~m}, 0.5), 7.89-7.80(\mathrm{~m}, 2 \mathrm{H}), 7.75-7.68(\mathrm{~m}$, $3 \mathrm{H}), 7.65-7.37(\mathrm{~m}, 6 \mathrm{H}), 7.13-7.02(\mathrm{~m}, 3 \mathrm{H}), 4.02-3.76(\mathrm{~m}, 10 \mathrm{H}), 1.89-1.75(\mathrm{~m}, 5 \mathrm{H})$, $1.67-1.28(\mathrm{~m}, 40 \mathrm{H}), 1.08-0.79(\mathrm{~m}, 30 \mathrm{H})$.

P2. A Schlenk tube was charged with $<1 \mathrm{mg} \operatorname{Pd}\left(\mathrm{PPh}_{3}\right)_{4}$, and $<1 \mathrm{mg} \mathrm{CuI}$, and evacuated and refilled with argon three times. $\mathbf{6}(18.3 \mathrm{mg}, 0.016 \mathrm{mmol}, 1 \mathrm{eq})$ and $7(9.1 \mathrm{mg}, 0.016$ $\mathrm{mmol}, 1 \mathrm{eq}$) was dissolved in $2 \mathrm{~mL} 4: 1$ ($\mathrm{v}: \mathrm{v}$) toluene:diisopropylamine and sparged with argon for 30 minutes. The solution was added to the reaction vessel and the mixture stirred for 72 hours at room tempareture. The reaction mixture was precipitated into 200 mL methanol and collected by centrifugation and decanting. The polymer was then dissolved in 2 mL of toluene and passed through a syringe filter to remove insoluble catalyst residues, reprecipitated into 100 mL of methanol and isolated by centrifugation and decanting. Mn [g/mol]: 20k, Mw [g/mol]: 46k. Yield: $15 \mathrm{mg}(71 \%){ }^{1} \mathrm{H}$ NMR (500 $\mathrm{MHz}, \mathrm{CDCl} 3): \delta 9.34-9.3(\mathrm{~m}, 1 \mathrm{H}), 9.22-9.18(\mathrm{~m}, 1 \mathrm{H}), 8.72(\mathrm{~m}, 1 \mathrm{H}), 8.64(\mathrm{~m}, 1 \mathrm{H})$, 8.15-8.07 (m, 2H), 7.97-7.88 (m, 2H), 7.82-7.70 (m, 7H), 7.63-7.49 (m, 6H), 7.17-7.03 $(\mathrm{m}, 4 \mathrm{H}), 4.02-3.88(\mathrm{~m}, 10 \mathrm{H}), 1.86-1.76(\mathrm{~m}, 5 \mathrm{H}), 1.65-1.29(\mathrm{~m}, 40 \mathrm{H}), 1.06-0.87(\mathrm{~m}$, 30 H).

P3. A Schlenk tube was charged with $<1 \mathrm{mg} \mathrm{Pd}\left(\mathrm{PPh}_{3}\right)_{4}$, and $<1 \mathrm{mg} \mathrm{CuI}$, and evacuated and refilled with argon three times. $10(26 \mathrm{mg}, 0.03 \mathrm{mmol}, 1 \mathrm{eq})$ and $7(17 \mathrm{mg}, 0.03$
mmol, 1 eq) was dissolved in $3.3 \mathrm{~mL} 4: 1$ ($\mathrm{v}: \mathrm{v}$) toluene:diisopropylamine and sparged with argon for 30 minutes. The solution was added to the reaction vessel and the mixture stirred for 72 hours at $60^{\circ} \mathrm{C}$. The reaction mixture was precipitated into 150 mL methanol and collected by centrifugation and decanting. The polymer was then dissolved in 2 mL of toluene and passed through a syringe filter to remove insoluble catalyst residues, reprecipitated into 100 mL of methanol and isolated by centrifugation and decanting. Mn [g/mol]: 31 k , $\mathrm{Mw}[\mathrm{g} / \mathrm{mol}]: 58 \mathrm{k}$. Yield: $25 \mathrm{mg}(69 \%){ }^{1} \mathrm{H}$ NMR (500 MHz , $\mathrm{CDCl} 3): ~ \delta 7.74(\mathrm{~m}, 1 \mathrm{H}), 7.64-7.4(\mathrm{~m}, 13 \mathrm{H}), 7.05-7.00(\mathrm{~m}, 2 \mathrm{H}), 6.73(\mathrm{~m}, 2 \mathrm{H}), 3.85(\mathrm{~m}$, $10 \mathrm{H}), 1.75(\mathrm{~m}, 5 \mathrm{H}), 1.52-1.20(\mathrm{~m}, 40 \mathrm{H}), 1.03-0.79(\mathrm{~m}, 30 \mathrm{H})$.

3c. Synthesis of A1, A2 and A3

S7. 4-iodophenol ($9 \mathrm{~g}, 0.04 \mathrm{~mol}, 1.0 \mathrm{eq}), \mathrm{KOH}(2.35 \mathrm{~g}, 0.04 \mathrm{~mol}, 1 \mathrm{eq})$ and KI (180 mg , $0.8 \mathrm{mmol}, 0.02 \mathrm{eq}$) were dissolved in 102 mL of dry EtOH at room temperature under argon. 2-ethylhexylbromide ($8.1 \mathrm{~mL}, 0.045 \mathrm{mmol}, 1.1 \mathrm{eq}$) was then added to this solution under an argon atmosphere. The mixture was heated to $60^{\circ} \mathrm{C}$ and stirred for overnight. The mixture was then cooled to room temperature. After precipitate (KBr) was collected, the solution was distilled off using rotavap and remaining residue was redissolved in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. Organic phase were washed with water and brine, dried over MgSO_{4}, filtered and concentrated using rotary evaporation. The crude product was taken next step without further purification. Yield: $7.34 \mathrm{~g}(52 \%)$.

S8. A round bottom flask was charged with $\mathrm{Pd}\left(\mathrm{PPh}_{3}\right)_{2} \mathrm{Cl}_{2}(404 \mathrm{mg}, 0.6 \mathrm{mmol}, 0.04 \mathrm{eq})$ and $\mathrm{CuI}(195 \mathrm{mg}, 1 \mathrm{mmol}, 0.07 \mathrm{eq})$ and evacuated and refilled with argon three times. In another flask, $\mathbf{S 5}(5 \mathrm{~g}, 14.4 \mathrm{mmol}, 1 \mathrm{eq})$ was dissolved in $77 \mathrm{~mL}^{2} \mathrm{Et}_{3} \mathrm{~N}$ and this solution was added to flask containing catalysts via cannula transfer after deoxygenating for 1 hour with argon. While stirring, TMSA ($2.4 \mathrm{~mL}, 16.7 \mathrm{mmol}, 1.2$ eq) were added dropwise to the flask. The reaction mixture was stirred for overnight at room temperature. The solvent was removed in vacuo. The crude product was purified via flash chromatography using hexanes and dichloromethane (2.5:1) to yield S8. Yield: 3.23 mg (92\%).

Compound 11. Compound $\mathbf{S 8}(3.2 \mathrm{~g}, 10.6 \mathrm{mmol}, 1 \mathrm{eq})$ was dissolved in mixture of $\mathrm{MeOH}(106 \mathrm{~mL}), \mathrm{Et}_{2} \mathrm{O}(106 \mathrm{~mL})$ and $10 \% \mathrm{NaOH}_{(\mathrm{aq})}(44 \mathrm{~mL})$. The reaction mixture was stirred overnight at room temperature. The reaction was stopped by acidification with 10% aq HCl . Organics were extracted twice with $\mathrm{Et}_{2} \mathrm{O}$, and combined organic phases were washed with brine, dried over MgSO_{4}, filtered and concentrated using rotary evaporation. The crude product was purified via flash chromatography using hexanes and dichloromethane (2.5:1) to yield 11. Yield: $1.93 \mathrm{~g}(79 \%) .{ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR is in good
agreement with the same compound reported in the literature. ${ }^{6}$ Macromol. Rapid Commun. 2015, 36, 31-37.

12

Compound 12.

A round bottom flask was charged with $\mathrm{Pd}\left(\mathrm{PPh}_{3}\right)_{2} \mathrm{Cl}_{2}(39 \mathrm{mg}, 0.06 \mathrm{mmol}, 0.09 \mathrm{eq})$ and $\mathrm{CuI}(6 \mathrm{mg}, 1 \mathrm{mmol}, 0.05 \mathrm{eq})$ and evacuated and refilled with argon three times. In another flask, $\mathbf{X X}(1.11 \mathrm{~g}, 18.8 \mathrm{mmol}, 1 \mathrm{eq})$ was dissolved in 15 mL of $\mathrm{Et}_{3} \mathrm{~N}$ and this solution was added to flask containing catalysts via cannula transfer after deoxygenating for 1 hour with argon. While stirring, TMSA ($0.09 \mathrm{~mL}, 0.6 \mathrm{mmol}, 1 \mathrm{eq}$) were added dropwise to the flask. The reaction mixture was stirred for overnight at room temperature. The solvent was removed in vacuo. The crude product was purified via flash chromatography using hexanes and dichloromethane (7.5:1) to yield 12. Yield: 350 mg (25\%). ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR is in good agreement with literature. ${ }^{7}$

13

Compound 13.

A round bottom flask was charged with $\mathrm{Pd}\left(\mathrm{PPh}_{3}\right)_{2} \mathrm{Cl}_{2}(7 \mathrm{mg}, 0.01 \mathrm{mmol}, 0.02 \mathrm{eq})$ and $\mathrm{CuI}(3.8 \mathrm{mg}, 0.02 \mathrm{mmol}, 0.04 \mathrm{eq})$ and evacuated and refilled with argon three times. In another flask, $\mathbf{1 1}(112 \mathrm{mg}, 0.49 \mathrm{mmol}, 1 \mathrm{eq})$ and $\mathbf{1 2}(325 \mathrm{mg}, 0.58 \mathrm{mmol}, 1.2 \mathrm{eq})$ were dissolved in 20 mL of $\mathrm{Et}_{3} \mathrm{~N}: \operatorname{THF}(1: 3, \mathrm{v} / \mathrm{v})$ and this solution was added to flask containing catalysts via cannula transfer after deoxygenating for 1 hour with argon. The reaction mixture was stirred for overnight at room temperature. The solvent was removed in vacuo. The crude product was purified via flash chromatography using hexanes and dichloromethane (5:1) to yield 13. Yield: 190 mg (59\%). ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl} 3$): δ 7.46 (d, J=10 Hz, 2H), 6.97 (s, 1H), 6.96 (s, 1H), 6.89 (d, J=8.6 Hz, 2H), 3.94-3.85 (m, $6 \mathrm{H}), 1.82-1.73(\mathrm{~m}, 3 \mathrm{H}), 1.64-1.34(\mathrm{~m}, 24 \mathrm{H}), 0.99-0.89(\mathrm{~m}, 18 \mathrm{H}), 0.28(\mathrm{~s}, 9 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl} 3$): $\delta 159.6,154.6,153.6,133.1,117.2,116.4,115.5,114.9,114.7$, $113.2,101.5,99.7,95.2,84.7,72.2,71.9,70.7,39.81,39.80,39.5,30.8,30.7,29.32$, $29.28,29.2,24.2,24.1,24,23.24,23.22,23.19,14.26,14.23,14.21,11.44,11.42,11.26$, 0.13.

14

Compound 14.

Compound 13 ($190 \mathrm{mg}, 0.3 \mathrm{mmol}, 1 \mathrm{eq}$) and $\mathrm{K}_{2} \mathrm{CO}_{3}(120 \mathrm{mg}, 0.9 \mathrm{mmol}, 3 \mathrm{eq})$ were dissolved in mixture of THF (1 mL), and $\mathrm{MeOH}(2 \mathrm{~mL})$. The reaction mixture was stirred overnight at room temperature. The solvent was removed in vacuo. Organics were extracted twice with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$, and combined organic phases were washed with $\mathrm{H}_{2} \mathrm{O}$ and brine, dried over MgSO_{4}, filtered and concentrated using rotary evaporation. The crude product was used without further purification. Yield: $154 \mathrm{mg}(92 \%)$. ${ }^{1} \mathrm{H}$ NMR (500 MHz , CDCl3): $\delta 7.45(\mathrm{~d}, \mathrm{~J}=8.8 \mathrm{~Hz}, 2 \mathrm{H}), 6.98(\mathrm{~s}, 1 \mathrm{H}), 6.97(\mathrm{~s}, 1 \mathrm{H}), 6.88(\mathrm{~d}, \mathrm{~J}=8.8 \mathrm{~Hz}, 2 \mathrm{H})$, $3.91-3.84(\mathrm{~m}, 6 \mathrm{H}), 3.31(\mathrm{~s}, 1 \mathrm{H}), 1.80-1.72(\mathrm{~m}, 3 \mathrm{H}), 1.62-1.32(\mathrm{~m}, 24 \mathrm{H}), 0.98-0.88(\mathrm{~m}$, $18 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl} 3$): $\delta 159.7,154.7,153.7,133.1,117.6,116.8,115.4$, $115.3,114.7,112.2,95.3,84.5,82.1,80.3,72.3,72.2,70.8,39.8,39.6,39.5,30.8,30.7$, 29.3, 29.24, 29.23, 24.2, 24.1, 24, 23.22, 23.20, 23.19, 14.23, 14.22, 11.4, 11.32, 11.26. HRMS (ESI) calcd for $\mathrm{C}_{40} \mathrm{H}_{58} \mathrm{O}_{3}(\mathrm{M}+\mathrm{H})^{+}, 587.4459$, found, 587.4467.

15

Compound 15.

A round bottom flask was charged with $\mathrm{Pd}\left(\mathrm{PPh}_{3}\right)_{4}(78 \mathrm{mg}, 0.06 \mathrm{mmol}, 0.03 \mathrm{eq})$ and CuI ($26 \mathrm{mg}, 0.12 \mathrm{mmol}, 0.06 \mathrm{eq}$) and evacuated and refilled with argon three times. In another flask, $11(500 \mathrm{mg}, 2.18 \mathrm{mmol}, 1 \mathrm{eq})$ and $\mathbf{4 , 4}$-diiodophenyl $(2.64 \mathrm{~g}, 6.52 \mathrm{mmol}, 3$ eq) were dissolved in 80 mL of $\mathrm{Et}_{3} \mathrm{~N}$:Toluene ($1: 5, \mathrm{v} / \mathrm{v}$) and this solution was added to flask containing catalysts via cannula transfer after deoxygenating for 1 hour with argon. The reaction mixture was stirred for overnight at $40{ }^{\circ} \mathrm{C}$. The solvent was removed in vacuo. The crude product was purified via flash chromatography using hexanes and dichloromethane (5:1) to yield 15. Yield: $506 \mathrm{mg}(46 \%) .{ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl} 3$): δ 7.8 (d, J=8.3 Hz, 2H), 7.59 (d, J= $8.5 \mathrm{~Hz}, 2 \mathrm{H}$), $7.55(\mathrm{~d}, \mathrm{~J}=8 \mathrm{~Hz}, 2 \mathrm{H}), 7.49$ (d, J=8.6 Hz, 2 H), 7.37 (d, J=8.3 Hz, 2H), 6.91 (d, J=8.6 Hz, 2H), 3.91-3.86 (m, 2H), 1.79-1.74 (m, 1H), $1.55-1.33(\mathrm{~m}, 8 \mathrm{H}), 0.98-0.92(\mathrm{~m}, 6 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl} 3$): $\delta 159.6,139.9$, $139.3,137.9,133,131.9,128.8,126.7,123.2,114.9,114.6,93.3,90.6,87.7,70.7,39.4$, 30.5, 29.1, 23.9, 23, 14.1, 11.1.

Compound 16.

Compound 16a. A round bottom flask was charged with $\mathrm{Pd}\left(\mathrm{PPh}_{3}\right)_{2} \mathrm{Cl}_{2}(5 \mathrm{mg}, 0.006$ $\mathrm{mmol}, 0.02 \mathrm{eq})$ and $\mathrm{CuI}(2.5 \mathrm{mg}, 0.012 \mathrm{mmol}, 0.04 \mathrm{eq})$ and evacuated and refilled with argon three times. In another flask, $15(170 \mathrm{mg}, 0.33 \mathrm{mmol}, 1 \mathrm{eq})$ was dissolved in 12 mL of $\mathrm{Et}_{3} \mathrm{~N}: \operatorname{THF}(1: 3, \mathrm{v} / \mathrm{v})$ and this solution was added to flask containing catalysts via cannula transfer after deoxygenating for 1 hour with argon. While stirring, TMSA (57 uL , $0.4 \mathrm{mmol}, 1.2 \mathrm{eq})$ were added dropwise to the flask. The reaction mixture was stirred for overnight at room temperature. The solvent was removed in vacuo. The crude product was purified via flash chromatography using hexanes and dichloromethane (4:1) to yield 16a. Yield: $160 \mathrm{mg}(80 \%) .{ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl} 3$): $\delta 7.56-7.45(\mathrm{~m}, 8 \mathrm{H}), 7.47(\mathrm{~d}$, $\mathrm{J}=8.4 \mathrm{~Hz}) 6.88(\mathrm{~d}, \mathrm{~J}=8.4 \mathrm{~Hz}), 3.85(\mathrm{~d}, 2 \mathrm{H}), 1.75-1.69(\mathrm{~m}, 1 \mathrm{H}), 1.50-1.25(\mathrm{~m}, 8 \mathrm{H}), 0.95-$ $0.88(\mathrm{~m}, 6 \mathrm{H}), 0.27(\mathrm{~s}, 9 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl} 3$): $\delta 159.7,140.5,139.7,133.2$, 132.6, 132.1, 126.9, 126.8, 123.2, 122.5, 115.1, 114.8, 105.1, 95.3, 90.7, 87.9, 70.8, 39.5, 30.7, 29.3, 24, 23.2, 14.2, 11.3, 0.14 .

Compound 16a ($129 \mathrm{mg}, 0.26 \mathrm{mmol}, 1 \mathrm{eq}$) and $\mathrm{K}_{2} \mathrm{CO}_{3}(106 \mathrm{mg}, 0.77 \mathrm{mmol}, 3 \mathrm{eq})$ were dissolved in mixture of THF (1 mL), and $\mathrm{MeOH}(2 \mathrm{~mL})$. The reaction mixture was stirred overnight at room temperature. The solvent was removed in vacuo. Organics were extracted twice with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$, and combined organic phases were washed with $\mathrm{H}_{2} \mathrm{O}$ and brine, dried over MgSO_{4}, filtered and concentrated using rotary evaporation. The crude product was used without further purification. Yield: $106 \mathrm{mg}(95 \%) .{ }^{1} \mathrm{H}$ NMR $(500 \mathrm{MHz}$, CDCl3): $\delta 7.62-7.58(\mathrm{~m}, 8 \mathrm{H}), 7.5(\mathrm{~d}, \mathrm{~J}=8.6 \mathrm{~Hz}, 2 \mathrm{H}), 6.91(\mathrm{~d}, \mathrm{~J}=8.6 \mathrm{~Hz}, 2 \mathrm{H}), 3.89-3.88$ $(\mathrm{m}, 2 \mathrm{H}), 3.17(\mathrm{~s}, 1 \mathrm{H}), 1.79-1.74(\mathrm{~m}, 1 \mathrm{H}), 1.56-1.34(\mathrm{~m}, 8 \mathrm{H}), 0.98-0.93(\mathrm{~m}, 6 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (125 MHz, CDCl3): $\delta 159.6,140.8,139.5,133.1,132.6,131.9,126.9,126.8$, $123.2,121.3,114.9,114.6,90.7,87.8,83.5,77.9,70.6,39.4,30.5,29.1,23.9,23.1,14.1$, 11.1. HRMS (ESI) calcd for $\mathrm{C}_{30} \mathrm{H}_{30} \mathrm{O}(\mathrm{M}+\mathrm{H})^{+}, 407.2369$, found, 407.2367 .

17

Compound 17.

A round bottom flask was charged with $\mathrm{Pd}\left(\mathrm{PPh}_{3}\right)_{4}(9 \mathrm{mg}, 7.9$ umol, 0.03 eq$)$ and $\mathrm{CuI}(3$ $\mathrm{mg}, 15.8 \mathrm{mmol}, 0.06 \mathrm{eq})$ and evacuated and refilled with argon three times. In another flask, 14 ($154 \mathrm{mg}, 0.26 \mathrm{mmol}, 1 \mathrm{eq}$) and $\mathbf{4 , 4} \mathbf{4}^{-}$-diiodophenyl ($320 \mathrm{mg}, 0.79 \mathrm{mmol}, 3 \mathrm{eq}$) were dissolved in 12 mL of $\mathrm{Et}_{3} \mathrm{~N}$:Toluene ($1: 5, \mathrm{v} / \mathrm{v}$) and this solution was added to flask containing catalysts via cannula transfer after deoxygenating for 1 hour with argon. The reaction mixture was stirred for overnight at $40{ }^{\circ} \mathrm{C}$. The solvent was removed in vacuo. The crude product was purified via flash chromatography using hexanes and dichloromethane (4:1) to yield 17. Yield: $140 \mathrm{mg}(62 \%) .{ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl} 3$): δ 7.8 (d, J=8 Hz, 2H), 7.61 (d, J=8 Hz, 2H), 7.57 (d, J=8 Hz, 2H), 7.48 (d, J=8 Hz, 2H), 7.38 (d, J=8 Hz, 2H), $7.04(\mathrm{~s}, 1 \mathrm{H}), 7.03(\mathrm{~s}, 1 \mathrm{H}), 6.90(\mathrm{~d}, \mathrm{~J}=8.5 \mathrm{~Hz}, 2 \mathrm{H}), 3.97-3.94$ (m, $4 \mathrm{H}), 3.89-3.88(\mathrm{~m}, 2 \mathrm{H}), 1.84-1.82(\mathrm{~m}, 2 \mathrm{H}), 1.79-1.73(\mathrm{~m}, 1 \mathrm{H}), 1.67-1.29(\mathrm{~m}, 24 \mathrm{H}), 1.02-$
$0.91(\mathrm{~m}, 18 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (125 MHz, CDCl3): $\delta 159.5,153.9,153.7,139.9,139.6,137.9$, $132.9,132,128.8,126.7,123.1,116.7,116.5,115.4,114.7,114.6,113.3,95.2,94.3,93.4$, $87.3,84.6,72.1,72,70.6,39.7,39.4,30.71,30.69,30.53,29.2,29.1,24.06,24.04,23.88$, $23.09,23.04,14.09,14.06,11.29,11.11$.

18a

18

Compound 18.

Compound 18a. A round bottom flask was charged with $\mathrm{Pd}\left(\mathrm{PPh}_{3}\right)_{2} \mathrm{Cl}_{2}(2 \mathrm{mg}, 3.2 \mathrm{umol}$, $0.02 \mathrm{eq})$ and $\mathrm{CuI}(1 \mathrm{mg}, 6.4 \mathrm{umol}, 0.04 \mathrm{eq})$ and evacuated and refilled with argon three times. In another flask, $17(140 \mathrm{mg}, 0.16 \mathrm{mmol}, 1 \mathrm{eq})$ was dissolved in 6 mL of $\mathrm{Et}_{3} \mathrm{~N}: \mathrm{THF}(1: 3, \mathrm{v} / \mathrm{v})$ and this solution was added to flask containing catalysts via cannula transfer after deoxygenating for 1 hour with argon. While stirring, TMSA ($40 \mathrm{uL}, 0.28$ mmol, 1.8 eq) were added dropwise to the flask. The reaction mixture was stirred for 2 days at room temperature. The solvent was removed in vacuo. The crude product was purified via flash chromatography using hexanes and dichloromethane (3:1) to yield 18a. Yield: $121 \mathrm{mg}(90 \%)$. ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl} 3$): $\delta 7.61-7.56(\mathrm{~m}, 8 \mathrm{H}), 7.48(\mathrm{~d}, \mathrm{~J}=8.7$ $\mathrm{Hz}, 2 \mathrm{H}$), 7.04 ($\mathrm{s}, 1 \mathrm{H}$), 7.03 ($\mathrm{s}, 1 \mathrm{H}$), 6.9 (d, J=8.7 Hz, 2H), 3.98-3.91 (m, 4H), 3.89-3.88 $(\mathrm{m}, 2 \mathrm{H}), 1.86-1.81(\mathrm{~m}, 2 \mathrm{H}), 1.78-1.74(\mathrm{~m}, 1 \mathrm{H}), 1.67-1.28(\mathrm{~m}, 24), 1.02-0.9(\mathrm{~m}, 18 \mathrm{H}), 0.3$ (s, 9H). ${ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl} 3$): $\delta 159.7,154.2,153.9,140.5,140,133.2,132.7$, 132.2, 127.1, 126.9, 123.2, 122.6, 116.8, 116.7, 115.6, 114.8, 113.5, 105.1, 95.4, 95.3, $94.6,87.5,84.9,72.3,72.2,70.8,39.9,39.6,30.9,30.7,29.4,29.3,24.27,24.25,24.09$, 23.31, 23.26, 14.32, 14.29, 11.53, 11.52, 11.33, 0.21.

Compound 18a ($121 \mathrm{mg}, 0.15 \mathrm{mmol}, 1 \mathrm{eq}$) and $\mathrm{K}_{2} \mathrm{CO}_{3}(60 \mathrm{mg}, 0.45 \mathrm{mmol}, 3 \mathrm{eq})$ were dissolved in mixture of THF (1 mL), and $\mathrm{MeOH}(2 \mathrm{~mL})$. The reaction mixture was stirred overnight at room temperature. The solvent was removed in vacuo. Organics were extracted twice with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$, and combined organic phases were washed with $\mathrm{H}_{2} \mathrm{O}$ and brine, dried over MgSO_{4}, filtered and concentrated using rotary evaporation. The crude product was used without further purification. Yield: 100mg ($>99 \%$). ${ }^{1} \mathrm{H}$ NMR (500 $\mathrm{MHz}, \mathrm{CDCl} 3$): $\delta 7.64-7.59(\mathrm{~m}, 8 \mathrm{H}), 7.48$ (d, J=8.6 Hz, 2H), 7.05 ($\mathrm{s}, 1 \mathrm{H}$), 7.03 ($\mathrm{s}, 1 \mathrm{H}$), $6.9(\mathrm{~d}, \mathrm{~J}=8.6 \mathrm{~Hz}, 2 \mathrm{H}), 3.99-3.92(\mathrm{~m}, 4 \mathrm{H}), 3.89-3.86(\mathrm{~m}, 2 \mathrm{H}), 3.17(\mathrm{~s}, 1 \mathrm{H}), 1.86-1.81(\mathrm{~m}$, $2 \mathrm{H}), 1.79-1.74(\mathrm{~m}, 1 \mathrm{H}), 1.68-1.28(\mathrm{~m}, 24 \mathrm{H}), 1.02-0.91(\mathrm{~m}, 18 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (125 MHz , CDCl3): $\delta 159.7,154.2,153.9,140.9,139.9,133.2,132.9,132.2,127.1,127.06,123.3$, $121.5,116.8,116.7,115.6,114.8,114.77,113.5,95.4,94.6,87.5,84.9,83.7,78.2,72.3$, $72.2,70.8,39.9,39.6,30.92,30.9,30.7,29.4,29.3,24.27,24.25,24.1,23.3,23.26,14.32$, 14.29, 11.52, 11.33. HRMS (ESI) calcd for $\mathrm{C}_{54} \mathrm{H}_{66} \mathrm{O}_{3}(\mathrm{M}+\mathrm{H})^{+}, 763.5085$, found, 763.5096 .

19

Compound 19.

Compound 14 ($149 \mathrm{mg}, 0.25 \mathrm{mmol}, 1 \mathrm{eq}$) was dissolved in 1 mL of dry THF, followed by dropwise addition of n-butyllithium $\left(0.14 \mathrm{~mL}, 0.23 \mathrm{mmol}, 1.6 \mathrm{M}\right.$ in hexanes) at $-78{ }^{\circ} \mathrm{C}$. The reaction mixture was stirred at $-78^{\circ} \mathrm{C}$ for 1 hour and then transferred to the flask containing 5,12- naphthacenequinone ($66 \mathrm{mg}, 0.25 \mathrm{mmol}, 1 \mathrm{eq}$), which was dissolved in 1 mL of dry THF and cooled to $\mathrm{O}^{\circ} \mathrm{C}$, dropwisely via syringe. Upon completion of transfer, the reaction mixture was allowed to warm to room temperature and stirred overnight under argon. The reaction was quenched by addition of 5 mL of ice cold DI $\mathrm{H}_{2} \mathrm{O}$ and then filtered via vacuum filtration by washing about 20 mL of THF: $\mathrm{H}_{2} \mathrm{O}$ (1:1, v / v). Saturated $\mathrm{NH}_{4} \mathrm{Cl}$ was added to filtrate and let it stir for 30 min . Organics were extracted twice with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$, and combined organic phases were washed with $\mathrm{H}_{2} \mathrm{O}$ and brine, dried over MgSO_{4}, filtered and concentrated using rotary evaporation. The crude product was purified via flash chromatography using pure dichloromethane to yield 19. Yield: $117 \mathrm{mg}(54 \%) .{ }^{1} \mathrm{H}$ NMR ($\left.500 \mathrm{MHz}, \mathrm{CDCl} 3\right): \delta 8.8(\mathrm{~s}, 1 \mathrm{H}), 8.69(\mathrm{~s}, 1 \mathrm{H}), 8.32-8.28$ $(\mathrm{m}, 2 \mathrm{H}), 8.02(\mathrm{~d}, \mathrm{~J}=8.1 \mathrm{~Hz}, 1 \mathrm{H}), 7.97(\mathrm{~d}, \mathrm{~J}=8.2,1 \mathrm{H}), 7.77-7.73(\mathrm{~m}, 1 \mathrm{H}), 7.65-7.62(\mathrm{~m}$, $1 \mathrm{H}), 7.59-7.53(\mathrm{~m}, 2 \mathrm{H}), 7.45(\mathrm{~d}, \mathrm{~J}=8.7 \mathrm{~Hz}, 2 \mathrm{H}), 6.90-6.88(\mathrm{~m}, 4 \mathrm{H}), 3.90-3.73(\mathrm{~m}, 6 \mathrm{H})$, $3.71(\mathrm{~s}, 1 \mathrm{H}), 1.8-1.73(\mathrm{~m}, 3 \mathrm{H}), 1.62-1.14(\mathrm{~m}, 24 \mathrm{H}), 0.97-0.88(\mathrm{~m}, 12 \mathrm{H}), 0.84-0.79(\mathrm{~m}$, $3 \mathrm{H}), 0.77-0.72(\mathrm{~m}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl} 3$): $\delta 183.5,159.6,154.1,153.4$, 144.2, 139.5, 135.9, 134.2, 132.9, 132.7, 130, 129.8, 129.3, 129, 128.8, 128.3, 128.1, $127.7,127.4,127.3,127.2,116.9,116,115.2,115.1,114.6,111.7,96.1,95.3,84.5,83.4$, $72.1,71.3,70.6,67.2,39.6,39.4,39.33,39.31,30.6,30.5,30.2,30.1,29.2,29.1,28.9$, $28.8,23.9,23.8,23.7,23.6,23.07,23.04,22.94,22.93,14.09,14.08,14.06,11.3,11.1$, 10.96, 10.92.

20

Compound 20.

Compound 18 ($202 \mathrm{mg}, 0.27 \mathrm{mmol}$, 1eq) was dissolved in 1.4 mL of dry THF, followed by dropwise addition of n-butyllithium ($0.15 \mathrm{~mL}, 0.24 \mathrm{mmol}, 1.6 \mathrm{M}$ in hexanes) at -78
${ }^{\circ} \mathrm{C}$. The reaction mixture was stirred at $-78{ }^{\circ} \mathrm{C}$ for 1 hour and then transferred to the flask containing 5,12- naphthacenequinone ($69 \mathrm{mg}, 0.27 \mathrm{mmol}, 1 \mathrm{eq}$), which was dissolved in 1.2 mL of dry THF and cooled to $\mathrm{O}^{\circ} \mathrm{C}$, dropwisely via syringe. Upon completion of transfer, the reaction mixture was allowed to warm to room temperature and stirred overnight under argon. The reaction was quenched by addition of 5 mL of ice cold DI $\mathrm{H}_{2} \mathrm{O}$ and then filtered via vacuum filtration by washing about 30 mL of THF: $\mathrm{H}_{2} \mathrm{O}$ (1:1, v / v). Saturated $\mathrm{NH}_{4} \mathrm{Cl}$ was added to filtrate and let it stir for 30 min . Organics were extracted twice with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$, and combined organic phases were washed with $\mathrm{H}_{2} \mathrm{O}$ and brine, dried over MgSO_{4}, filtered and concentrated using rotary evaporation. The crude product was purified via flash chromatography using pure dichloromethane to yield $\mathbf{2 0}$. Yield: $150 \mathrm{mg}(55 \%) .{ }^{1} \mathrm{H}$ NMR ($\left.500 \mathrm{MHz}, \mathrm{CDCl} 3\right): \delta 8.9(\mathrm{~s}, 1 \mathrm{H}), 8.7(\mathrm{~s}, 1 \mathrm{H}), 8.38-8.36$ $(\mathrm{m}, 1 \mathrm{H}), 8.31-8.29(\mathrm{~m}, 1 \mathrm{H}), 8.1-8.09(\mathrm{~m}, 1 \mathrm{H}), 8.05-8.03(\mathrm{~m}, 1 \mathrm{H}), 7.83-7.79(\mathrm{~m}, 1 \mathrm{H}), 7.7-$ $7.67(\mathrm{~m}, 1 \mathrm{H}), 7.64-7.54(\mathrm{~m}, 10 \mathrm{H}), 7.47(\mathrm{~d}, \mathrm{~J}=8.8 \mathrm{~Hz}, 2 \mathrm{H}), 7.03(\mathrm{~s}, 1 \mathrm{H}), 7.02(\mathrm{~s}, 1 \mathrm{H}), 6.9$ $(\mathrm{d}, \mathrm{J}=8.8 \mathrm{~Hz}, 2 \mathrm{H}), 3.98-3.91(\mathrm{~m}, 4 \mathrm{H}), 3.89-3.86(\mathrm{~m}, 2 \mathrm{H}), 3.18(\mathrm{~s}, 1 \mathrm{H}), 1.85-1.80(\mathrm{~m}, 2 \mathrm{H})$, 1.78-1.73 (m, 1H), 1.66-1.35 (m, 24H), 1.01-0.89 (m, 18H). ${ }^{13}$ C NMR (125 MHz , CDC13): $\delta 183.5,159.7,154.1,153.8,144.1,140.9,139.8,139.4,136,134.5,133.1$, $132.9,132.4,132.1,130.3,130,129.7,129.4,129.1,128.4,128.1,127.8,127.7,127.6$, $127.4,127,126.9,123.3,121.3,116.7,116.6,115.5,114.8,114.7,113.3,95.3,94.5,92.1$, $87.5,86.7,84.8,72.2,72.1,70.7,67.4,39.8,39.5,30.8,30.7,29.3,29.2,24.18,24.16,24$, 23.23, 23.18, 14.3, 14.2, 11.4, 11.3.

21

Compound 21.

Compound 16 ($135 \mathrm{mg}, 0.33 \mathrm{mmol}, 1 \mathrm{eq}$) was dissolved in 1 mL of dry THF, followed by dropwise addition of n-butyllithium ($0.18 \mathrm{~mL}, 0.29 \mathrm{mmol}, 1.6 \mathrm{M}$ in hexanes) at $-78{ }^{\circ} \mathrm{C}$. The reaction mixture was stirred at $-78^{\circ} \mathrm{C}$ for 1 hour and then transferred to the flask containing 5,12- naphthacenequinone ($86 \mathrm{mg}, 0.33 \mathrm{mmol}, 1 \mathrm{eq}$), which was dissolved in 1.5 mL of dry THF and cooled to $\mathrm{O}^{\circ} \mathrm{C}$, dropwisely via syringe. Upon completion of transfer, the reaction mixture was allowed to warm to room temperature and stirred overnight under argon. The reaction was quenched by addition of 5 mL of ice cold DI $\mathrm{H}_{2} \mathrm{O}$ and then filtered via vacuum filtration by washing about 20 mL of THF: $\mathrm{H}_{2} \mathrm{O}$ (1:1, v / v). Saturated $\mathrm{NH}_{4} \mathrm{Cl}$ was added to filtrate and let it stir for 30 min . Organics were extracted twice with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$, and combined organic phases were washed with $\mathrm{H}_{2} \mathrm{O}$ and brine, dried over MgSO_{4}, filtered and concentrated using rotary evaporation. The crude product was purified via flash chromatography using pure dichloromethane to yield $\mathbf{2 1 .}$ Yield: $100 \mathrm{mg}(45 \%) .{ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl} 3$): $\delta 8.77$ (s, 1H), 8.67 (s, 1H), 8.29$8.25(\mathrm{~m}, 2 \mathrm{H}), 8.01-7.98(\mathrm{~m}, 2 \mathrm{H}), 7.78-7.75(\mathrm{~m}, 1 \mathrm{H}), 7.65-7.63(\mathrm{~m}, 1 \mathrm{H}), 7.59-7.48(\mathrm{~m}$,
$12 \mathrm{H}), 6.9$ (d, J=8.8 Hz, 2H), 3.89-3.87 (m, 2H), 3.61 (s, 1H), 1.78-1.73 (m, 1H), 1.56$1.29(\mathrm{~m}, 8 \mathrm{H}), 0.98-0.93(\mathrm{~m}, 6 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (125 MHz, CDCl3): $\delta 183.7,159.8,144.3$, $140.9,139.5,136.1,134.5,133.2,132.9,132.5,132.1,130.2,130,129.7,129.4,129.1$, $128.4,128.3,127.9,127.7,127.5,127.4,127,126.9,123.4,121.3,115.1,114.8,92.3$, $90.9,87.9,86.6,70.8,67.4,39.5,30.7,29.3,24,23.2,14.3,11.3$.

A1

A1.

Phenylacethylene ($51 \mathrm{mg}, 0.50 \mathrm{mmol}, 4 \mathrm{eq}$) was dissolved in 1 mL of dry THF, followed by dropwise addition of n-butyllithium ($0.3 \mathrm{~mL}, 0.48 \mathrm{mmol}, 1.6 \mathrm{M}$ in hexanes) at $-78{ }^{\circ} \mathrm{C}$. The reaction mixture was stirred at $-78^{\circ} \mathrm{C}$ for 1 hour and then transferred to the flask containing 20 ($105 \mathrm{mg}, 0.12 \mathrm{mmol}, 1 \mathrm{eq}$), which was dissolved in 0.6 mL of dry THF and cooled to $-78^{\circ} \mathrm{C}$, dropwisely via cannula. Upon completion of transfer, the reaction mixture was allowed to warm to room temperature and stirred overnight under argon. The reaction mixture was then treated with 15 mL of $10 \% \mathrm{HCl}$ aqueous solution saturated with SnCl_{2} dihydrate and left overnight stirring. Organics were extracted twice with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$, and combined organic phases were washed with $\mathrm{H}_{2} \mathrm{O}$ and brine, dried over MgSO_{4}, filtered and concentrated using rotary evaporation. The crude product was purified via flash chromatography using hexanes and dichloromethane (3.5:1) to yield A1. Yield: $56 \mathrm{mg}(50 \%)$. ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl} 3$): $\delta 9.41$ (s, 1H), 9.33 (s, 1H), 8.86$8.84(\mathrm{~m}, 1 \mathrm{H}), 8.73-8.71(\mathrm{~m}, 1 \mathrm{H}), 8.16-8.14(\mathrm{~m}, 2 \mathrm{H}), 7.89-7.87(\mathrm{~m}, 2 \mathrm{H}), 7.63-7.58(\mathrm{~m}$, $2 \mathrm{H}), 7.55-7.47(\mathrm{~m}, 7 \mathrm{H}), 7.32(\mathrm{~s}, 1 \mathrm{H}), 7.16(\mathrm{~s}, 1 \mathrm{H}), 6.95-6.92(\mathrm{~m}, 2 \mathrm{H}), 4.13-4.07(\mathrm{~m}, 4 \mathrm{H})$, 3.93-3.90 (m, 2H), 2.06-1.98 (m, 1H), 1.95-1.88 (m, 1H), 1.8-1.76 (m, 1H), 1.73-1.21 (m, $24 \mathrm{H}), 1.07(\mathrm{t}, 3 \mathrm{H}), 0.99-0.93(\mathrm{~m}, 12 \mathrm{H}), 0.79(\mathrm{t}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($\left.125 \mathrm{MHz}, \mathrm{CDCl} 3\right): \delta$ 159.6, 154.1, 153.8, 133, 132.4, 132.3, 132.2, 132.1, 131.8, 130.1, 129.9, 128.7, 128.6, $127.9,127.3,126.7,126.5,126.4,126,125.9,125.8,123.6,118.9,118.1,116.9,116.1$, $115.3,115.2,114.6,113.4,103.3,100.5,95.6,92.5,87.3,84.9,72.3,71.9,70.6,39.8$, $39.5,39.4,30.8,30.5,30.4,29.3,29.1,29,24.1,23.9,23.8,23.1,23.06,23,14.2,14.1$, 13.9, 11.4, 11.1, 10.95. HRMS (ESI) calcd for $\mathrm{C}_{66} \mathrm{H}_{72} \mathrm{O}_{3}\left(\mathrm{M}^{+}\right), 912.5476$, found, 912.5493.

A2

A2.

Phenylacethylene ($59 \mathrm{mg}, 0.58 \mathrm{mmol}, 4 \mathrm{eq}$) was dissolved in 1.1 mL of dry THF, followed by dropwise addition of n-butyllithium ($0.35 \mathrm{~mL}, 0.56 \mathrm{mmol}, 1.6 \mathrm{M}$ in hexanes) at $-78^{\circ} \mathrm{C}$. The reaction mixture was stirred at $-78^{\circ} \mathrm{C}$ for 1 hour and then transferred to the flask containing $20(148 \mathrm{mg}, 0.15 \mathrm{mmol}, 1 \mathrm{eq})$, which was dissolved in 0.5 mL of dry THF and cooled to $-78^{\circ} \mathrm{C}$, dropwisely via cannula. Upon completion of transfer, the reaction mixture was allowed to warm to room temperature and stirred overnight under argon. The reaction mixture was then treated with 15 mL of $10 \% \mathrm{HCl}$ aqueous solution saturated with SnCl_{2} dihydrate and left overnight stirring. Organics were extracted twice with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$, and combined organic phases were washed with $\mathrm{H}_{2} \mathrm{O}$ and brine, dried over MgSO_{4}, filtered and concentrated using rotary evaporation. The crude product was purified via flash chromatography using hexanes and dichloromethane (2.75:1) to yield A2. ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl} 3$): $\delta 9.29(\mathrm{~s}, 2 \mathrm{H}), 8.7-8.68(\mathrm{~m}, 2 \mathrm{H}), 8.14-8.12(\mathrm{~m}, 2 \mathrm{H})$, 7.94-7.93 (m, 2H), 7.89-7.87 (m, 2H), 7.78-7.76 (m, 2H), 7.72-7.67 (m, 4H), 7.61-7.59 $(\mathrm{m}, 2 \mathrm{H}), 7.55-7.49(\mathrm{~m}, 7 \mathrm{H}), 7.08(\mathrm{~s}, 1 \mathrm{H}), 7.06(\mathrm{~s}, 1 \mathrm{H}), 6.91(\mathrm{~d}, \mathrm{~J}=9 \mathrm{~Hz}, 2 \mathrm{H})$, 3.99-3.96 $(\mathrm{m}, 4 \mathrm{H}), ~ 3.9-3.89(\mathrm{~m}, 2 \mathrm{H}), 1.89-1.83(\mathrm{~m}, 2 \mathrm{H}), 1.79-1.74(\mathrm{~m}, 1 \mathrm{H}), 1.71-1.30(\mathrm{~m}, 24 \mathrm{H})$, 1.05-0.92 (m, 18H). ${ }^{13} \mathrm{C}$ NMR (125 MHz, CDCl3): $\delta 159.5,153.9,153.7,140.5,139.8$, $132.9,132.3,132.25,132.18,132.1,131.8,129.94,129.92,128.8,126.7,128.6,127.4$, $127.1,126.9,126.7,126.6,126.1,126,123.6,123.2,122.8,118.4,118.3,116.6,116.5$, $115.4,114.63,114.57,113.3,103.4,103.3,95.2,87.4,87.2,84.7,72.1,72,70.6,39.7$, $39.4,30.74,30.71,30.5,29.23,29.22,29.1,24.09,24.06,23.9,23.14,23.12,23.06$, 14.16, 14.14, 14.10, 11.35, 11.33, 11.13. HRMS calcd for $\mathrm{C}_{80} \mathrm{H}_{80} \mathrm{O}_{3}(\mathrm{M}+\mathrm{H})^{+}, 1089.6180$, found, 1089.6184

A3
A3.
Phenylacethylene ($48 \mathrm{mg}, 0.47 \mathrm{mmol}, 4 \mathrm{eq}$) was dissolved in 1 mL of dry THF, followed by dropwise addition of n-butyllithium ($0.29 \mathrm{~mL}, 0.45 \mathrm{mmol}, 1.6 \mathrm{M}$ in hexanes) at -78
${ }^{\circ} \mathrm{C}$. The reaction mixture was stirred at $-78^{\circ} \mathrm{C}$ for 1 hour and then transferred to the flask containing 21 ($78 \mathrm{mg}, 0.12 \mathrm{mmol}, 1 \mathrm{eq}$), which was dissolved in 0.5 mL of dry THF and cooled to $-78^{\circ} \mathrm{C}$, dropwisely via cannula. Upon completion of transfer, the reaction mixture was allowed to warm to room temperature and stirred overnight under argon. The reaction mixture was then treated with 15 mL of $10 \% \mathrm{HCl}$ aqueous solution saturated with SnCl_{2} dihydrate and left overnight stirring. Organics were extracted twice with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$, and combined organic phases were washed with $\mathrm{H}_{2} \mathrm{O}$ and brine, dried over MgSO_{4}, filtered and concentrated using rotary evaporation. The crude product was purified via flash chromatography using hexanes and dichloromethane (3:1) to yield A3. Yield: $45 \mathrm{mg}(53 \%) .{ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl} 3$): $\delta 9.35(\mathrm{~s}, 1 \mathrm{H}), 9.34(\mathrm{~s}, 1 \mathrm{H}), 8.75-8.72$ (m, 2H), 8.18-8.15 (m, 2H), 7.95 (d, J=8.5 Hz, 2H), 7.89-7.88 (m, 2H), 7.78 (d, J=8.5 Hz, 2H), 7.70 (d, J=8.4 Hz, 2H), 7.66 (d, J=8.4 Hz, 2H), 7.64-7.61 (m, 2H), 7.55-7.48 (m, $7 \mathrm{H}), 6.93(\mathrm{~d}, \mathrm{~J}=8.7 \mathrm{~Hz}, 2 \mathrm{H}), 3.91-3.89(\mathrm{~m}, 2 \mathrm{H}), 1.79-1.75(\mathrm{~m}, 1 \mathrm{H}), 1.56-1.28(\mathrm{~m}, 8 \mathrm{H})$, 0.98-0.93 (m, 6H). ${ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl} 3$): $\delta 159.6,140.6,139.6,133.1,132.35$, 132.34, 132.25, 132.2, 132, 131.8, 129.98, 129.97, 128.8, 128.7, 128.6, 127.5, 127.4, 127.1, 126.9, 126.7, 126.6, 126.1, 126.08, 123.5, 123.2, 122.7, 118.4, 118.3, 114.9, 114.6, 103.4, 103.3, 90.7, 88.2, 87.8, 87.1, 70.6, 39.4, 30.5, 29.1, 23.9, 23.1, 14.1, 11.1. HRMS calcd for $\mathrm{C}_{56} \mathrm{H}_{44} \mathrm{O}(\mathrm{M})^{+}, 732.3387$, found, 732.3377

3d. Synthesis of Compound 22

S9. Compound 1-bromo-2,5-dimethoxybenzene ($800 \mathrm{mg}, 3.7 \mathrm{mmol}, 1.0 \mathrm{eq}$) was suspended in 4 mL of dry $\mathrm{CH}_{2} \mathrm{Cl}_{2}$, followed by the addition of $\mathrm{BBr}_{3}(11 \mathrm{~mL}, 1.0 \mathrm{M}$ in $\left.\mathrm{CH}_{2} \mathrm{Cl}_{2}, 11 \mathrm{mmol}, 3 \mathrm{eq}\right)$ at $-78^{\circ} \mathrm{C}$ under argon and stirred overnight at room temperature. The reaction was stopped by pouring the reaction mixture onto ice. Organics were extracted twice with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$, and combined organic phases were washed with brine, dried over MgSO4, and filtered. Removal of solvent in vacuo yielded 650 mg of $\mathbf{S 9}(94 \%)$ that was taken to the next step immediately without further purification. ${ }^{1} \mathrm{H}$ NMR $(500 \mathrm{MHz}$, D-THF): $\delta 7.86(\mathrm{~s}, 2 \mathrm{H}), 6.85-6.84(\mathrm{~m}, 1 \mathrm{H}), 6.67-6.66(\mathrm{~m}, 1 \mathrm{H}), 6.56-6.54(\mathrm{~m}, 1 \mathrm{H})$.

S10. Compound $\mathbf{S 9}$ ($639 \mathrm{mg}, 3.4 \mathrm{mmol}, 1.0 \mathrm{eq}$) and $\mathrm{K}_{2} \mathrm{CO}_{3}(1.9 \mathrm{~g}, 13.5 \mathrm{mmol}, 4.0 \mathrm{eq})$ were dissolved in 22.5 mL of dry DMF at room temperature under argon. 2ethylhexylbromide ($1.3 \mathrm{~mL}, 7.4 \mathrm{mmol}, 2.2 \mathrm{eq}$) was then added to this solution under an argon atmosphere. The mixture was heated to $70^{\circ} \mathrm{C}$ and stirred for overnight. The mixture was then cooled to room temperature. The reaction was stopped by quenching with 10% aq NaOH . Organics were extracted twice with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$, and combined organic phases were washed with brine, dried over MgSO_{4}, filtered and concentrated using rotary
evaporation. The crude product was purified via flash chromatography using hexanes and dichloromethane (9:1) to yield S10. Yield: $812 \mathrm{mg}(58 \%) .{ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl} 3$): $\delta 7.14(\mathrm{~m}, 1 \mathrm{H}), 6.85-6.8(\mathrm{~m}, 2 \mathrm{H}), 3.87-3.85(\mathrm{~m}, 2 \mathrm{H}), 3.81-3.79(\mathrm{~m}, 2 \mathrm{H}), 1.78-1.69(\mathrm{~m}$, $1 \mathrm{H}), 1.61-1.58(\mathrm{~m}, 1 \mathrm{H}), 1.56-1.33(\mathrm{~m}, 16 \mathrm{H}), 0.98-0.92(\mathrm{~m}, 12 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (125 MHz , CDCl3): $\delta 153.8,149.9,119.5,114.34,114.29,112.7,72.5,71.3,39.5,39.4,30.5,29.09$, 29.08, 23.89, 23.83, 23.1, 14.1, 11.2, 11.1.

S11. Compound $\mathbf{S 1 0}$ ($658.8 \mathrm{mg}, 1.66 \mathrm{mmol}, 1 \mathrm{eq}$) was dissolved in 12 mL of dry THF, followed by dropwise addition of n-butyllithium ($2.6 \mathrm{~mL}, 4.2 \mathrm{mmol}, 1.6 \mathrm{M}$ in hexanes) at $-78^{\circ} \mathrm{C}$. The reaction mixture was stirred at $-78^{\circ} \mathrm{C}$ for 1 hour and then $\mathrm{I}_{2}(969 \mathrm{mg}, 3.8$ $\mathrm{mmol}, 2.3 \mathrm{eq}$) which was dissolved in 7 mL of dry THF was added to the solution containing S10 via syringe. Upon completion of transfer, the reaction mixture was allowed to warm to room temperature and stirred overnight under argon. The reaction was quenched by addition of aqueous $\mathrm{Na}_{2} \mathrm{~S}_{2} \mathrm{O}_{3}$. Organics were extracted twice with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$, and combined organic phases were washed with $\mathrm{H}_{2} \mathrm{O}$ and brine, dried over MgSO_{4}, filtered and concentrated using rotary evaporation. The crude product was purified via flash chromatography using hexanes and dichloromethane (9:1) to yield S11. Yield: $714 \mathrm{mg}(93 \%) .{ }^{1} \mathrm{H}$ NMR ($\left.500 \mathrm{MHz}, \mathrm{CDCl} 3\right): \delta 7.36-7.35(\mathrm{~m}, 1 \mathrm{H}), 6.88-6.85(\mathrm{~m}$, $1 \mathrm{H})$, 6.75-6.73 (m, 1H), 3.86-3.85 (m, 2H), 3.79-3.78 (m, 2H), 1.78-1.75 (m, 1H), 1.72$1.68(\mathrm{~m}, 1 \mathrm{H}), 1.61-1.34(\mathrm{~m}, 16 \mathrm{H}), 0.98-0.97(\mathrm{~m}, 12 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl} 3$): δ $153.9,152.2,125.4,115.3,112.6,86.8,72.2,71.3,39.5,39.4,30.6,30.5,29.11,29.08$, 23.9, 23.8, 23.1, 14.14, 14.11, 11.2, 11.1.

S11

22

A round bottom flask was charged with $\mathrm{Pd}\left(\mathrm{PPh}_{3}\right)_{2} \mathrm{Cl}_{2}(0.5 \mathrm{mg}, 0.67 \mathrm{umol}, 0.02 \mathrm{eq}), \mathrm{CuI}$ $(0.3 \mathrm{mg}, 1.4 \mathrm{umol}, 0.04 \mathrm{eq})$ and $6(35 \mathrm{mg}, 33.7 \mathrm{umol}, 1 \mathrm{eq})$ was placed in a 25 mL two necks flask and evacuated and refilled with argon three times. In another flask, S9 (60 $\mathrm{mg}, 0.1 \mathrm{mmol}, 3.9 \mathrm{eq}$) was dissolved in 1.2 mL of $\mathrm{Et}_{3} \mathrm{~N}$:THF (1:3) mixture and this solution was added to flask containing catalysts and $\mathbf{6}$ via cannula transfer after deoxygenating for 1 hour with argon. The reaction mixture was stirred for overnight at room temperature. The solvent was removed in vacuo. The crude product was purified via flash chromatography using hexanes and dichloromethane (2.5:1) to yield 22. Yield: $20 \mathrm{mg}(35 \%) .{ }^{1} \mathrm{H}$ NMR ($\left.500 \mathrm{MHz}, \mathrm{CDCl} 3\right)$: $\delta 9.36(\mathrm{~s}, 1 \mathrm{H}), 9.34(\mathrm{~s}, 1 \mathrm{H}), 8.76-8.72(\mathrm{~m}$, 2 H), 8.19-8.15 (m, 2H), 7.95 (d, J=8.3 Hz, 2H), 7.78-7.76 (m, 3H), 7.75-7.68 (m, 4H), 7.64-7.63 (m, 2H), 7.56-7.52 (m, 3H), 7.48-7.46 (m, 1H), 7.14-7.13 (m, 1H), 7.07-7.06 $(\mathrm{m}, 3 \mathrm{H}), 6.93-6.87(\mathrm{~m}, 4 \mathrm{H}), 4.05-3.90(\mathrm{~m}, 10 \mathrm{H}), 3.86-3.84(\mathrm{~m}, 2 \mathrm{H}), 3.79-3.77(\mathrm{~m}, 2 \mathrm{H})$, $1.88-1.73(\mathrm{~m}, 7 \mathrm{H}), 1.70-1.28(\mathrm{~m}, 56 \mathrm{H}), 1.04-0.89(\mathrm{~m}, 42 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (125 MHz , CDCl3): $\delta 154.7,153.7,153.3,153.2,140.7,140.3,139.8,134.7,132.59,132.56,132.5$, $132.4,132.3,131.8,130.9,130.2,128.8,128.7,127.7,127.6,127.3,127.1,126.9,126.7$, $126.4,126.23,126.19,125.95,125.93,123.6,123,118.9,118.59,118.58,118.2,117.9$, 117.3, 117.1, 114.3, 113.9, 113.7, 113.4, 109.9, 104.2, 103.3, 93.8, 92.41, 92.38, 92.1, 89.2, 88.6, 88.4, 85.9, 76.4, 72.7, 72.4, 71.7, 71.5, 71.3, 40.9, 39.9, 39.86, 39.8, 39.7, $39.6,30.9,30.85,30.75,30.70,29.9,29.5,29.39,29.36,29.33,29.3,24.2,24.14,24.06$, $24,23.9,23.33,23.28,23.22,23.2,14.32,14.27,14.26,14.25,14.23,11.5,11.4,11.33$, 11.29, 11.28. HRMS calcd for $\mathrm{C}_{120} \mathrm{H}_{148} \mathrm{O}_{7}\left(\mathrm{M}^{+}\right), 1702.1298$, found, 1702.1223

3e. Synthesis of P2-25

S12
S12. Prepared following the established literature procedure. ${ }^{5}$
P2-25. A Schlenk tube was charged with $<1 \mathrm{mg} \mathrm{Pd}\left(\mathrm{PPh}_{3}\right)_{4}$, and $<1 \mathrm{mg} \mathrm{CuI}$, and evacuated and refilled with argon three times. $6(15 \mathrm{mg}, 0.014 \mathrm{mmol}, 1 \mathrm{eq}), 7(34 \mathrm{mg}$, $0.058 \mathrm{mmol}, 4 \mathrm{eq}$), and $\mathbf{S 1 2}$ was dissolved in $3 \mathrm{~mL} 4: 1$ ($\mathrm{v}: \mathrm{v}$) toluene:diisopropylamine and sparged with argon for 30 minutes. The solution was added to the reaction vessel and the mixture stirred for 72 hours at room tempareture. The reaction mixture was precipitated into 200 mL methanol and collected by centrifugation and decanting. The polymer was then dissolved in 2 mL of toluene and passed through a syringe filter to remove insoluble catalyst residues, reprecipitated into 100 mL of methanol and isolated by centrifugation and decanting. $\mathrm{Mn}[\mathrm{g} / \mathrm{mol}]: 68 \mathrm{k}, \mathrm{Mw}[\mathrm{g} / \mathrm{mol}]: 176 \mathrm{k} .{ }^{1} \mathrm{H}$ NMR (500 $\mathrm{MHz}, \mathrm{CDCl} 3): \delta 9.37-9.35(\mathrm{~m}, 0.5 \mathrm{H}), 8.75(\mathrm{~m}, 0.5 \mathrm{H}), 8.17(\mathrm{~m}, 0.5), 7.98-7.96(\mathrm{~m}, 0.5 \mathrm{H})$, 7.80-7.70 (m, 4H), $7.63(\mathrm{~m}, 1 \mathrm{H}), 7.11-7.02(\mathrm{~m}, 8 \mathrm{H}), 4.02-3.91(\mathrm{~m}, 18 \mathrm{H}), 1.8(\mathrm{~m}, 9 \mathrm{H})$, $1.65-1.28(\mathrm{~m}, 72 \mathrm{H}), 1.00-0.91(\mathrm{~m}, 54 \mathrm{H})$.

References:

1. Cardolaccia, T.; Li, Y.; Schanze, K.S. J. Am. Chem. Soc. 2008, 130, 2535-2545.
2. Rotzler, J.; Drayss, S.; Hampe, O.; Häussinger, D.; Mayor, M. Chem. Eur. J. 2013, 19, 2089-2101.
3. Zeng, X.; Wang, C.; Bryce, M.R.; Batsanov, A.S; Sirichantaropass, S.; GarcíaSuárez, W.M.; Lambert, C.J.; Sage, I. Eur. J. Org. Chem. 2007, 5244-5249.
4. Sasaki, T.; Morin, J.; Lu, M.; Tour, J.M. Tetrahedron Letters 2007, 48, 5817-5820.
5. Pawle, R.H.; Agarwal, A.; Malveira, S.; Smith, Z.C.; Thomas, S.W. Macromolecules 2014, 47, 2250-2256.
6. Schelkle, K.M.; Becht, S.; Faraji, S.; Petzoldt, M.; Mullen, K.; Buckup, T.; Dreuw, A.; Motzkus, M.; Hamburger, M. Macromol. Rapid Commun. 2015, 36, 31-37.
7. Nojima, M.; Ohta, Y.; Yokozawa, T. Journal of Polymer Science, Part A: Polymer Chemistry, 2014, 52, 2643-2653.

(

======== CHANNEL $\mathrm{f} 1 \mathrm{r}=======$	
NUC1	13 C
P1	9.50 usec
PL1	0.00 dB
PL1W	89.92553711 W
SFO1	125.7703643 MHz
======== CHANNEL f2 $=========$	

9 a

\qquad

$\begin{array}{lllllllllllllllllll}180 & 170 & 160 & 150 & 140 & 130 & 120 & 110 & 100 & 90 & 80 & 70 & 60 & 50 & 40 & 30 & 20 & 10 & \mathrm{ppm}\end{array}$

DFT Calculations

Molecular geometries of each molecule studied were determined using sequential geometry optimizations. Within the B3LYP function, the three levels of theory used were $6-31 \mathrm{G}(\mathrm{d}, \mathrm{p}), 6-311 \mathrm{G}(\mathrm{d}, \mathrm{p})$, and $6-311+\mathrm{G}(\mathrm{d}, \mathrm{p})$. All geometry optimizations were run in the chloroform PCM with the SCRF method. All molecular orbital and energy calculations were also carried out at the same three levels of theory. All time dependent calculations were carried out with the Tamm-Dancoff approximation, B3LYP functional and $6-31 \mathrm{G}(\mathrm{d}, \mathrm{p})$ basis set. The calculations resulted in the first 40 electronic transitions of each molecule, starting at long wavelengths. The tables includes only transitions with an oscillator strength (f) greater than 0.2 . Also, the orbital transitions were only included if they contributed to at least 20% of the electronic transition. All DFT calculations were carried out in Gaussian 09.

Gaussian 09, R. D., Frisch, M. J.; Trucks, G. W.; Schlegel, H. B.; Scuseria, G. E.; Robb, M. A.; Cheeseman, J. R.; Scalmani, G.; Barone, V.; Mennucci, B.; Petersson, G. A.; Nakatsuji, H.; Caricato, M.; Li, X.; Hratchian, H. P.; Izmaylov, A. F.; Bloino, J.; Zheng, G.; Sonnenberg, J. L.; Hada, M.; Ehara, M.; Toyota, K.; Fukuda, R.; Hasegawa, J.; Ishida, M.; Nakajima, T.; Honda, Y.; Kitao, O.; Nakai, H.; Vreven, T.; Montgomery, J. A., Jr.; Peralta, J. E.; Ogliaro, F.; Bearpark, M.; Heyd, J. J.; Brothers, E.; Kudin, K. N.; Staroverov, V. N.; Kobayashi, R.; Normand, J.; Raghavachari, K.; Rendell, A.; Burant, J. C.; Iyengar, S. S.; Tomasi, J.; Cossi, M.; Rega, N.; Millam, N. J.; Klene, M.; Knox, J. E.; Cross, J. B.; Bakken, V.; Adamo, C.; Jaramillo, J.; Gomperts, R.; Stratmann, R. E.; Yazyev, O.; Austin, A. J.; Cammi, R.; Pomelli, C.; Ochterski, J. W.; Martin, R. L.; Morokuma, K.; Zakrzewski, V. G.; Voth, G. A.; Salvador, P.; Dannenberg, J. J.; Dapprich, S.; Daniels, A. D.; Farkas, Ö.; Foresman, J. B.; Ortiz, J. V.; Cioslowski, J.; Fox, D. J. Gaussian, Inc., Wallingford CT, 2009.

A1

HOMO (162)
HOMO-1 (161)
HOMO-2 (160)
HOMO-3 (159)
$\mathrm{E}=-5.05975 \mathrm{eV}$
$\mathrm{E}=-5.70856 \mathrm{eV}$
$\mathrm{E}=-6.32548 \mathrm{eV}$
$\mathrm{E}=-6.45909 \mathrm{eV}$

Excited State	Transition	\boldsymbol{f}	$\boldsymbol{\lambda}(\mathbf{n m})$	$\mathbf{E}(\mathbf{e V})$
1	$162 \rightarrow 163(94 \%)$	1.5942	624.53	1.9852
3	$162 \rightarrow 164(79 \%)$	0.4557	423.61	2.9269
4	$159 \rightarrow 163(54 \%), 160 \rightarrow 163(25 \%)$	0.271	409.33	3.0289
5	$160 \rightarrow 163(72 \%), 159 \rightarrow 163(23 \%)$	0.2062	407.37	3.0435
7	$162 \rightarrow 165(66 \%)$	0.3056	365.13	3.3956
9	$161 \rightarrow 164(58 \%), 156 \rightarrow 163(20 \%)$	0.3148	342.94	3.6153
19	$162 \rightarrow 166(35 \%), 157 \rightarrow 163(20 \%)$	0.8129	295.94	4.1895
25	$161 \rightarrow 166(59 \%)$	0.4014	276.14	4.4899
34	$157 \rightarrow 164(31 \%)$	0.848	255.57	4.8512

Excited State	Transition	\boldsymbol{f}	$\boldsymbol{\lambda}(\mathbf{n m})$	$\mathbf{E}(\mathrm{eV})$
1	$208 \rightarrow 209(94 \%)$	1.602	597.68	2.0744
3	$208 \rightarrow 210(91 \%)$	0.2803	454.81	2.7261
4	$206 \rightarrow 209(68 \%)$	0.7195	431.53	2.8731
5	$207 \rightarrow 210(62 \%)$	1.3442	401.64	3.087
6	$205 \rightarrow 209(34 \%), 207 \rightarrow 210(27 \%)$	0.3251	392.68	3.1574
13	$207 \rightarrow 211(48 \%), 206 \rightarrow 210(42 \%)$	0.3195	331.95	3.735
26	$208 \rightarrow 217(33 \%), 200 \rightarrow 209(26 \%)$	0.2772	292.24	4.2426
28	$200 \rightarrow 209(30 \%), 196 \rightarrow 209(21 \%)$	0.5375	289.67	4.2802
30	$196 \rightarrow 209(43 \%)$	0.3499	286.38	4.3293
32	$203 \rightarrow 210(44 \%), 206 \rightarrow 211(30 \%)$	0.2118	281.13	4.4102

Excited State	Transition	\boldsymbol{f}	$\boldsymbol{\lambda}(\mathrm{nm})$	$\mathbf{E}(\mathbf{e V})$
1	$166 \rightarrow 167(95 \%)$	1.4116	594.73	2.0847
4	$164 \rightarrow 167(50 \%), 166 \rightarrow 168(41 \%)$	0.7166	413.59	2.9978
5	$163 \rightarrow 167(58 \%), 166 \rightarrow 169(21 \%)$	0.2786	374.78	3.3082
7	$166 \rightarrow 169(58 \%), 163 \rightarrow 167(30 \%)$	0.2782	358.56	3.4579
9	$165 \rightarrow 168(86 \%)$	0.7378	342.65	3.6184
20	$164 \rightarrow 168(47 \%), 165 \rightarrow 169(21 \%)$	0.2141	293.23	4.2282
23	$166 \rightarrow 171(40 \%), 162 \rightarrow 167(27 \%)$	1.3052	287.33	4.3151
33	$164 \rightarrow 169(72 \%)$	0.3093	265.91	4.6627
38	$162 \rightarrow 168(42 \%)$	0.4421	257.38	4.8171

HOMO (266)
$\mathrm{E}=-5.13444 \mathrm{eV}$

HOMO-1 (265)
$\mathrm{E}=-5.56864 \mathrm{eV}$

LUMO+2 (269)

HOMO-2 (264)
$E=-5.88633 \mathrm{eV}$

LUMO+3(270) $\mathrm{E}=-1.46339 \mathrm{eV}$

HOMO-3 (263)
$\mathrm{E}=-6.07917 \mathrm{eV}$

Excited State	Transition	\boldsymbol{f}	$\boldsymbol{\lambda}(\mathbf{n m})$	$\mathbf{E}(\mathbf{e V})$
1	$266 \rightarrow 267(95 \%)$	1.5128	600.53	2.0646
5	$263 \rightarrow 267(51 \%), 262 \rightarrow 267(27 \%)$	0.2657	445.55	2.7827
7	$265 \rightarrow 268(91 \%)$	0.7244	419.04	2.9588
8	$266 \rightarrow 269(80 \%)$	0.6743	409.29	3.0292
13	$265 \rightarrow 269(50 \%)$	0.3836	370.23	3.3488
15	$266 \rightarrow 270(47 \%), 259 \rightarrow 267(22 \%)$	0.6439	362.48	3.4204
16	$263 \rightarrow 268(61 \%)$	0.2381	355.22	3.4904
20	$261 \rightarrow 268(60 \%)$	0.3415	328.27	3.7769
23	$266 \rightarrow 272(24 \%), 263 \rightarrow 269(21 \%)$	0.2414	318.73	3.8899
24	$266 \rightarrow 272(28 \%), 265 \rightarrow 270(21 \%)$	0.3424	317.17	3.909
38	$261 \rightarrow 269(30 \%), 264 \rightarrow 270(20 \%)$	0.3382	291.61	4.2518
39	$264 \rightarrow 270(64 \%)$	0.2248	290.1	4.2738

