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 As explained in the main text, determination of the number of significant behaviors in the 

dataset is possible via application of statistical (PCA), clustering methods (k-means), or by under 

and oversampling. The later concept is shown in Figure S1, where the ambient dataset with 

maximal Vp = 5 V is BLU-unmixed into 2 (undersampling), 4 (optimal k), and 5 (oversampling) 

components. Undersampling leads to incomplete separation of components: on one hand, the 
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whole CFO island is ascribed one type of conductivity (En 1-2), but on the other, a significant 

spatial variability of component intensity is evident within the CFO islands. The interface, 

showing a clearly different behavior in C-AFM maps, is not separated from the CFO island. 

Likewise, the BFO matrix component (En 3-4) remains merged with the interfacial behavior, and 

manifests conductivity much higher than that of BFO in raw data (0.4 nA vs. 80  pA @ 5 V). We 

omit here case with k = 3 for the sake of saving space, but note that it also represents an 

undersampling, which clearly shows components of the CFO core, CFO inner interface and BFO 

(all non-hysteretic), but misses at identifying the outer interfacial component with memristive 

(hysteretic) behavior, despite the fact that it is present in the original data.   Unmixing the data 

into 4 components seems optimal from both the looks of the endmember IV curves and loading 

maps: the variability within CFO islands is now split into two components, highlighting the inner 

interface, BFO has a low-conductive component and the outer interface is ascribed its own 

hysteretic component. Oversampling the data at k = 5 keeps endmembers 1, 3 and 4 almost 

unchanged, but gemmates a new endmember (denoted 2' in Fig. S1o) from endmember 2. This 

process decreases the maximal intensity of endmember 2 from more than 90% to ca. 85%. The 2' 

endmember’s maximal intensity is about the same – lower than the maximal intensities of all 

other components at k = 2, 3, 4 or 5. This is a clear sign of oversampling. In addition, the spatial 

localization of the endmember 2' behavior (Fig. S1t) is not very different from that of 

endmember 2 (Fig. S1s). Endmember 2' mainly represents conductive behavior at the core of one 

of the CFO islands, which is already described by component 2. A further increase in k leads to a 

continuous gemmation of new pseudo-components from the 4 optimal ones accompanied by a 

decrease in their intensity.  
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Figure S1.  Unmixing the dataset into 2, 4 and 5 components with BLU algorithm illustrates the concept 

of under- and oversampling.   


