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I. SAMPLE FABRICATION AND
MEASUREMENT SETUP

The samples are fabricated as follows. First we me-
chanically exfoliated the graphene from its bulk, KISH
graphite (Kyocera. Inc), to an undoped silicon chip with
285 nm oxide. In this experiment we need two pieces of
few-layer graphene with proper distance between 20 to
80 µm, and we selected those that met this requirement.
Second, electron beam lithography (EBL) was employed
several times, starting with the fabrication of alignmen-
t marks, then plasma-etching masks and electrode pat-
terns. The EBL resists used were PMMA 950k A4 for
the first step and double-layered PMMA 950k A2 for the
latter two steps. We developed the sub-micrometer pat-
terns under 0 ◦C to establish a better control of the de-
vice specifications. Through etching out all the undesired
part of the graphene sheet to realize the designed de-
vice, we strove for the all-metal-side-gated configuration
as described in Ref. [1], to avoid unstable gate terminals.
This etching was carried out by inductively-coupled plas-
ma (ICP), using a 4:1 gas mixture of Oxygen to Argon.
For marks and electrodes we deposited 5 nm Ti and 45
nm Au with an electron-beam evaporator. Finally, the
resonator was fabricated by optical lithography followed
by metal deposition in a thermal evaporator. The metal
used was 200-nm-thick Al.

The microwave response was measured using a network
analyzer (NA). The input and output ports of the NA
were connected to the resonator via a circulator and a 180
degree hybrid, which splits the reflected signal back to the
NA. Two 30 dB attenuators were connected between the
NA output port and the circulator, reducing the power
applied to the resonator down to lower than -130 dBm.
The reflected signal was amplified first at 4 K and then
at room temperature, producing an additional gain of 60
dB, and an isolator was used to prevent noise from the
amplifiers and the environment from reaching the sample.
The direct transport current was amplified by a low-noise
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current pre-amplifier, before being measured by a digital
multimeter.

II. MEASUREMENT OF TWO DQDS

First, we measure the lever arm α of each gate. From
the constant interaction model [2], we know that when
tuning the gate voltage along the red dashed line in

Fig. S1(b) (i.e., kAC = −CgL

CgR
· CR

CM
), the electrochemical

potential of the left dot µL remains unchanged while that
of the right dot µR shifts. Therefore, we may study the
charging effect of the right dot, with its gate-controlled
energy written as

∆µR(∆VgL,∆VgR) = − 1

|e|
(CgLECM∆VgL+

CgRECRkAC∆VgL)

= |e|CgL

CM
∆VgL

= |e|αLM∆VgL,

(1)

where ECL = CR

CLCR−C2
M

, ECR = CL

CLCR−C2
M

, and ECM =
CM

CLCR−C2
M

.

Additionally, by sweeping the bias voltage VSD, a
Coulomb diamond appears, giving |e|VSD = |e|αLM∆VgL

(Fig. S1b). Then we have

αLM =
VSD

∆VgL
=

(
1

k+
+

1

|k−|

)−1

. (2)

Similarly, along the green line in Fig. S1(b) (i.e., kAD =

−CgL

CgR
· CM

CL
), we obtain

∆µL = |e|CgR

CM
∆VgR = |e|αRM∆VgR. (3)

Using the expressions for kAC and kAD, we obtain the
lever arm of each gate

αL =
CgL

CL
= −kADαRM, (4)
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αR =
CgR

CR
= − 1

kAC
αLM. (5)

Now we derive the relation between gate voltage ∆VgL

and energy detuning ε during the sweep. The expressions

FIG. S1. (a) Schematic diagram of a DQD. (b) Schematic
picture of the charge-stability diagram for a DQD using the
constant interaction model. The red and green dashed lines
are each parallel to an edge of the honeycomb, along which
only one dot’s energy level changes. Additionally, by applying
different bias voltages, we obtain a Coulomb diamond. The
purple arrow across AB indicates the sweep direction when
treating the DQD as a two-level system. (c) Schematic dia-
gram of Coulomb diamond obtained by sweeping gate voltages
along the dashed red line in b. Analyzing the energy shift as
a function of the voltages, we can obtain αLM. (d-e) A typ-
ical charge-stability diagram (d) and Coulomb diamond (e)
of DQD2 in our device. (e) is obtained from the dashed red
arrow in (d). From the white arrows in (e), the lever arm αLM

can be obtained.

for µL and µR are

µL(N,M ;VgL, VgR) =

(
N − 1

2

)
ECL +MECM−

1

|e|
(CgLVgLECL + CgRVgRECM),

(6)

µR(N,M ;VgL, VgR) = NECM +

(
M − 1

2

)
ECR−

1

|e|
(CgLVgLECM + CgRVgRECR),

(7)

taking the difference between them gives

ε = ε(∆VgL,∆VgR) = − 1

|e|
[CgL(ECL − ECM)∆VgL−

CgR(ECR − ECM)∆VgR]

= −|e|

[
αL + kADαR

1− kAD

kAC

−
αR + 1

kAC
αL

1− kAD

kAC

k

]
∆VgL.

(8)
Here k is the slope in the gate voltage sweep process
(Fig. S1b). Substituting αL and αR with parameters in
Fig. S1b yields

αL + kADαR =
CgL

CL

CR − CM

CR
, (9)

αR +
1

kAC
αL =

CgR

CR

CL − CM

CL
. (10)

FIG. S2. Typical bias triangle, obtained by transport mea-
surements (left) and the resonator signal (right). The gate
lever arms can be obtained by measuring the triangle size.
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With kAB =
CgL

CgR

CR−CM

CL−CM
(the slope from point A to B in

Fig. S1b), and CgL(R) = |e|
δVgL(R)

, finally we have

ε = −|e|αL

1− k
kAB

1− kAD

kAB

(
1 +

1

kAC

δVgR

δVgL

)
∆VgR. (11)

III. TAVIS-CUMMINGS MODEL

In the joint-readout experiment, our sample can be
seen as two quantum two-level systems that are dipole
coupled to a resonator, and it can therefore be described
by the Tavis-Cummings Hamiltonian [3]

H = ω0a
†a+

∑
i=1,2

[
1

2
Ωiσzi + gi(σ+ia+ σ−ia

†)

]
, (12)

where gi = gCi
2tCi

Ωi
and Ωi =

√
(2tCi)2 + ε2i . Here ω0

is the resonant frequency of the resonator, εi, tCi and
gCi denote the detuning, the tunneling matrix elemen-
t and the DQD-resonator coupling constant of DQDi,
respectively. To determine the reflected signal, using
input-output theory [4], we write down the Heisenberg-
Langevin equations of motion for the operators a and
σi−

ȧ(t) = −jω0a(t)−jΣi=1,2giσi−−
1

2
(κe+κi)a(t)+

√
κeain(t),

(13)

σ̇i−(t) = −jωiσi−(t)+jgia(t)σzi(t)−
1

2
γ1iσi−(t)−γ2iσi−(t),

(14)
where κe(κe) is the external (internal) dissipation rate
of the resonator. In what follows, we assume that the
quantum dot stays in its ground state, leading to the
replacement σzi → −1. Fourier transformation of the

FIG. S3. Amplitude (a) and phase (b) simulation results of
the weak-coupling regime, which is similar to our experimen-
tal results. The DQD parameters are gC1=40 MHz, gC2=29
MHz, 2tC1=7.2 GHz, 2tC2=7.2 GHz, Γ1 = ( γ1

2
+γ2)DQD1=3.6

GHz, Γ2 = ( γ1
2

+ γ2)DQD2=3.0 GHz, where gC1(gC2) <
Γ1(Γ2).

remaining linear equations then gives

− jωσi−(ω) = −jΩiσi−(ω)− jgia(ω)−
1

2
γ1iσi−(ω)− γ2iσi−(ω),

(15)

− jωa(ω) = −jΩ0a(ω)− jΣi=1,2giσi−(ω)−
1

2
(κe + κi)a(ω) +

√
κeain(ω).

(16)

Using the boundary condition ain + aout =
√
κea, com-

bined with the results above, we obtain

σi−(ω) = − jgi

j(Ωi − ω) + 1
2γ1i + γ2i

a(ω) = −jχia(ω),

(17)[
j(ω0 − ω) + g1χ1 + g2χ2 +

1

2
(κe + κi)

]
a(ω) =

√
κeain(ω).

(18)
Finally, we obtain the input-output relation

S11 =
aout

ain
= −

j(ω0 − ω) + g1χ1 + g2χ2 + 1
2 (κi − κe)

j(ω0 − ω) + g1χ1 + g2χ2 + 1
2 (κi + κe)

,

(19)

χi =
gi

j(Ωi − ω) + 1
2γ1i + γ2i

, i = 1, 2. (20)

To compare this to our experimental data, instead of S11,
we define the amplitude A = 20lg|S11| and the argument
φ = arg(S11). Here A is in dB unit and φ is in unit-
s of degrees. Both of them can be directly measured
by a network analyzer. With the parameters of each

FIG. S4. (a) Frequency shift as a sum of the shift due to each
DQD. (b) Internal decay rate increase.
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DQD obtained by independent experiments following the
method in Ref. [5], we can reproduce the joint-readout
results in Fig. 3 in the main text. In this case, the
DQD parameters used are gC1=40 MHz, gC2=29 MHz,
2tC1=7.2 GHz, 2tC2=7.2 GHz, Γ1 = (γ12 + γ2)DQD1=3.6
GHz, Γ2 = (γ12 + γ2)DQD2=3.0 GHz, and the resonator
parameters are κi/2π=0.684 MHz, κi/2π=1.318 MHz,
ω0/2π=6.35086 GHz. Figure S4 shows two typical sim-
ulation results for amplitude response (a) and phase re-
sponse (b) of the resonator that are representative for
the weak-coupling regime. However, due to the large
dephasing rates in DQD systems, we cannot reach the
strong-coupling regime in our device.

From equation (19), it is clear that the effect of the two
DQDs on the resonator signal S11 is the term g1χ1+g2χ2,
where χi is the susceptibility [6] caused by the ith DQD.
If we write g1χ1 = δκ1 + jδω1, g2χ2 = δκ2 + jδω2, and
define δω = δω1 + δω2, δκ = δκ1 + δκ2, then equation
(19) can be rewritten as

S11 = −
j[(ω0 + δω)− ω] + 1

2 [(2δκ+ κi)− κe]
j[(ω0 + δω)− ω] + 1

2 [(2δκ+ κi) + κe]
, (21)

where δω is the resonator frequency shift due to the
DQDs, and 2δκ is the change of the internal resonator
decay rate due to the DQDs, which produces a broaden-
ing of the linewidth. Notice that giχi = 0 when εi →∞,
leading to a pure resonator response. Now we define the
contribution of the DQDs to the signal using

∆A(ε1, ε2) = A(ε1, ε2)−A(∞,∞) = ∆A(δω; δκ), (22)

∆φ(ε1, ε2) = φ(ε1, ε2)−A(∞,∞) = ∆φ(δω; δκ). (23)

The εi-induced frequency shift and internal decay in-
crease can be written as δω1 + δω2 and 2δκ1 + 2δκ2,
respectively (see Fig. S5). However, since S11 is non-
linear in these variables, ∆A and ∆φ are not additive,
i.e., ∆A 6= ∆A(ε1,∞) + ∆A(∞, ε2), ∆φ 6= ∆φ(ε1,∞) +
∆φ(∞, ε2). This phenomenon is observed in our joint
readout experiment, and the results are explained by the
T-C model, as shown in the main text (see Fig. 3).

In the T-C model, there is a coherent coupling between
the DQDs mediatied by the resonator which allows the
DQDs to exchange both real or virtual photons with the
resonator. This is in contrast to the results in Fig. S3,
where ∆A and ∆φ sum directly. At the cross point, as
the charging energy is much larger than photon energy,
the signal indicates a quantum admittance, which is a
linear response [7]. This kind of direct summation in ∆A
and ∆φ leads to a direct-crossing picture [Fig. S3(e,f)].
However, the T-C model show a non-linear relation in
the ∆A diagram (Fig. S4a).

There may be higher-order processes in this kind of
hybrid system, especially when two DQDs are source-
drain biased, and these processes could contribute to the
current and low-frequency noise in both DQDs [8–10].
In our joint readout measurements (see Fig. 3), all leads
were grounded in order to avoid higher-order processes,
as such effects are not included in the T-C Hamiltonian.

IV. TUNABILITY OF THE ENERGY
LEVEL-SPLITTINGS IN SQD AND DQD

DEVICES

In this section we analyze and compare the tunabil-
ity of the energy-level splittings in SQD and DQD de-
vices. In QD devices, there are two types of discrete
energy levels, the charging energy and the single parti-
cle energy levels. The former stems from the physics of
charged particles confined in a box, interacting through
the Coulomb interaction. The level spacing, usually re-
ferred to as “charging energy”, denoted as EC, is the
energy needed to add one more electron into the QD and
its value primarily depends on the size of the QD. Typi-
cal values of EC range from 1 to 100 meV [2, 11], which
is far larger than the energy scale of the resonator pho-
tons (∼ 30 µeV). Single particle energy levels are due
to internal degrees of freedom, such as orbit and spin.
For spin degrees of freedom, inducing and controlling the
energy-level splitting requires application of an external
magnetic field. Note that Al ceases to be superconduct-
ing when the external field exceeds 300 mT, and this sets
an upper limit on the obtainable Zeeman splitting of the
spin states. In addition, applying a magnetic field not
only changes the desired energy splitting, it would likely
also change other properties of the sample dramatically.
For orbital degrees of freedom (also often be referred to
as charge states), the energy splitting ranges from ∼ 10
µeV to ∼ 1 meV. Admittedly, it covers our desired range.
However, gate-potential-defined SQD devices are usually
implemented with plunger gates and defining gates. Tun-
ing the plunger-gate potential shifts the energy levels in
the QD as a whole and leaves the energy-level splitting
unchanged. For the defining gates, the changes in the
defining potential change both the shape and the size of
the QD. Experimentally, it requires great effort to tune
the energy splitting without changing other fundamental
properties, including the QD shape and the barrier tun-
neling rates. Regarding the shape-defined SQDs, such
as carbon nanotubes and etched graphene nanoribbon-
s, control over the single particle energy level splitting
is even more difficult. The DQDs are formed either by
their shape or applied potentials. Still, near a transition
line in the charge-stability diagram, the energy splitting
between the charge states in the left and right dot is
Ω =

√
ε2 + (2tC)2. This splitting can be directly con-

trolled by gate voltages. Note that 2tC typically ranges
from 1 to ∼ 100 µeV.

V. CALIBRATION OF THE NOISE
MEASUREMENT SETUP

The noise measurement in our group were made af-
ter two pre-amplifiers (SR570) by a dynamic signal ana-
lyzer (SR785), this machine can sensitively measure the
noise of a current and cross-noise between two sources.
Using this machine in our lab, we have measured the
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charge noise of an undoped GaAs DQD [12] and a sus-
pending graphene QD [13]. Here we use this machine
to measure the cross-noise. We did the RMS Average
in the experiment. The cross-noise we measured was:
S12 = FFT ∗(I1)× FFT (I2), and we did 10 times RMS
average for a better resolution before taking the data out
from the SR785. The SR785 do the Fourier transform:

S12 = FFT ∗(I1)× FFT (I2) = FFT

∫
I1(t)I2(τ + t)dt

(24)
In the experiment, the integral time cannot be real-

ly infinite, in Figure 4c we choose the integral time
about 4s (very long time when compared to the single
acquisition time, the maximum acquisition rate of our
machine SR785 is 102.4 KHz). 1/f noise in QD-based
circuit QED systems has been reported recently [14].
In that paper, the authors measured the charge noise
of a GaAs DQD using the resonator and found a 1/f
type noise spectrum which was consistent with previous
QPC detectors. Here in this experiment, we measured
the 1/f noise of the DQD, by SR785 (See Fig. S5a).
Compared to the cross-correlation noise spectrum S12,
here we define the uncorrelated noise spectrum density
S∗12 = |FFT (I1)| × |FFT (I2)| = S1×S2 (See Fig. S5b),
which represents the direct multiplying of the two DQDs’
1/f noise. We find that S∗12 and S12 are both of the order
of 10−27A2Hz−1 at ε2 = 0. Thus we conclude that, the
central peak in Fig. S5c (and Fig. 4c in the main text)
at ε2 = 0, is possibly correlated to that of the individual
device 1/f noises S1 and S2. However, the two side peaks
cannot be produced by the detuning dependence of S∗12 in
Fig. S5b (red arrows in above figure). Therefore, the two
anomalous side peaks likely represent the photon mediat-
ed processes between the two DQDs (i.e., one DQD emits
photon into the resonator and will be absorbed by anoth-

FIG. S5. (a) Current noise of DQD2, measured by SR785. (b)
Uncorrelated noise density, obtained by directly multiplying
noise spectrum of the two DQDs. (c-d) Cross-spectrum of the
two DQDs, measured at different 2tC values.

er DQD). Indeed, previous theoretical work [10] has pre-
dicted such photon-mediated current cross-correlations.
Previous theoretical work [10] has also reported that the
current cross-correlations are not sensitive to the ther-
mally assisted transport processes and the main contri-
bution to the current cross-correlation comes from S12,
not from S11 nor S22 (S11 and S22 are auto-correlation
noise from DQD1 and DQD2, respectively). In this sense,
the 1/f noise from any one of the two DQDs will not af-
fect the F12 measurement, and this is why the previous
theoretical works [8–10] suggest to measure F12 instead
of directly measure the conductance. Only the cavity de-
cay rate can reduce the cross-correlations. Bandwidth
of our noise setup ranges from 125 mHz to 102.4 kHz,
which limits by the dynamic signal analyzer SR785. The
F12 data shown in the manuscript comes from the small-
est frequency, which is called zero-frequency cross-noise.
(Frequency cannot be really zero, it is 125 mHz indeed,
limited by the machine.)
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