Supplementary Information for

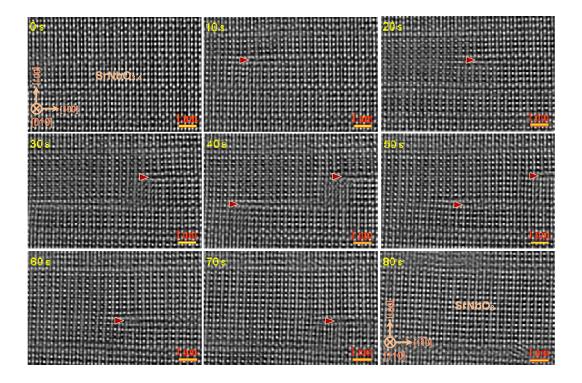
Patterning Oxide Nanopillars at the Atomic Scale by Phase Transformation

Chunlin Chen,[†] Zhongchang Wang, *,[†] Frank Lichtenberg,[‡] Yuichi Ikuhara, *,[†],,, § and Johannes Georg Bednorz [∥]

[†]Advanced Institute for Materials Research, Tohoku University, 2-1-1 Katahira, Aoba-ku, Sendai 980-8577, Japan


[‡]Department of Materials, ETH Zürich, Zürich CH-8093, Switzerland
[¶]Institute of Engineering Innovation, The University of Tokyo, 2-11-16 Yayoi, Bunkyo-ku,

Tokyo 113-8656, Japan


§Nanostructures Research Laboratory, Japan Fine Ceramics Center, 2-4-1 Mutsuno, Atsuta,
Nagoya 456-8587, Japan

^{II} IBM Research Division, Zürich Research Laboratory, Rüschlikon CH-8803, Switzerland

Figure S1

Figure S1. Bright-field TEM image and selected area electron diffraction pattern of SrNbO_{3.4}. The bright-field TEM image shows crystal structure and morphology of a SrNbO_{3.4} single crystal. The electron beam is along [010] direction. The homogeneous image contrast indicates that there is no secondary phase in this single crystal.

Figure S2. In-situ high-resolution TEM imaging of the phase transformation of SrNbO_{3,4}. A Series of HRTEM images as a function of the elapsed time during electron irradiation. The SrNbO_{3,4} phase transforms partially into the SrNbO₃ phase induced by the electron irradiation. The layered structure of the SrNbO_{3,4} is visible along the [010] zone axis at the initial stage (0 s). After irradiation for 80 s, the SrNbO_{3,4} phase is completely transformed into the SrNbO₃ phase. The arrows indicate the region where the phase transformation initiates. The whole phase transformation process can also be viewed in the Supplementary Movie, which is created by a successive recording of the HRTEM images.