Supporting Information

Electrocatalytic O₂-Reduction by Synthetic Cytochrome *c* Oxidase Mimics: Identification of a "Bridging Peroxo" Intermediate Involved in Facile $4e^{-}/4H^{+}O_{2}$ -Reduction

Sudipta Chatterjee,¹Kushal Sengupta,¹ Shabnam Hematian,² Kenneth D. Karlin,^{2,*}Abhishek Dev^{1,*}

 Department of Inorganic Chemistry, Indian Association for the Cultivation of Science, Jadavpur, Kolkata 700032, India

2. Department of Chemistry, Johns Hopkins University, Baltimore, Maryland 21218,

United States

*Corresponding Author, Email: <u>icad@iacs.res.in; karlin@jhu.edu</u>

Figure S1. (A) Resonance Raman spectra for complex **1**, **2** and **3** in dichloromethane solution at room temperature using laser of 413.1 nm wavelength. (B) UV-Vis spectra for complex **2** and its imidazole adduct (**3**). (C) ESI mass spectrum of 3,m/z=1242. This is to be noted that in all the experiments, 1 equivalent of imidazole is added externally to the resting oxidized state of complex **2** to prepare complex **3** which has been further used for other electrochemical and spectroscopic experiments without any chemical treatment.

Figure S2. SERRS–RDE data of complex **1** under reduced condition in Ar atmosphere at constant rotation of 200 rpm. The oxidation state marker band (v_4) and spin state marker band (v_2) obtained at negative potential have been fit with different components using Lorentzian fit.

Figure S3. RRDE data of complex **1**, showing the disk and Pt ring currents, physiabsorbed on EPG (blue), C_8SH modified Au (red) and $C_{16}SH$ modified Au (green) in air saturated pH = 7 buffer at a scan rate of 10 mV/s and rotation speed of 300 rpm, using Ag/AgCl reference and Pt wire counter electrodes. The ring currents have been multiplied for better representation of the data.

Figure S4. RRDE data of complex **2**, showing the disk and Pt ring currents, physiabsorbed on EPG (blue), C_8SH modified Au (red) and $C_{16}SH$ modified Au (green) in air saturated pH = 7 buffer at a scan rate of 10 mV/s and rotation speed of 300 rpm, using Ag/AgCl reference and Pt wire counter electrodes. The ring currents have been multiplied for better representation of the data.

Figure S5. RRDE data of complex **3**, showing the disk and Pt ring currents, physiabsorbed on EPG (blue), C_8SH modified Au (red) and $C_{16}SH$ modified Au (green) in air saturated pH = 7 buffer at a scan rate of 10 mV/s and rotation speed of 300 rpm, using Ag/AgCl reference and Pt wire counter electrodes. The ring currents have been multiplied for better representation of the data.

Figure S6. RRDE experiment of complex **2** (A) and **3** (B) when physiadsorbed on C_8SH modified Au surface in pH = 7 buffercontaining 10 mM K₄[Fe(CN)₆]using Ag/AgClas reference and Pt wire as counter electrodes.The Pt ring has been held at 0 V (vs Ag/AgCl).

Figure S7. SERRS-RDE data in the low frequency region under oxidized (green) and steady state (blue for pH = 7 and orange for pD = 7) in the presence of pH = 7 and pD = 7 buffer for complex **2** on C₈SH modified Ag surfaces under constant rotation of 200 rpm.

Figure S8. SERRS-RDE data in the low frequency region under steady state in the presence of air (blue) and ¹⁸O₂ (red) saturated pH = 7 buffer for complex **2** (A) and complex **3** (B) on C₈SH modified Ag surfaces showing the $v_{Fe-O/Cu-O}$ vibrations in the region 500-550 cm⁻¹.