Lithiation Confined in One Dimensional Nanospace of

TiO_{2} (Anatase) Nanotube to Enhance the Lithium

Storage Property of CuO Nanowires

Ang Li; Huaihe Song*; Xiaohong Chen; Jisheng Zhou; Zhaokun Ma

State Key Laboratory of Chemical Resource Engineering; Beijing Key Laboratory of Electrochemical Process and Technology for Materials; Beijing University of Chemical Technology; Beijing; 100029;
P.R. China.

AUTHOR INFORMATION

Corresponding Author

* E-mail: songhh@mail.buct.edu.cn; Fax: +86 10-64434916; Tel: +86 10-64434916

SI-1. XPS spectra analysis of $\mathbf{C u O} @ \mathrm{TiO}_{2}$-NCAs

XPS spectra of $\mathrm{CuO} @ \mathrm{TiO}_{2}$-NCAs are shown in Fig.S1. The curve fitting of $\mathrm{Cu} 2 \mathrm{p}, \mathrm{O} 1 \mathrm{~s}$, and Ti 2 p was carried out by using Gaussian-Lorentzian peak shape after a Shirley back-ground correction. In Fig. S1a, the $\mathrm{Cu} 2 \mathrm{p}_{3 / 2}$ peak is composed of two components at 931.8 and 933.9 eV , corresponding to $\mathrm{Cu}_{2} \mathrm{O}$ and CuO , respectively. ${ }^{\text {s1,s2 }}$ The peaks at 529.9 and 531.5 eV can be assigned to oxygen bonded to Ti^{4+} and Ti^{3+}, as illustrated in Fig. S1b. ${ }^{53-\mathrm{s} 5}$ Binding energy positions of $\mathrm{Ti} 2 \mathrm{p}_{3 / 2}$ and $\mathrm{Ti} 2 \mathrm{p}_{1 / 2}$ for $\mathrm{CuO} @ \mathrm{TiO}_{2}$ - NCAs were 458.7 and 464.3 eV (Fig. S1c), respectively. These values are in good agreement with the binding energy values of Ti^{4+} in TiO_{2}. XPS spectra can also help to confirm the Ti^{3+} defects on the interfaces. The Ti^{3+} defects in anatase will destroy the symmetry of coordinated Ti^{4+} ions peak at $458.7 \mathrm{eV} .{ }^{\text {s6 }} \mathrm{A}$ small shoulder at around 457.5 eV is consistent with the existence of Ti^{3+} defects on the interfaces, as can be seen in the red circle in Fig. S1d. ${ }^{\text {s6 }}$

Fig.S1 XPS spectra of $\mathrm{CuO} @ \mathrm{TiO}_{2}$-NCAs: (a)Cu2p; (b)O1s; (c)Ti2p; (d)Ti2p $\mathrm{p}_{3 / 2}$.

SI-2. Cyclic voltammograms of $\mathbf{C u O} @ \mathbf{T i O}_{2}$-NCAs

Fig.S2 Cyclic voltammograms of CuO-NWAs electrodes with scanning rate at $0.01 \mathrm{mV} \mathrm{s}^{-1}$ in the range of 0.01-3.0 V .

SI-3. Cycle performance of pure $\mathbf{T i O}_{\mathbf{2}}$

Fig.S3 The cycle performance of pure TiO_{2} at $60 \mathrm{~mA} \mathrm{~g}^{-1}$ for 50 cycles.

SI-4. AC impedance spectra of CuO-NWAs

The AC impedance spectra of CuO-NWAs also used modified Randles equivalent circuit as the model for EIS analysis to quantify the experimental results. The results show that R_{f} and R_{ct} of $\mathrm{CuO}-\mathrm{NWAs}$ is 9.25 and 40.26Ω, respectively.

Fig.S4 AC impedance spectra of CuO-NWAs electrodes after 100 cycles (the inset is the part of the Nyquist plots in red box).

SI-5. HRTEM images of the $\mathbf{C u O}$ core in fully lithium insertion state

Fig.S5 HRTEM images of the CuO core in fully lithium insertion state: (a) a view of $\mathrm{CuO} @ \mathrm{TiO}_{2}$-nanocable and its (b) details of the core.

References

(s1) Espinos, J.; Morales, J.; Barranco, A.; Caballero, A.; Holgado, J.; Gonzalez-Elipe, A. Interface Effects for $\mathrm{Cu}, \mathrm{CuO}$, and $\mathrm{Cu}_{2} \mathrm{O}$ Deposited on SiO_{2} and ZrO_{2}. XPS Determination of The Valence State of Copper in $\mathrm{Cu} / \mathrm{SiO}_{2}$ and $\mathrm{Cu} / \mathrm{ZrO}_{2}$ Catalysts. J. Phys. Chem. B 2002, 106, 6921-6929.
(s2) Poulston, S.; Parlett, P.; Stone, P.; Bowker, M. Surface Oxidation and Reduction of CuO and $\mathrm{Cu}_{2} \mathrm{O}$ Studied Using XPS and XAES. Surf. Interface Anal. 1996, 24, 811- 820.
(s3) Kumar, P.; Badrinarayanan, S.; Sastry, M. Nanocrystalline TiO_{2} Studied by Optical, FTIR and Xray Photoelectron Spectroscopy: Correlation to Presence of Surface States. Thin Solid Films 2000, 358, 122-130.
(s4) Sharma, S.; Chaudhary, S.; Kashyap, S.; Sharma, S. Room Temperature Ferromagnetism in Mn Doped TiO_{2} Thin Films: Electronic Structure and Raman Investigations. J. Appl. Phys. 2011, 109, 083905.
(s5) Orendorz, A.; Wüsten, J.; Ziegler, C.; Gnaser, H. Photoelectron Spectroscopy of Nanocrystalline Anatase TiO_{2} Films. Appl. Surf. Sci. 2005, 252, 85-88.
(s6) Shultz, A.; Jang, W.; Hetherington III, W.; Baer, D.; Wang, L.; Engelhard, M. Comparative Second Harmonic Generation and X-ray Photoelectron Spectroscopy Studies of the UV Creation and O_{2} Healing of Ti^{3+} Defects on (110) Rutile TiO_{2} Surfaces. Surf. Sci. 1995, 339, 114-124.

