Supporting Information

Diamidocarbene Induced B–H Activation: A New Class of Initiator-Free Olefin Hydroboration Reagents

Dominika N. Lastovickova^{$\dagger, \ddagger}$ and Christopher W. Bielawski^{\ddagger, \P}</sup>

[†] Department of Chemistry, The University of Texas at Austin, Austin, Texas 78712, United States

[‡] Center for Multidimensional Carbon Materials (CMCM), Institute for Basic Science (IBS), Ulsan National Institute of Science and Technology (UNIST), Ulsan 44919, Republic of Korea

[¶] Department of Chemistry and Department of Energy Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan 44919, Republic of Korea

Table of Contents

X-Ray Crystallography	S2-8
Figure S1-S10. POV-Ray representations of 1. SMe2, 1. py, 1. NMe3, 2, 3, 4, 5	
DAC-BCl ₃ , DAC-BF ₃ , and 2DAC-BH ₃ .	S2-6
Table S1 and S2. Crystal Data, Data Collection, and Structure Refinement.	S7–8

S9-S27

¹H, ¹³C, and ¹¹B NMR Spectra

Figure S1. POV-Ray representation of 1'SMe₂ with thermal ellipsoids set to 50% probability. Most of the H atoms have been ommited for clarity.

Figure S2. POV-Ray representation of **1**·**py** with thermal ellipsoids set to 50% probability. Most of the H atoms have been ommited for clarity.

Figure S3. POV-Ray representation of **1·NMe3** with thermal ellipsoids set to 50% probability. Most of the H atoms have been omitted for clarity.

Figure S4. POV-Ray representation of **2** with thermal ellipsoids set to 50% probability. Most of the H atoms have been omitted for clarity.

Figure S5. POV-Ray representation of **3** with thermal ellipsoids set to 50% probability. Most of the H atoms have been omitted for clarity.

Figure S6. POV-Ray representation of **4** with thermal ellipsoids set to 50% probability. Most of the H atoms have been omitted for clarity.

Figure S7. POV-Ray representation of **5** with thermal ellipsoids set to 50% probability. The H atoms have been omitted for clarity.

Figure S8. POV-Ray representation of **2DAC-BH**³ with thermal ellipsoids set to 50% probability. Most of the H atoms have been omitted for clarity.

Figure S9. POV-Ray representation of **DAC-BCl₃** with thermal ellipsoids set to 50% probability. The H atoms have been omitted for clarity.

Figure S10. POV-Ray representation of **DAC-BF**³ with thermal ellipsoids set to 50% probability. The H atoms have been omitted for clarity.

	1 [.] SMe ₂	1 ру	1·NMe3	2	2DAC-BH ₃
CCDC	1022989	1022990	1422628,1422632	1022992	1422631
Formula M_r crystal size (mm ³) crystal system space group a (Å) b (Å) c (Å) c (Å) α (°) β (°) γ (°) V (Å ³)	$\begin{array}{c} C_{26}H_{37}N_2O_2BS\\ 452.46\\ 0.20\times0.20\times0.20\\ monoclinic\\ P\ I\ 2_{1/n}\ I\\ 16.852(12)\\ 13.4987(97)\\ 12.8256(90)\\ 90\\ 90.981(11)\\ 90\\ 2917.07(36) \end{array}$	$\begin{array}{c} C_{29}H_{36}N_{3}O_{2}B\\ 469.44\\ 0.20\times0.20\times0.20\\ orthorhombic\\ P\ c\ a\ 21\\ 22.5736(33)\\ 8.3284(12)\\ 13.9430(21)\\ 90\\ 90\\ 90\\ 2621.31(7) \end{array}$	$\begin{array}{c} C_{27}H_{40}N_{3}O_{2}B\\ 449.4\\ 0.25 \ x \ 0.15 \ x \ 0.09\\ monoclinic\\ P \ I \ 2_{1} \ I\\ 8.8352(12)\\ 12.6874(17)\\ 12.1513(17)\\ 90.000(0)\\ 109.329(3)\\ 90.000(0)\\ 1285.33(15) \end{array}$	$\begin{array}{c} C_{24}H_{31}N_2O_2B\\ 390.33\\ 0.20\times0.20\times0.20\\ triclinic\\ P-I\\ 11.658(28)\\ 12.6990(30)\\ 15.4975(36)\\ 85.322(5)\\ 72.721(5)\\ 88.791(5)\\ 2183.60(38) \end{array}$	$\begin{array}{c} C_{48}H_{59}N_4O_4B\\ 766.80\\ 0.10\times0.10\times0.10\\ monoclinic\\ P\ I\ 2/c\ I\\ 16.8362(3)\\ 12.0920(3)\\ 23.6248(4)\\ 90.000(0)\\ 91.107(2)\\ 90.000(0)\\ 4808.72(3) \end{array}$
$Z \rho_{calc} (g cm^{-3}) \mu (mm^{-1}) F(000) T(K) $	4 1.22 0.320 1144.0	4 1.23 0.079 1048.0	2 1.16 0.072 488.0 150(2)	4 1.19 0.074 840.0 120(2)	4 1.06 0.524 1648.0
$h(\mathbf{R})$ scan mode <i>hkl</i> range measd reflns unique reflns [R_{int}]	$\begin{array}{c} \omega \\ -20 \rightarrow +20 \\ -16 \rightarrow +16 \\ -15 \rightarrow +15 \\ 41353 \\ 5129 \ [0.152] \end{array}$	ω $-26 \rightarrow +26$ $-9 \rightarrow +9$ $-16 \rightarrow +16$ 36680 $4610 [0.094]$	$ \begin{array}{c} \omega \\ -10 \rightarrow +10 \\ -15 \rightarrow +15 \\ -14 \rightarrow +14 \\ 18790 \\ 4504 \end{array} $	$\begin{array}{c} \omega \\ -13 \to +13 \\ -15 \to +15 \\ -18 \to +18 \\ 29315 \\ 7676 \ [0.057] \end{array}$	ω -19 \rightarrow +20 -14 \rightarrow +13 -28 \rightarrow +18 16102 9019 [0.025]
refinement reflns refined parameters GOOF on F^2 R1 ^a (all data) wR2 ^b (all data) ρ_{fin} (max/min)	5129 324 1.006 0.093 (0.122) 0.171 (0.187) 0.620	4610 341 1.006 0.040 (0.044) 0.101 (0.103) 0.180	4504 317 1.006 0.032(0.034) 0.079(0.080) 0.156	7676 547 1.006 0.054 (0.070) 0.129 (0.142) 0.259	9019 530 1.006 0.043 (0.056) 0.110 (0.123) 0.279
(e Å ⁻³)	-0.502	-0.220	-0.157	-0.250	-0.191

Table S1. Summary of crystal data, data collection, and structure refinement details for 1. SMe₂, 1. py, 1. NMe₃, 2, and 2DAC-BH₃.

^{*a*} R1 = $\Sigma ||Fo| - |Fc|| / \Sigma |Fo|$. ^{*b*} wR2 = {[$\Sigma w (Fo^2 - Fc^2)^2$]/ $\Sigma w (Fo^2)^2$]}^{1/2}.

	DAC-9BBN (3)	DAC-Bpin (4)	DAC-bispin (5)	DAC-BCl ₃	DAC-BF3
CCDC	1429210	1422629,1422634	1422630,1422633	1022986	1022987
Formula M_r crystal size (mm ³) crystal system space group a (Å) b (Å) c (Å) a (°) β (°) γ (°) V (Å ³) Z	$\begin{array}{c} C_{38}H_{49}N_2O_4B\\ 576.60\\ 0.24\times0.22\times0.13\\ Monoclinic\\ P\ 1\ 2_1\ I\\ 8.1720(70)\\ 16.7830(80)\\ 12.1300(70)\\ 90.000(0)\\ 100.440(20)\\ 90.000(0)\\ 1636.10(63)\\ 2\end{array}$	$\begin{array}{c} C_{30}H_{41}N_{2}O_{4}B\\ 504.46\\ 0.23\times0.12\times0.06\\ triclinic\\ P-1\\ 8.1190(20)\\ 11.8750(30)\\ 14.9580(50)\\ 82.730(20)\\ 86.700(30)\\ 82.128(18)\\ 1415.88(52)\\ 2\end{array}$	$\begin{array}{c} C_{36}H_{52}N_2O_6B_2\\ 630.41\\ 0.39\times 0.33\times 0.15\\ orthorhombic\\ P\ c\ c\ n\\ 20.2950(30)\\ 18.1860(20)\\ 19.2810(30)\\ 90.000(0)\\ 90.000(0)\\ 90.000(0)\\ 7116.33(17)\\ 8\end{array}$	$\begin{array}{c} C_{24}H_{28}N_2O_2BCl_3\\ 493.66\\ 0.20\times0.20\times0.20\\ triclinic\\ P-I\\ 9.5178(39)\\ 10.8696(43)\\ 14.2715(48)\\ 102.578(10)\\ 108.454(22)\\ 97.337(9)\\ 1335.73(134)\\ 2\end{array}$	$\begin{array}{c} C_{24}H_{28}N_2O_2BF_3\\ 444.30\\ 0.39\times 0.11\times 0.10\\ M & onoclinic\\ P\ I\ 2_{1/c}\ I\\ 15.5890(17)\\ 16.4336(17)\\ 9.1255(10)\\ 90\\ 90.038(3)\\ 90\\ 2337.80(4)\\ 4\end{array}$
$\rho_{calc} (g cm^{-3})$ $\mu (mm^{-1})$ $F(000)$ $T (K)$	1.17 0.543 576.6 123(2)	1.18 0.611 544.0 123(2)	1.18 0.621 2720.0 93(2)	1.32 0.371 558.0 100(2)	1.26 0.096 936.0 120(2)
scan mode <i>hkl</i> range	$\begin{array}{c} \omega \\ -9 \rightarrow +9 \\ -11 \rightarrow +20 \\ -14 \rightarrow +10 \end{array}$	$ \begin{array}{c} \omega \\ -6 \rightarrow +9 \\ -14 \rightarrow +14 \\ -18 \rightarrow +17 \end{array} $	$ \begin{array}{c} \omega \\ -24 \rightarrow +12 \\ -21 \rightarrow +20 \\ -23 \rightarrow +23 \end{array} $	$ \begin{matrix} \omega \\ -11 \rightarrow +11 \\ -12 \rightarrow +12 \\ -16 \rightarrow +16 \end{matrix} $	$ \begin{matrix} \omega \\ -18 \rightarrow +18 \\ -18 \rightarrow +18 \\ -10 \rightarrow +10 \end{matrix} $
measd reflns unique reflns $[R_{int}]$ refinement reflns refined parameters	15042 4509 [0.047] 4509 396	25486 5148 [0.039] 5148 346	53226 6502 [0.021] 6502 431	18988 4680 [0.080] 4680 324	4056 4056 [0.000] 4056 298
GOOF on F^2 R1 ^{<i>a</i>} (all data) wR2 ^{<i>b</i>} (all data)	1.006 0.053 (0.064) 0.146 (0.153)	1.006 0.046 (0.060) 0.125 (0.133)	1.006 0.035 (0.038) 0.091 (0.093)	1.006 0.053 (0.075) 0.111 (0.122)	1.006 0.031 (0.033) 0.089 (0.090)
$\frac{\rho_{\text{fin}} (\text{max/min})}{(\text{e Å}^{-3})}$	0.302 -0.208	0.584 -0.221	0.298	0.289 -0.315	0.223 -0.161

Table S2. Summary of crystal data, data collection, and structure refinement details for 3, 4, 5, DAC-BCl₃, and DAC-BF₃.

^{*a*} R1 = $\Sigma ||Fo| - |Fc|| / \Sigma |Fo|$. ^{*b*} wR2 = {[$\Sigma w (Fo^2 - Fc^2)^2$]/ $\Sigma w (Fo^2)^2$]}^{1/2}.

Figure S15. ¹³C NMR spectrum of 1 py.

Figure S19. ¹¹B NMR spectrum of 1. NMe3.

Figure S22. ¹¹B NMR spectrum of 2.

Figure S24. ¹³C NMR spectrum of 3.

Figure S26. ¹H NMR spectrum of 4.

S17

Figure S32. ¹H NMR spectrum of **6**; the integrals recorded in the aliphatic region (0.80–1.28 ppm) were larger than expected.

Figure S33. ¹³C NMR spectrum of 6.

Figure S34. ¹¹B NMR spectrum of 6.

Figure S36. ¹³C NMR spectrum of 7.

Figure S37. ¹¹B NMR spectrum of 7.

Figure S38. ¹H NMR spectrum of 2DAC-BH₃.

Figure S44. ¹H NMR spectrum of DAC-BF₃.

Figure S48. ¹¹B NMR spectrum of C_6D_6 as a reference.