Potassium *tert*-Butoxide-Catalyzed Synthesis of Benzofuroazepines via Cyclization of 2-Alkynyl Benzyloxy Nitriles

Rafaela Gai,[†] Davi F. Back[‡] and Gilson Zeni^{*, †}

[†]Laboratório de Síntese, Reatividade, Avaliação Farmacológica e Toxicológica de Organocalcogênios and [‡]Laboratório de Materiais Inorgânicos, CCNE, UFSM, Santa Maria, Rio Grande do Sul, Brazil 97105-900

^{*}gzeni@ufsm.br

SUPPORTING INFORMATION

Table of Contents

Materials and methods	S3
ORTEP structures of compounds 2a	S4
Description of the solution of the X-ray structure	S4
References	S5
Selected spectra	S6
The ¹ H (400 MHz) and ¹³ C (100 MHz) NMR spectra of 1a in CDCl ₃	S6
The ¹ H (400 MHz) and ¹³ C (100 MHz) NMR spectra of 1b in CDCl ₃	S7
The ¹ H (400 MHz) and ¹³ C (100 MHz) NMR spectra of 1c in CDCl ₃	S8
The ¹ H (400 MHz) and ¹³ C (100 MHz) NMR spectra of 1d in CDCl ₃	S9
The ¹ H (400 MHz) and ¹³ C (100 MHz) NMR spectra of 1e in CDCl ₃	S10
The ¹ H (400 MHz) and ¹³ C (100 MHz) NMR spectra of 1f in CDCI ₃	S11

The ¹H (400 MHz) and ¹³C (100 MHz) NMR spectra of **1g** in CDCl₃ S12 The ¹H (400 MHz) and ¹³C (100 MHz) NMR spectra of **1h** in CDCl₃ S13 The ¹H (400 MHz) and ¹³C (100 MHz) NMR spectra of **1i** in $CDCl_3$ S14 The ¹H (400 MHz) and ¹³C (100 MHz) NMR spectra of **1**i in CDCl₃ S15 The ¹H (400 MHz) and ¹³C (100 MHz) NMR spectra of **1k** in CDCl₃ S16 The ¹H (400 MHz) and ¹³C (100 MHz) NMR spectra of **1I** in $CDCl_3$ S17 The ¹H (400 MHz) and ¹³C (100 MHz) NMR spectra of **1m** in CDCl₃ S18 The ¹H (400 MHz) and ¹³C (100 MHz) NMR spectra of **1n** in CDCl₃ S19 The ¹H (400 MHz) and ¹³C (100 MHz) NMR spectra of **10** in CDCl₃ S20 The ¹H (400 MHz) and ¹³C (100 MHz) NMR spectra of **1p** in CDCl₃ S21 The ¹H (400 MHz) and ¹³C (100 MHz) NMR spectra of **1q** in CDCl₃ S22 The ¹H (400 MHz) and ¹³C (100 MHz) NMR spectra of 1r in CDCl₃ S23 The ¹H (400 MHz) and ¹³C (100 MHz) NMR spectra of **1s** in CDCl₃ S24 The ¹H (400 MHz) and ¹³C (100 MHz) NMR spectra of **1t** in CDCl₃ S25 The ¹H (400 MHz) and ¹³C (100 MHz) NMR spectra of **2a** in CDCl₃ S26 The ¹H (400 MHz) and ¹³C (100 MHz) NMR spectra of **2b** in CDCl₃ S27 The ¹H (400 MHz) and ¹³C (100 MHz) NMR spectra of **2c** in CDCl₃ S28 The 1 H (400 MHz) and 13 C (100 MHz) NMR spectra of **2d** in CDCl₃ S29 The 1 H (400 MHz) and 13 C (100 MHz) NMR spectra of **2e** in CDCl₃ S30 The ¹H (400 MHz) and ¹³C (100 MHz) NMR spectra of **2f** in CDCl₃ S31 The ¹H (400 MHz) and ¹³C (100 MHz) NMR spectra of **2g** in CDCl₃ S32 The ¹H (400 MHz) and ¹³C (100 MHz) NMR spectra of **2h** in CDCl₃ S33 The ¹H (400 MHz) and ¹³C (100 MHz) NMR spectra of **2i** in CDCl₃ S34 The ¹H (400 MHz) and ¹³C (100 MHz) NMR spectra of **2i** in CDCl₃ S35

S2

The ¹ H (400 MHz) and ¹³ C (100 MHz) NMR spectra of $2k$ in CDCl ₃	S36
The 1 H (400 MHz) and 13 C (100 MHz) NMR spectra of 2I in CDCl ₃	S37
The ¹ H (400 MHz) and ¹³ C (100 MHz) NMR spectra of 2m in CDCl ₃	S38
The ¹ H (400 MHz) and ¹³ C (100 MHz) NMR spectra of 2n in CDCl ₃	S39
The ¹ H (400 MHz) and ¹³ C (100 MHz) NMR spectra of 20 in CDCl ₃	S40
The ¹ H (400 MHz) and ¹³ C (100 MHz) NMR spectra of 2p in CDCl ₃	S41
The ¹ H (400 MHz) and ¹³ C (100 MHz) NMR spectra of $\mathbf{2q}$ in CDCl ₃	S42

Materials and Methods

Proton nuclear magnetic resonance spectra (¹H NMR) were obtained on a NMR spectrometer at 400 MHz. Spectra were recorded in CDCl₃ solutions. Chemical shifts are reported in ppm, referenced to the solvent peak of CDCl₃ or tetramethylsilane (TMS) as the external reference. Data are reported as follows: chemical shift (δ), multiplicity, coupling constant (J) in Hertz and integrated intensity. Carbon-13 nuclear magnetic resonance spectra (¹³C NMR) were obtained on a 400 NMR spectrometer at 100 MHz. Spectra were recorded in CDCl₃ solutions. Chemical shifts are reported in ppm, referenced to the solvent peak of CDCl₃. Abbreviations to denote the multiplicity of a particular signal are s (singlet), d (doublet), t (triplet), q (quartet), quint (quintet), sex (sextet), dt (double triplet), td (triple doublet) and m (multiplet). High resolution mass spectra were recorded on a mass spectrometer using electrospray ionization (ESI). Column chromatography was performed using Silica Gel (230-400 mesh) following the methods described by Still.^[1] Thin layer chromatography (TLC) was performed using Gel GF₂₅₄, 0.25 mm thickness. For visualization, TLC plates were either placed under ultraviolet light, or stained with iodine vapor, or acidic vanillin. Most reactions were monitored by TLC for disappearance of starting material. The following solvents were dried and purified by distillation from the reagents indicated: tetrahydrofuran from sodium with a benzophenone ketyl indicator. All other solvents were ACS or HPLC grade unless otherwise noted. Air- and moisture-sensitive reactions were conducted in flame-dried or oven dried

S3

glassware equipped with tightly fitted rubber septa and under a positive atmosphere of dry nitrogen or argon. Reagents and solvents were handled using standard syringe techniques.

Figure S1. The molecular structure with the atom-labeling scheme of the compound 2a with 50% thermal ellipsoids (using ORTEP software²) (CCDC 1413101).

Description of the Solution of the X-ray Structure

Data were collected with a CCD area-detector diffractometer and graphitemonochromatized Mo– K_{\Box} radiation. The structure was solved by direct methods using SHELXS.¹ Subsequent Fourier-difference map analyses yielded the positions of the non-hydrogen atoms. Refinements were carried out with the SHELXL package.¹ All refinements were made by full-matrix least squares on F^2 with anisotropic displacement parameters for all non–hydrogen atoms. Hydrogen atoms were included in the refinement in calculated positions but the atoms (of hydrogens) that are commenting performing special bond were located in the Fourier map. Illustration of complexes was done using *ORTEP3* for Windows.²

References

- (1). Sheldrick, G. M. Acta Cryst. 2008, A64, 111.
- (2). ORTEP3 for Windows Farrugia, L. J. J. Appl. Crystallogr. 1997, 30, 565.

SELECTED SPECTRA

