Binding isotope effects for para-aminobenzoic acid with dihydropteroate synthase from Staphylococcus aureus and Plasmodium falciparum

Christopher F. Stratton, ${ }^{\dagger}$ Hilda A. Namanja-Magliano, ${ }^{\dagger}$ Scott A. Cameron \& Vern L. Schramm*
Department of Biochemistry, Albert Einstein College of Medicine, 1300 Morris Park Avenue, Bronx, New York 10461, United States
${ }^{\dagger}$ These authors contributed equally to this work.

Supporting Information

A. Supporting Information Figure S1 S2
B. Supporting Information Tables S1-S3 S3
C. Methods S5
Expression and purification of wild-type SaDHPS S5
Expression and purification of wild-type PfHPPK-DHPS S5
Expression and purification of $\triangle 628-668 P f H P P K-D H P S$ S6
Purification of radiolabeled pABAs S7
Synthesis and purification of 6-hydroxymethyl-7,8-dihydropterin pyrophosphate S7
Measurement of equilibrium BIEs for SaDHPS and PfHPPK-DHPS S7
Measurement of V/K KIEs for SaDHPS and PfHPPK-DHPS S10
Computational Methods S11
D. Supporting Information References S21

A. Supporting Information Figure S1

Figure S1. Binding curve for the formation of the pABA-DHPS binary complex. Binding of pABA to the apo form of SaDHPS and PfHPPK-DHPS was measured at $20 \mu \mathrm{M}, 50 \mu \mathrm{M}$, and $100 \mu \mathrm{M}\left[7{ }^{-14} \mathrm{C}\right]$ pABA using a fixed concentration of enzyme ($10 \mu \mathrm{M}$). The concentration of bound pABA is presented as a function of the concentration of $p A B A$ used in each assay. Error bars were generated using the standard deviation between two replicates for each concentration of pABA tested.

Binding of pABA to apo-SaDHPS and apo-PfHPPK-DHPS was measured using increasing concentrations of $\left[7-{ }^{14} \mathrm{C}\right] p \mathrm{ABA}$ in a rapid equilibrium assay analogous to the approach used for the BIE measurements. In this experiment, $10 \mu \mathrm{M} \mathrm{SaDHPS}$ or PfHPPK-DHPS was incubated with $20 \mu \mathrm{M}, 50 \mu \mathrm{M}$, or $100 \mu \mathrm{M}$ pABA ($\left[7-{ }^{14} \mathrm{C}\right] p \mathrm{ABA}+$ unlabeled carrier) in 40 mM Tris- HCl , $5 \mathrm{mM} \mathrm{MgCl}_{2}$ and 5 mM DTT using a rapid equilibrium dialysis (RED) device with inserts containing 8 kD MW cutoff membranes (Thermo Fisher Scientific). The total solution volume in the well containing enzyme ("enzyme well") was $100 \mu \mathrm{~L}$ and the total solution volume in the well containing buffer only ("buffer well") was $300 \mu \mathrm{~L}$. The dialysis inserts were covered with Crystal Clear Sealing Film (Hampton Research, Aliso Viejo, CA) and the RED device was shaken at 275 rpm for 4 hr at $25^{\circ} \mathrm{C}$. Equivolume samples ($50 \mu \mathrm{~L}$) were then taken from the buffer and enzyme wells of each dialysis insert, diluted in $450 \mu \mathrm{~L} \mathrm{H}_{2} \mathrm{O}$, and mixed with 10 mL of scintillation fluid. Scintillation counting and spectral deconvolution of the raw count data was performed as described for the BIE measurements. The total concentration of bound p ABA was calculated from the difference in ${ }^{14} \mathrm{C}$ counts in the enzyme well relative to the buffer well.

No significant binding of $\left[7-{ }^{14} \mathrm{C}\right] p \mathrm{ABA}$ was observed for apo-SaDHPS or apo-PfHPPKDHPS, up to $100 \mu \mathrm{M}$ pABA (Figure S1).

B. SUPPORTING InFORMATION TABLES S1-S3

Solvent model in bound state	Dielectric constant	Calculated BIE
carbon tetrachloride	2.228	1.0650
chlorobenzene	5.697	1.0306
dichloroethane	10.125	1.0175
acetone	20.493	1.0077
methanol	32.613	1.0039
water	78.355	1.0000

Table S1. Calculated BIEs for $\left[3,5-{ }^{3} \mathrm{H}\right]$ pABA in solvents with varying dielectric constants. ${ }^{1}$

H3-C3-C4-C5 dihedral in unbound structure	Change relative to unbound structure	H3-C3-C4-C5 dihedral in bound structure	H5-C5-C4-C3 dihedral in unnound structure	Change relative to unbound structure	H5-C5-C4-C3 dihedral in bound structure	Calculated BIE
179.940°	-1°	178.940°	-179.943°	1°	-178.943°	1.0082
179.940°	-2°	177.940°	-179.943°	2°	-177.943°	1.0088
179.940°	-3°	176.940°	-179.943°	3°	-176.943°	1.0097
179.940°	-4°	175.940°	-179.943°	4°	-175.943°	1.0108
179.940°	-5°	174.940°	-179.943°	5°	-174.943°	1.0121
179.940°	-6°	173.940°	-179.943°	6°	-173.943°	1.0135
179.940°	-7°	172.940°	-179.943°	7°	-172.943°	1.0152
179.940°	-8°	171.940°	-179.943°	8°	-171.943°	1.0173
179.940°	-9°	170.940°	-179.943°	9°	-170.943°	1.0198
179.940°	-10°	169.940°	-179.943°	10°	-169.943°	1.0229

Table S2. Calculated BIEs for $\left[3,5-{ }^{3} \mathrm{H}\right]$ pABA with symmetrical restriction of the $\mathrm{H} 3-\mathrm{C} 3-\mathrm{C} 4-\mathrm{C} 5$ and H5-C5-C4-C3 dihedral angles. Fixed values for the $\mathrm{H} 3-\mathrm{C} 3-\mathrm{C} 4-\mathrm{C} 5$ and $\mathrm{H} 5-\mathrm{C} 5-\mathrm{C} 4-\mathrm{C} 3$ dihedral angles in each of the structures used to calculate BIEs for Figure 3c in the main text. The dihedral angles were fixed at the indicated values prior to optimization in acetone to generate the bound state structure.

C3-H3 and C5-H5 bond length in unbound structure	Change relative to unbound structure	Bond length in bound structure	Calculated BIE
$1.0887 \AA$	0.990	$1.0778 \AA$	0.949
$1.0887 \AA$	0.980	$1.0670 \AA$	0.906
$1.0887 \AA$	0.970	$1.0561 \AA$	0.876
$1.0887 \AA$	0.960	$1.0452 \AA$	0.859
$1.0887 \AA$	0.950	$1.0343 \AA$	0.831
$1.0887 \AA$	0.940	$1.0234 \AA$	0.812
$1.0887 \AA$	0.930	$1.0125 \AA$	0.745

Table S3. Calculated BIEs for $\left[3,5{ }^{-3} \mathrm{H}\right]$ pABA with compression of the $\mathrm{C} 3-\mathrm{H} 3$ and $\mathrm{C} 5-\mathrm{H} 5$ bond lengths. Fixed values for the $\mathrm{C} 3-\mathrm{H} 3$ and $\mathrm{C} 5-\mathrm{H} 5$ bond lengths in the bound state are shown relative to the equilibrium bond lengths in the free state. The C3-H3 and C5-H5 bonds were fixed at the indicated lengths prior to optimization in acetone to generate the bound state structure.

C. SUPporting Methods

Expression and purification of wild-type SaDHPS. A synthetic gene was designed for SaDHPS (NCBI GenBank: Z84573) and purchased from DNA2.0 Inc. (Menlo Park, CA) in a pJexpress 404 expression vector. The encoded protein has 19 additional amino acids at the N-terminus, including a His_{6} tag and a thrombin cleavage site. Heterologous expression of SaDHPS was achieved in E. coli using the One Shot ${ }^{\circledR}$ BL21 Star ${ }^{\text {TM }}$ (DE3) cell line. A 10 mL starter culture in LB-ampicillin ($100 \mu \mathrm{~g} / \mathrm{mL}$) medium was incubated overnight at $37^{\circ} \mathrm{C}$. The next day, 6 mL of the starter culture was diluted in 1 L of fresh LB-ampicillin ($100 \mu \mathrm{~g} / \mathrm{mL}$) and incubated at $37^{\circ} \mathrm{C}$ to $\mathrm{OD}_{600}=0.7$. Induction was initiated by the addition of 1 mM isopropyl-Dthiogalactoside (IPTG) and the culture was incubated overnight at $28^{\circ} \mathrm{C}$.

The next day, cells were harvested via centrifugation and resuspended in 40 mL of Buffer A (20 mM Tris- $\mathrm{HCl}, 500 \mathrm{mM} \mathrm{NaCl}, 1 \mathrm{mM}$ DTT, 10 mM imidazole, $\mathrm{pH}=8.0$). Lysozyme and DNAse were added to the cell suspension and the mixture was incubated at $4{ }^{\circ} \mathrm{C}$ for 40 min . Cells were lysed via sonication and cell debris was removed by centrifugation. Cleared cell lysate was poured over a column of Ni-NTA resin (Qiagen), which had been pre-equilibrated with Buffer A. The resin was washed with five column volumes of Buffer A and the protein was eluted with a gradient of 30 mM to 500 mM imidazole in the same buffer system. Fractions containing SaDHPS were identified via SDS-PAGE, pooled, and exchanged into 20 mM Tris$\mathrm{HCl}, 300 \mathrm{mM} \mathrm{NaCl}, 1 \mathrm{mM}$ DTT, $\mathrm{pH}=8.0$ via dialysis. The pure protein was concentrated to 100 $\mu \mathrm{M}$ and stored at $-80^{\circ} \mathrm{C}$.

Expression and purification of wild-type PfHPPK-DHPS. A synthetic gene was designed for PfHPPK-DHPS (NCBI GenBank: AAA19963.1) and purchased from DNA2.0 Inc. in a pJexpress 404 expression vector. The encoded protein had a His_{6} tag included at the C-terminus. Heterologous expression of PfHPPK-DHPS was achieved in E. coli using the One Shot ${ }^{\circledR}$ BL21(DE3)pLysE cell line. A 10 mL starter culture in LB with ampicillin ($100 \mu \mathrm{~g} / \mathrm{mL}$) and chloramphenicol ($100 \mu \mathrm{~g} / \mathrm{mL}$) was incubated overnight at $37^{\circ} \mathrm{C}$. The next day, 6 mL of the starter culture was diluted in 1 L of fresh LB-ampicillin ($100 \mu \mathrm{~g} / \mathrm{mL}$) and incubated at $37{ }^{\circ} \mathrm{C}$ to $\mathrm{OD}_{600}=0.7$. Induction was initiated by the addition of 1 mM IPTG and the culture was incubated overnight at $28^{\circ} \mathrm{C}$.

The next day, cells were harvested via centrifugation and resuspended in 40 mL of Buffer B (20 mM Tris- $\mathrm{HCl}, 300 \mathrm{mM} \mathrm{NaCl}, 10 \mathrm{mM}$ imidazole $\mathrm{pH}=7.4$). Lysozyme, DNAse, and protease inhibitor were added to the cell suspension and the mixture was incubated at room temperature for 20 min . Cells were lysed via sonication and cell debris was removed by centrifugation. Cleared cell lysate was poured over a column of Ni-NTA resin, which had been pre-equilibrated with Buffer B. The resin was washed with five column volumes of Buffer B and the protein was eluted with a gradient of 30 mM to 500 mM imidazole in the same buffer system. Fractions containing PfHPPK-DHPS were identified via SDS-PAGE, pooled, and exchanged into 20 mM Tris- $\mathrm{HCl}, 300 \mathrm{mM} \mathrm{NaCl}, 10 \%$ glycerol $\mathrm{v} / \mathrm{v}, \mathrm{pH}=7.4$ via dialysis. The pure protein was concentrated to $50 \mu \mathrm{M}$ and stored at $-80^{\circ} \mathrm{C}$.

Expression and purification of $\mathbf{\Delta 6 2 8} \mathbf{- 6 6 8 P f H P P K}$-DHPS. The $\Delta 628-668$ PfHPPK-DHPS construct was generated using a Q5 Site-directed Mutagenesis Kit (New England Biolabs, Ipswich, MA). Primers used for deletion were $\Delta 628-668$ forward, ${ }^{\prime}$ '-GGT GGC TTG GCT ATT GCA-3' and $\Delta 628-668$ reverse, 5^{\prime} 'TTG TTG CGT GTT AAT CAC AAC-3'. The full gene coding for wild-type PfHPPK-DHPS was used as a template and the resulting plasmid was verified by sequencing. Heterologous expression of $\Delta 628-668$ PfHPPK-DHPS was achieved in E. coli using the One Shot ${ }^{\circledR}$ BL21(DE3) cell line. A 10 mL starter culture in LB with ampicillin $(100 \mu \mathrm{~g} / \mathrm{mL})$ was incubated overnight at $37^{\circ} \mathrm{C}$. The next day, 6 mL of the starter culture was diluted in 1 L of fresh LB-ampicillin $(100 \mu \mathrm{~g} / \mathrm{mL})$ and incubated at $37{ }^{\circ} \mathrm{C}$ to $\mathrm{OD}_{600}=0.6$. Induction was initiated by the addition of 0.5 mM IPTG and the culture was incubated overnight at $28^{\circ} \mathrm{C}$.

The next day, cells were harvested via centrifugation and resuspended in 40 mL of Buffer B. Lysozyme, DNAse, and protease inhibitor were added to the cell suspension and the mixture was incubated at rt for 20 min . Cells were lysed via sonication and cell debris was removed by centrifugation. Cleared cell lysate was poured over a column of Ni-NTA resin, which had been pre-equilibrated with Buffer B. The resin was washed with five column volumes of Buffer B and the protein was eluted with a gradient of 10 mM to 250 mM imidazole in the same buffer system. Fractions containing $\triangle 628-668$ PfHPPK-DHPS were identified via SDS-PAGE, pooled, and exchanged into 20 mM Tris- $\mathrm{HCl}, 300 \mathrm{mM} \mathrm{NaCl}, 10 \%$ glycerol $\mathrm{v} / \mathrm{v}, \mathrm{pH}=7.4$ via dialysis. The pure protein was concentrated to $30.3 \mu \mathrm{M}$ and stored at $-80^{\circ} \mathrm{C}$.

Purification of radiolabeled pABAs. $\left[7-{ }^{14} \mathrm{C}\right] p \mathrm{ABA}$ and $\left[3,5-{ }^{3} \mathrm{H}\right] p \mathrm{ABA}$ were purchased from Moravek Biochemicals Inc., Brea, CA. Stock solutions were made in water with the addition of unlabeled $p A B A$ (TCI America) to reach a final $p A B A$ concentration of 0.5 mM at $45,800 \mathrm{cpm} / \mu \mathrm{L}$ for $\left[7-{ }^{14} \mathrm{C}\right] p \mathrm{ABA}$ and 0.5 mM at $53,200 \mathrm{cpm} / \mu \mathrm{L}$ for $\left[3,5-{ }^{3} \mathrm{H}\right] p \mathrm{ABA}$. Mixtures of $\left[7-{ }^{14} \mathrm{C}\right] p \mathrm{ABA}$ and $\left[3,5-{ }^{3} \mathrm{H}\right] p \mathrm{ABA}$ were prepared for KIE and BIE measurements and purified via HPLC on a C-18 column (Phenomenex Gemini, $4.6 \times 250 \mathrm{~mm}$). The buffers used in this purification were $10 \mathrm{mM} \mathrm{NH}_{4} \mathrm{HCO}_{3}$ (Buffer C) and $10 \mathrm{mM} \mathrm{NH}_{4} \mathrm{HCO}_{3}$ in 30% acetonitrile (Buffer D). The method used was 99% Buffer C at $1 \mathrm{~mL} / \mathrm{min}$ for 1 min followed by a linear gradient of $1-100 \%$ Buffer D over 25 min (Method 1). The peak corresponding to the mixture of $\left[7-{ }^{14} \mathrm{C}\right] p \mathrm{ABA}$ and $\left[3,5-{ }^{3} \mathrm{H}\right] p \mathrm{ABA}$ was collected, evaporated to dryness via Speed Vac, dissolved in reaction buffer, and used directly in the KIE or BIE measurements.

Synthesis and purification of 6-hydroxymethyl-7,8-dihydropterin pyrophosphate (DHPP).

DHPP was synthesized from 6-hydroxymethylpterin pyrophosphate (HMPP) using a method adapted from Shiota, T. et al. ${ }^{2}$ For a typical preparative synthesis, HMPP ($\sim 1.0 \mathrm{mg}$) was dissolved in $200 \mu \mathrm{~L}$ sodium ascorbate solution ($100 \mathrm{mg} / \mathrm{mL}$; degassed with Ar) and $50 \mu \mathrm{~L}$ $\mathrm{Na}_{2} \mathrm{~S}_{2} \mathrm{O}_{4}$ solution ($20 \mathrm{mg} / \mathrm{mL}$; degassed with Ar). The reaction was allowed to sit at rt for 45 min under an Ar atmosphere. The reaction was then directly loaded onto a column of Q Sepharose Fast Flow resin (GE Healthcare) pre-equilibrated with $50 \mathrm{mM} \mathrm{NH}_{4} \mathrm{HCO}_{3}$. A gradient of $50 \mathrm{mM}-$ $250 \mathrm{mM} \mathrm{NH} 4 \mathrm{HCO}_{3}$ over 25 min was then applied to the column and elution of the DHPP product was monitored by UV absorbance as 330 nm . The solution containing pure DHPP was frozen and solvent was removed by lyophilization. The resulting light-yellow solid was dissolved in reaction buffer and used directly in the KIE measurements. Concentration of the DHPP substrate was quantified by UV absorbance using an extinction coefficient of $6,200 \mathrm{M}^{-1} \mathrm{~cm}^{-1}$ at $330 \mathrm{~nm} .{ }^{2}$

Equilibrium BIE measurements. General. All BIE measurements were performed using a rapid equilibrium dialysis (RED) device (Thermo Fisher Scientific). The RED device consists of a polypropylene base with a standard 96 -well plate footprint ($9 \mathrm{~mm} \times 9 \mathrm{~mm}$) that holds 48 dialysis inserts. Each dialysis insert is constructed as two wells separated by a vertical cylinder of
dialysis membrane (8 kD MW cutoff). In the following experimental details, the well contained within the cylinder of dialysis membrane will be referred to as the "enzyme well" and the outer volume surrounding the dialysis membrane will be referred to as the "buffer well" as illustrated below.

Schematic of RED device inserts used for equilibrium BIE measurements

BIE measurements for SaDHPS. For measurement of BIEs on the SaDHPS•pABA•HMPP ternary complex, the enzyme well contained 40 mM Tris- $\mathrm{HCl}, 5 \mathrm{mM} \mathrm{MgCl} 2,1 \mathrm{mM}$ DTT, $32.5 \mu \mathrm{M}$ SaDHPS, $14.1 \mu \mathrm{M} p \mathrm{ABA}(56.5 \mu \mathrm{M} p \mathrm{ABA}$ starting concentration prior to equilibration; $\left[7-{ }^{14} \mathrm{C}\right] p \mathrm{ABA}+\left[3,5-{ }^{3} \mathrm{H}\right] p \mathrm{ABA}+$ unlabeled carrier , and $88 \mu \mathrm{M}$ HMPP at $\mathrm{pH}=8.3$ in $100 \mu \mathrm{~L}$. The buffer well contained only 40 mM Tris- $\mathrm{HCl}, 5 \mathrm{mM} \mathrm{MgCl} 2,1 \mathrm{mM}$ DTT, and $88 \mu \mathrm{M}$ HMPP at $\mathrm{pH}=8.3$ in $300 \mu \mathrm{~L}$. For attempted measurement of BIEs on the SaDHPS $\bullet \mathrm{pABA}$ binary complex, conditions for the enzyme and buffer wells were identical to those used for measurements with the ternary complex except that HMPP was not added.

For a typical measurement, a $2 \times$ master mix was prepared for the enzyme well containing all reaction components (except SaDHPS) required for seven measurements in $350 \mu \mathrm{~L}$. From this master mix, five reactions were removed in a single $250 \mu \mathrm{~L}$ aliquot and mixed with $250 \mu \mathrm{~L}$ of SaDHPS. This mixture was then split into five $100 \mu \mathrm{~L}$ aliquots and served as the experimental replicates. The remaining $100 \mu \mathrm{~L}$ of the master mix was combined with $100 \mu \mathrm{~L}$ of buffer and split into two $100 \mu \mathrm{~L}$ aliquots; these samples served as 'no-enzyme controls' to monitor equilibration of $\left[7-{ }^{14} \mathrm{C}\right] p \mathrm{ABA}$ and $\left[3,5-{ }^{3} \mathrm{H}\right] p \mathrm{ABA}$ across the dialysis membrane.

The dialysis inserts were covered with Crystal Clear Sealing Film (Hampton Research, Aliso Viejo, CA) and the RED device was shaken at 300 rpm for 3 hr at $25-27^{\circ} \mathrm{C}$. Equivolume
samples $(50 \mu \mathrm{~L})$ were then taken from the enzyme and buffer wells of each dialysis insert. Samples were diluted in $450 \mu \mathrm{~L} \mathrm{H} \mathrm{H}_{2} \mathrm{O}$ and mixed with 10 mL of scintillation fluid. Scintillation counting was carried out using a Tri-carb 2910TR scintillation counter (Perkin-Elmer, Gaithersburg, MD), which is a dual-channel instrument that registers the signal for ${ }^{3} \mathrm{H}$ in Channel A and the signal for ${ }^{14} \mathrm{C}$ in both Channel A and Channel B. As such, the raw data must be deconvoluted to determine total counts for $\left[3,5-{ }^{3} \mathrm{H}\right] p \mathrm{ABA}$ and $\left[7-{ }^{14} \mathrm{C}\right] p \mathrm{ABA}$. The control sample of $\left[7-{ }^{14} \mathrm{C}\right] p \mathrm{ABA}$ was used to determine the proportion of signal overlap between Channel A and Channel B for ${ }^{14} \mathrm{C}$, as defined by Eq. 1

$$
\begin{equation*}
r=\text { Channel A / Channel B } \tag{1}
\end{equation*}
$$

Spectral deconvolution of the BIE data was achieved for ${ }^{3} \mathrm{H}$ and ${ }^{14} \mathrm{C}$ using Eq. 2 and Eq. 3, respectively:

$$
\begin{align*}
& { }^{3} \mathrm{H}=\text { Channel } \mathrm{A}-(\text { Channel } \mathrm{B} \times r) \tag{2}\\
& { }^{14} \mathrm{C}=\text { Channel } \mathrm{B}+(\text { Channel } \mathrm{B} \times r) \tag{3}
\end{align*}
$$

BIEs were calculated from Eq. 4 where ${ }^{14} \mathrm{C}_{\mathrm{BW}}$ and ${ }^{14} \mathrm{C}_{\mathrm{EW}}$ are the total counts of $\left[7-{ }_{-}^{14} \mathrm{C}\right] p \mathrm{ABA}$ in the buffer well and enzyme well (respectively), and ${ }^{3} \mathrm{H}_{\mathrm{BW}}$ and ${ }^{3} \mathrm{H}_{\mathrm{EW}}$ are the total counts of $\left[3,5-{ }^{3} \mathrm{H}\right] p \mathrm{ABA}$ in the buffer well and enzyme well (respectively).

$$
\begin{equation*}
\text { BIE }=\left[\left({ }^{14} \mathrm{C}_{\mathrm{EW}} /{ }^{14} \mathrm{C}_{\mathrm{BW}}\right)-1\right] /\left[\left({ }^{3} \mathrm{H}_{\mathrm{EW}} /{ }^{3} \mathrm{H}_{\mathrm{BW}}\right)-1\right] \tag{4}
\end{equation*}
$$

BIE measurements for PfHPPK-DHPS. For measurement of BIEs on the PfHPPKDHPS \bullet pABA $\cdot \mathrm{HMPP}$ ternary complex, the enzyme well contained 20 mM Tris- $\mathrm{HCl}, 10 \mathrm{mM}$ $\mathrm{MgCl}_{2}, 1 \mathrm{mM}$ DTT, $5 \mu \mathrm{M}$ PfHPPK-DHPS, $6.3 \mu \mathrm{M}$ pABA $(25 \mu \mathrm{M} p \mathrm{ABA}$ starting concentration prior to equilibration; $\left[7-{ }^{14} \mathrm{C}\right] p \mathrm{ABA}+\left[3,5-{ }^{3} \mathrm{H}\right] p \mathrm{ABA}+$ unlabeled carrier), and $6.3 \mu \mathrm{M}$ HMPP at $\mathrm{pH}=9.0$ in $100 \mu \mathrm{~L}$. The buffer well contained only 20 mM Tris- $\mathrm{HCl}, 10 \mathrm{mM} \mathrm{MgCl}{ }_{2}$ and 1 mM DTT at $\mathrm{pH}=9.0$ in $300 \mu \mathrm{~L}$. For attempted measurement of BIEs on the PfHPPK-DHPS $\bullet p A B A$ binary complex, conditions for the enzyme and buffer wells were identical to those used for measurements with the ternary complex except that HMPP was not added.

For a typical measurement, a master mix was prepared for the enzyme well containing all reaction components (except PfHPPK-DHPS) required for seven measurements in $700 \mu \mathrm{~L}$. This
mixture was then split into two $300 \mu \mathrm{~L}$ aliquots and served as the experimental replicates. The remaining $100 \mu \mathrm{~L}$ of the master mix was used as 'no-enzyme control' to monitor equilibration of $\left[7-{ }^{14} \mathrm{C}\right] p \mathrm{ABA}$ and $\left[3,5-{ }^{3} \mathrm{H}\right] p \mathrm{ABA}$ across the dialysis membrane. The BIEs were then measured and calculated in the same manner as SaDHPS above.

Measurement of V/K KIEs for SaDHPS and PfHPPK-DHPS. KIEs on the DHPS reaction were measured at $37{ }^{\circ} \mathrm{C}$ using the competitive radiolabel approach. ${ }^{3,4}$ Typical reaction conditions for the KIE measurements were: 40 mM Tris- $\mathrm{HCl}, 5 \mathrm{mM} \mathrm{MgCl} 2,5 \mathrm{mM}$ DTT, $800 \mu \mathrm{M}$ DHPP, $400 \mu \mathrm{M} p \mathrm{ABA}\left(\left[7-{ }^{14} \mathrm{C}\right] p \mathrm{ABA}+\left[3,5-{ }^{3} \mathrm{H}\right] p \mathrm{ABA}+\right.$ unlabeled carrier), 20 nM DHPS, $\mathrm{pH}=8.3$. For a typical KIE measurement, a master mix containing all reaction components (except DHPS) was prepared and distributed into equivolume aliquots. Then, DHPS was added to aliquots designated as experimental reactions and an equivalent volume of buffer was added to aliquots designated as no-enzyme controls. The DHPS reaction was allowed to proceed to $\sim 50 \%$ completion and then quenched by the addition of ethylenediaminetetraacetic acid (EDTA) to a final concentration of 20 mM . HPLC Method 1 was used to purify remaining p ABA substrate and the DHP product from the quenched reactions. A sample of $\left[7-{ }^{14} \mathrm{C}\right] p \mathrm{ABA}$ was also purified in this manner for the purposes of spectral deconvolution.

Purified $p \mathrm{ABA}$ and DHP samples from the KIE reactions were evaporated to dryness in 20 mL scintillation vials via Speed Vac and then dissolved in $500 \mathrm{uL} \mathrm{H}_{2} \mathrm{O}$. To each vial was then added 10 mL of scintillation fluid and scintillation counting was performed on each sample over 10 cycles at $10 \mathrm{~min} /$ cycle. Scintillation counting and spectral deconvolution of the resulting data was performed as described for the BIE measurements.
V / K KIE values were calculated from Eq. 5 , where R_{0} and R_{f} are the ratio of $\left[3,5-{ }^{3} \mathrm{H}\right] p \mathrm{ABA}$ to $\left[7-{ }^{14} \mathrm{C}\right] p \mathrm{ABA}$ prior to the reaction (i.e., no-enzyme control) and at partial conversion, respectively, and f is the fraction of substrate conversion.

$$
\begin{equation*}
\mathrm{KIE}_{V / K}=\ln (1-f) / \ln \left[(1-f) \times\left(\mathrm{R}_{\mathrm{f}} / \mathrm{R}_{0}\right)\right] \tag{5}
\end{equation*}
$$

Computational Methods. General. DFT calculations were carried out using the B3LYP functional and $6-31 \mathrm{~g}(\mathrm{~d})$ basis set as implemented in Gaussian 09. ${ }^{1}$ Equilibrium BIEs were calculated from the scaled vibrational frequencies of optimized structures of $p \mathrm{ABA}$ in the free and bound states using the ISOEFF98 program. ${ }^{5}$ The optimized structure of $p \mathrm{ABA}$ in the free state was generated using water as an implicit solvent model and was identical for all BIE calculations. Bound states of $p \mathrm{ABA}$ were generated by optimizing structures using the solvent models and/or geometric constraints outlined below.

Calculations for the free state of $p A B A$. The free state of $p A B A$ used for all BIE calculations was the energy-minimized structure using water as an implicit solvent (polarizable continuum model).

Atomic coordinates for optimized structure of $\boldsymbol{p A B A}$ in water:

O	-2.84687400	1.13002900	0.00560600
C	-2.28158500	0.00000000	0.00353700
O	-2.84685200	-1.13004200	0.00597200
C	-0.75008100	0.00004100	-0.00246700
C	-0.02173800	-1.19761500	-0.00360700
C	1.37118100	-1.20785000	-0.00606200
C	2.09353400	-0.00001800	-0.00808000
N	3.49351200	-0.00000900	-0.07745300
C	1.37123300	1.20782600	-0.00591900
C	-0.02169500	1.19765100	-0.00347400
H	-0.57498100	-2.13220100	0.00119200
H	1.91291400	-2.15223100	-0.00674500
H	3.92707100	0.83188200	0.30827000
H	1.91300200	2.15219000	-0.00643700
H	-0.57490400	2.13226600	0.00147900
H	3.92703300	-0.83194000	0.30821800

Influence of bound-state dielectric constant on calculated BIEs. BIEs in Figure 2a and Table S1 were calculated from energy-minimized structures of $p \mathrm{ABA}$ using a series of implicit solvent models with decreasing dielectric constants: water (78.4), methanol (32.6), acetone (20.5), dichloroethane (10.1), chlorobenzene (5.7), and carbon tetrachloride (2.2). ${ }^{1}$ No geometric or bond length constraints were imposed on the bound structures.

Atomic coordinates for optimized structure of $\boldsymbol{p A B A}$ in carbon tetrachloride:

O	2.84106900	1.13360900	-0.01538000
C	2.29273800	-0.00020600	0.00704100
O	2.83882200	-1.13483300	0.04267400
C	0.74959600	0.00054500	-0.00876400
C	0.02393200	-1.19627600	-0.02302000
C	-1.37047900	-1.20576000	-0.02723900
C	-2.08921800	0.00020700	-0.01305200
N	-3.50333500	0.00057100	-0.06788200
C	-1.37076400	1.20635600	-0.00159600
C	0.02373000	1.19730800	-0.00151100
H	0.58902700	-2.12423300	-0.02479500
H	-1.91496100	-2.15011600	-0.04077800
H	-3.91003300	0.82245600	0.36760800
H	-1.91551000	2.15061400	0.00589600
H	0.58808400	2.12576300	0.00997800
H	-3.90960400	-0.83173200	0.34776100

Atomic coordinates for optimized structure of $p A B A$ in chlorobenzene:

O	2.84312500	1.13148000	0.04929000
C	2.28616000	0.00016500	0.00505700
O	2.84449700	-1.13070000	-0.03128900
C	0.74980200	-0.00030200	-0.00491200
C	0.02271200	-1.19739300	0.00777500
C	-1.37094200	-1.20702600	0.00796000
C	-2.09155600	-0.00020900	-0.01024700
N	-3.49778000	-0.00104000	-0.07356600
C	-1.37080700	1.20658400	-0.02714100
C	0.02276900	1.19680800	-0.02190000
H	0.58071500	-2.12935700	0.02273700
H	-1.91376700	-2.15136900	0.02049800
H	-3.91985600	0.83502800	0.31668800
H	-1.91357600	2.15091200	-0.04376700
H	0.58130100	2.12849000	-0.02722400
H	-3.92015900	-0.82442800	0.34247100

Atomic coordinates for optimized structure of $\boldsymbol{p A B A}$ in dichloroethane:

O	2.84529900	-1.13047000	-0.02265300
C	2.28405200	0.00008900	0.00433800
O	2.84494400	1.13066700	0.03793100
C	0.74991000	0.00005500	-0.00391100
C	0.02229700	1.19728400	-0.01671100
C	-1.37105600	1.20709800	-0.02107700
C	-2.09241200	-0.00013300	-0.00926800
N	-3.49584600	-0.00090700	-0.07523500
C	-1.37092900	-1.20735200	0.00509700
C	0.02235600	-1.19736200	0.00561600
H	0.57826500	2.13043400	-0.01984800
H	-1.91336300	2.15143200	-0.03359600
H	-3.92320700	-0.82724700	0.32934500
H	-1.91323800	-2.15172100	0.01482400
H	0.57850100	-2.13035000	0.01827100
H	-3.92328000	0.83416100	0.31091900

Atomic coordinates for optimized structure of $\boldsymbol{p A B A}$ in acetone:

O	-2.84616300	-1.13038400	-0.00056400
C	-2.28270200	0.00002100	0.00397800
O	-2.84607200	1.13039000	0.01418700
C	-0.75000700	0.00001000	-0.00334700
C	-0.02198700	1.19752900	-0.00741600
C	1.37113200	1.20760000	-0.01020200
C	2.09306900	-0.00000100	-0.00854700
N	3.49452600	-0.00017700	-0.07611700
C	1.37112300	-1.20760400	-0.00377300
C	-0.02198600	-1.19752400	-0.00197600
H	-0.57631000	2.13157700	-0.00473200
H	1.91306500	2.15201000	-0.01385600
H	3.92537400	-0.83093800	0.31519600
H	1.91307500	-2.15201200	-0.00197100
H	-0.57631500	-2.13156600	0.00468300
H	3.92546500	0.83193400	0.31221700

Atomic coordinates for optimized structure of $\boldsymbol{p A B A}$ in methanol:

O	2.84652600	1.13021000	0.00576500
C	2.28212100	0.00000700	0.00379200
O	2.84646600	-1.13024500	0.00681300
C	0.75009200	0.00002100	-0.00290100
C	0.02185200	-1.19755700	-0.00429900
C	-1.37113700	-1.20768800	-0.00674400
C	-2.09332300	0.00003100	-0.00833300
N	-3.49405500	-0.00003800	-0.07676800
C	-1.37116800	1.20770500	-0.00625800
C	0.02185600	1.19756000	-0.00391600
H	0.57561200	-2.13189700	0.00032200
H	-1.91300400	-2.15207200	-0.00776600
H	-3.92632000	0.83167300	0.31088200
H	-1.91297200	2.15212800	-0.00685700
H	0.57560100	2.13191200	0.00099700
H	-3.92623600	-0.83167200	0.31112800

Influence of H3-C3-C4-C5 and H5-C5-C4-C3 dihedral restriction on calculated BIEs. BIEs in Figure 2b and Table S2 were calculated using bound structures with symmetric restriction of the H3-C3-C4-C5 and H5-C5-C4-C3 dihedral angles. A total of 10 structures were generated by fixing the H3-C3-C4-C5 and H5-C5-C4-C3 dihedral angles at the values listed in Table S2 prior to energy minimization. Acetone was used as an implicit solvent model in the optimization of each structure.

Atomic coordinates for optimized structure of p ABA with fixed dihedral angles $\mathrm{H} 3-\mathrm{C} 3-\mathrm{C} 4-\mathrm{C} 5=178.940^{\circ}$ and $\mathrm{H} 5-\mathrm{C} 5-\mathrm{C} 4-\mathrm{C} 3=-178.943^{\circ}$:

O	-2.8462400000	1.1304100000	0.0044670000
C	-2.2826260000	-0.0000010000	0.0023920000
O	-2.8462330000	-1.1304140000	0.0047400000
C	-0.7501330000	0.0000020000	-0.0035630000
C	-0.0219380000	-1.1974350000	-0.0018760000
C	1.3711500000	-1.2075480000	-0.0040370000
C	2.0932440000	0.0000030000	-0.0116980000
N	3.4942230000	0.0000010000	-0.0812830000
C	1.3711500000	1.2075500000	-0.0039250000
C	-0.0219390000	1.1974370000	-0.0017780000
H	-0.5762000000	-2.1314940000	0.0070220000
H	1.9129930000	-2.1519740000	0.0076450000
H	3.9265980000	0.8316710000	0.3062670000
H	1.9129900000	2.1519760000	0.0078990000
H	-0.5761960000	2.1314990000	0.0071930000
H	3.9265940000	-0.8317020000	0.3062020000

Atomic coordinates for optimized structure of p ABA with fixed dihedral angles $\mathrm{H} 3-\mathrm{C} 3-\mathrm{C} 4-\mathrm{C} 5=177.940^{\circ}$ and $\mathrm{H} 5-\mathrm{C} 5-\mathrm{C} 4-\mathrm{C} 3=-177.943^{\circ}$:

O	-2.8462880000	1.1303940000	0.0025090000
C	-2.2826020000	-0.0000010000	0.0009170000
O	-2.8462830000	-1.1303980000	0.0027760000
C	-0.7501140000	0.0000030000	-0.0038700000
C	-0.0219130000	-1.1974280000	0.0006890000
C	1.3711890000	-1.2075630000	-0.0013210000
C	2.0932210000	0.0000020000	-0.0145970000
N	3.4940510000	0.0000010000	-0.0863040000
C	1.3711900000	1.2075650000	-0.0012120000
C	-0.0219140000	1.1974310000	0.0007840000
H	-0.5761640000	-2.1314470000	0.0134910000
H	1.9129160000	-2.1518230000	0.0227240000
H	3.9271810000	0.8317260000	0.3003660000
H	1.9129140000	2.1518230000	0.0229720000
H	-0.5761590000	2.1314520000	0.0136570000
H	3.9271770000	-0.8317550000	0.3003040000

Atomic coordinates for optimized structure of p ABA with fixed dihedral angles $\mathrm{H} 3-\mathrm{C} 3-\mathrm{C} 4-\mathrm{C} 5=176.940^{\circ}$ and $\mathrm{H} 5-\mathrm{C} 5-\mathrm{C} 4-\mathrm{C} 3=-176.943^{\circ}$:

O	2.8463460000	-1.1303760000	0.0004710000
C	2.2825860000	0.0000010000	-0.0005870000
O	2.8463410000	1.1303790000	0.0007250000
C	0.7500810000	-0.0000030000	-0.0040840000
C	0.0218750000	1.1974190000	0.0033580000
C	-1.3712530000	1.2075830000	0.0014530000
C	-2.0931710000	-0.0000020000	-0.0174990000
N	-3.4938560000	-0.0000010000	-0.0914570000
C	-1.3712540000	-1.2075840000	0.0015580000
C	0.0218760000	-1.1974200000	0.0034480000
H	0.5761250000	2.1313760000	0.0201010000
H	-1.9128350000	2.1515350000	0.0378120000
H	-3.9277640000	-0.8317840000	0.2942930000
H	-1.9128330000	-2.1515330000	0.0380510000
H	0.5761210000	-2.1313800000	0.0202580000
H	-3.9277610000	0.8318110000	0.2942350000

Atomic coordinates for optimized structure of p ABA with fixed dihedral angles $\mathrm{H} 3-\mathrm{C} 3-\mathrm{C} 4-\mathrm{C} 5=175.940^{\circ}$ and $\mathrm{H} 5-\mathrm{C} 5-\mathrm{C} 4-\mathrm{C} 3=-175.943^{\circ}$:

O	2.8459190000	-1.1304890000	-0.0021010000
C	2.2825100000	0.0000000000	-0.0021680000
O	2.8459220000	1.1304880000	-0.0019210000
C	0.7500160000	0.000000000	-0.0036090000
C	0.0219570000	1.1974680000	0.0068920000
C	-1.3711560000	1.2076310000	0.0042410000
C	-2.0928300000	-0.0000020000	-0.0203670000
N	-3.4933750000	-0.0000020000	-0.0973160000
C	-1.3711560000	-1.2076310000	0.0043140000
C	0.0219580000	-1.1974660000	0.0069550000
H	0.5763030000	2.1313040000	0.0273910000
H	-1.9125930000	2.1510960000	0.0529360000
H	-3.9281610000	-0.8318320000	0.2874600000
H	-1.9125890000	-2.1510920000	0.0531180000
H	0.5763040000	-2.1313020000	0.0275020000
H	-3.9281590000	0.8318460000	0.2874230000

Atomic coordinates for optimized structure of $p A B A$ with fixed dihedral angles $\mathrm{H} 3-\mathrm{C} 3-\mathrm{C} 4-\mathrm{C} 5=174.940^{\circ}$ and $\mathrm{H} 5-\mathrm{C} 5-\mathrm{C} 4-\mathrm{C} 3=-174.943^{\circ}$:

O	2.8458180000	-1.1305050000	-0.0041270000
C	2.2824300000	0.000000000	-0.0036680000
O	2.8458210000	1.1305040000	-0.0039810000
C	0.7499700000	0.000000000	-0.0038320000
C	0.0219400000	1.1974600000	0.0096070000
C	-1.3711930000	1.2076640000	0.0069640000
C	-2.0926550000	-0.0000020000	-0.0232460000
N	-3.4930140000	-0.0000020000	-0.1024140000
C	-1.3711930000	-1.2076640000	0.0070220000
C	0.0219410000	-1.1974580000	0.0096570000
H	0.5763390000	2.1311720000	0.0339470000
H	-1.9124370000	2.1505190000	0.0680160000
H	-3.9286320000	-0.8319170000	0.2812980000
H	-1.9124330000	-2.1505150000	0.0681730000
H	0.5763410000	-2.1311690000	0.0340340000
H	-3.9286310000	0.8319270000	0.2812710000

Atomic coordinates for optimized structure of p ABA with fixed dihedral angles $\mathrm{H} 3-\mathrm{C} 3-\mathrm{C} 4-\mathrm{C} 5=173.940^{\circ}$ and $\mathrm{H} 5-\mathrm{C} 5-\mathrm{C} 4-\mathrm{C} 3=-173.943^{\circ}$:

O	2.8457180000	-1.1305150000	-0.0060880000
C	2.2823400000	0.0000000000	-0.0051560000
O	2.8457210000	1.1305130000	-0.0059730000
C	0.7499100000	0.0000000000	-0.0041310000
C	0.0219100000	1.1974490000	0.0122390000
C	-1.3712490000	1.2077040000	0.0096500000
C	-2.0924540000	-0.0000010000	-0.0261100000
N	-3.4926230000	-0.0000010000	-0.1074130000
C	-1.3712490000	-1.2077040000	0.0096950000
C	0.0219120000	-1.1974470000	0.0122770000
H	0.5763780000	2.1310130000	0.0403850000
H	-1.9122670000	2.1498040000	0.0830850000
H	-3.9290570000	-0.8320090000	0.2752340000
H	-1.9122620000	-2.1498000000	0.0832180000
H	0.5763790000	-2.1310100000	0.0404500000
H	-3.9290560000	0.8320140000	0.2752170000

Atomic coordinates for optimized structure of $p A B A$ with fixed dihedral angles $\mathrm{H} 3-\mathrm{C} 3-\mathrm{C} 4-\mathrm{C} 5=172.940^{\circ}$ and $\mathrm{H} 5-\mathrm{C} 5-\mathrm{C} 4-\mathrm{C} 3=-172.943^{\circ}$:

O	2.8456290000	-1.1305150000	-0.0079790000
C	2.2822420000	0.0000000000	-0.0066300000
O	2.8456320000	1.1305130000	-0.0078900000
C	0.7498340000	0.0000010000	-0.0045090000
C	0.0218660000	1.1974350000	0.0147800000
C	-1.3713260000	1.2077510000	0.0122970000
C	-2.0922300000	-0.0000010000	-0.0289550000
N	-3.4922060000	-0.0000010000	-0.1123080000
C	-1.3713250000	-1.2077510000	0.0123320000
C	0.0218670000	-1.1974330000	0.0148080000
H	0.5764150000	2.1308270000	0.0466930000
H	-1.9120820000	2.1489500000	0.0981410000
H	-3.9294410000	-0.8321070000	0.2692720000
H	-1.9120770000	-2.1489450000	0.0982560000
H	0.5764160000	-2.1308240000	0.0467410000
H	-3.9294390000	0.8321090000	0.2692630000

Atomic coordinates for optimized structure of p ABA with fixed dihedral angles $\mathrm{H} 3-\mathrm{C} 3-\mathrm{C} 4-\mathrm{C} 5=171.940^{\circ}$ and $\mathrm{H} 5-\mathrm{C} 5-\mathrm{C} 4-\mathrm{C} 3=-171.943^{\circ}$:

O	2.8455550000	-1.1305030000	-0.0098100000
C	2.2821380000	0.000000000	-0.0080910000
O	2.8455580000	1.1305010000	-0.0097400000
C	0.7497420000	0.0000010000	-0.0049560000
C	0.0218040000	1.1974180000	0.0172380000
C	-1.3714250000	1.2078060000	0.0149100000
C	-2.0919870000	-0.0000010000	-0.0317780000
N	-3.4917680000	-0.0000010000	-0.1171120000
C	-1.3714250000	-1.2078060000	0.0149370000
C	0.0218060000	-1.1974160000	0.0172590000
H	0.5764470000	2.1306150000	0.0528860000
H	-1.9118850000	2.1479560000	0.1131860000
H	-3.9297880000	-0.8322120000	0.2633980000
H	-1.9118790000	-2.1479520000	0.1132860000
H	0.5764490000	-2.1306120000	0.0529210000
H	-3.9297870000	0.8322120000	0.2633950000

Atomic coordinates for optimized structure of p ABA with fixed dihedral angles $\mathrm{H} 3-\mathrm{C} 3-\mathrm{C} 4-\mathrm{C} 5=170.940^{\circ}$ and $\mathrm{H} 5-\mathrm{C} 5-\mathrm{C} 4-\mathrm{C} 3=-170.943^{\circ}$:

O	2.8454950000	-1.1304790000	-0.0115890000
C	2.2820280000	0.0000000000	-0.0095380000
O	2.8454980000	1.1304780000	-0.0115330000
C	0.7496350000	0.0000000000	-0.0054590000
C	0.0217260000	1.1973980000	0.0196190000
C	-1.3715480000	1.2078670000	0.0174960000
C	-2.0917240000	-0.0000010000	-0.0345780000
N	-3.4913060000	0.0000000000	-0.1218380000
C	-1.3715480000	-1.2078670000	0.0175160000
C	0.0217280000	-1.1973960000	0.0196360000
H	0.5764740000	2.1303790000	0.0589750000
H	-1.9116710000	2.1468230000	0.1282200000
H	-3.9301050000	-0.8323230000	0.2575890000
H	-1.9116660000	-2.1468180000	0.1283080000
H	0.5764760000	-2.1303760000	0.0590030000
H	-3.9301040000	0.8323220000	0.2575920000

Atomic coordinates for optimized structure of $p \mathrm{ABA}$ with fixed dihedral angles $\mathrm{H} 3-\mathrm{C} 3-\mathrm{C} 4-\mathrm{C} 5=169.940^{\circ}$ and $\mathrm{H} 5-\mathrm{C} 5-\mathrm{C} 4-\mathrm{C} 3=-169.943^{\circ}$:

O	2.8456510000	-1.1303490000	-0.0133380000
C	2.2819410000	0.000000000	-0.0109670000
O	2.8456540000	1.1303480000	-0.0132930000
C	0.7494790000	0.0000010000	-0.0059590000
C	0.0215630000	1.1973670000	0.0219000000
C	-1.3717640000	1.2079270000	0.0200960000
C	-2.0915160000	-0.0000010000	-0.0373240000
N	-3.4908970000	0.0000000000	-0.1265380000
C	-1.3717640000	-1.2079270000	0.0201110000
C	0.0215650000	-1.1973640000	0.0219130000
H	0.5764200000	2.1301030000	0.0650090000
H	-1.9115220000	2.1455360000	0.1432760000
H	-3.9304960000	-0.8324430000	0.2517570000
H	-1.9115170000	-2.1455320000	0.1433560000
H	0.5764210000	-2.1301000000	0.0650300000
H	-3.9304950000	0.8324400000	0.2517630000

Influence of C3-H3 and C5-H5 bond length compression on calculated BIEs. BIEs shown in
Figure 2c and Table S3 were calculated from bound structures with symmetric restriction of the C3-H3 and C5-H5 bond lengths. A total of seven structures were calculated by freezing the C3-H3 and C5-H5 bonds at decreasing lengths (99 to 93%), relative to their equilibrium bond lengths, prior to energy optimization. Acetone was used as an implicit solvent in the optimization of each structure.

Atomic coordinates for optimized structure of $\boldsymbol{p A B A}$ with $\mathbf{C 3}-\mathrm{H} 3$ and $\mathbf{C} 5-\mathrm{H} 5$ bond lengths fixed at $1.0778 \AA$:

O	-2.84602200	1.13044300	0.00688800
C	-2.28262800	-0.00000100	0.00404900
O	-2.84601800	-1.13044500	0.00712900
C	-0.74994500	-0.00000600	-0.00349100
C	-0.02167400	-1.19727500	-0.00496700
C	1.37165600	-1.20821000	-0.00723600
C	2.09282600	0.00000600	-0.00861500
N	3.49435600	0.00000300	-0.07548000
C	1.37164700	1.20821800	-0.00712700
C	-0.02168400	1.19727000	-0.00487800
H	-0.57626100	-2.13125700	-0.00040300
H	1.90785100	-2.14321400	-0.00833600
H	3.92574400	0.83146900	0.31352100
H	1.90783200	2.14322800	-0.00814700
H	-0.57627100	2.13125000	-0.00026500
H	3.92574700	-0.83149600	0.31345000

Atomic coordinates for optimized structure of $\boldsymbol{p A B A}$ with $\mathrm{C} 3-\mathrm{H} 3$ and $\mathrm{C} 5-\mathrm{H} 5$ bond lengths fixed at $1.0670 \AA$:

		-2.84598900	1.13037900
O	-2.28236000	-0.00000100	0.00685200
C	-2.84598600	-1.13038100	0.00703800
O	-0.74975500	-0.00000400	-0.00345400
C	-0.02137200	-1.19716500	-0.00493900
C	1.37213000	-1.20884500	-0.00720600
C	2.09253800	0.00000500	-0.00854000
C	3.49415600	0.00000300	-0.07553100
N	1.37212500	1.20885100	-0.00709600
C	-0.02137900	1.19716200	-0.00484700
C	-0.57597600	-2.13118900	-0.00039900
H	1.90269500	-2.13453600	-0.00832800
H	3.92585800	0.83140200	0.31327800
H	1.90268300	2.13454600	-0.00813400
H	-0.57598000	2.13118600	-0.00025100
H	3.92585900	-0.83142900	0.31320900

Atomic coordinates for optimized structure of $p \mathrm{ABA}$ with $\mathrm{C} 3-\mathrm{H} 3$ and $\mathrm{C} 5-\mathrm{H} 5$ bond lengths fixed at $1.0561 \AA$:

O	-2.84591200	1.13033600	0.00681900
C	-2.28210000	-0.00000100	0.00403300
O	-2.84590900	-1.13033800	0.00707100
C	-0.74958100	-0.00000200	-0.00342000
C	-0.02109900	-1.19706200	-0.00491200
C	1.37255600	-1.20940000	-0.00718300
C	2.09228800	0.00000300	-0.00848300
N	3.49398800	0.00000200	-0.07556800
C	1.37255300	1.20940400	-0.00707100
C	-0.02110200	1.19706000	-0.00481900
H	-0.57571700	-2.13112600	-0.00038800
H	1.89752100	-2.12574800	-0.00831500
H	3.92598200	0.83134400	0.31304800
H	1.89751500	2.12575400	-0.00811500
H	-0.57571600	2.13112500	-0.00023300
H	3.92598000	-0.83137200	0.31298000

Atomic coordinates for optimized structure of pABA with $\mathrm{C} 3-\mathrm{H} 3$ and $\mathrm{C} 5-\mathrm{H} 5$ bond lengths fixed at $1.0452 \AA$:

O	-2.84579900	1.13031200	0.00680500
C	-2.28186000	-0.00000100	0.00403600
O	-2.84579500	-1.13031400	0.00706200
C	-0.74941700	-0.00000100	-0.00340300
C	-0.02084000	-1.19695700	-0.00490600
C	1.37296000	-1.20992100	-0.00717900
C	2.09204400	0.00000300	-0.00844600
N	3.49383800	0.00000200	-0.07556600
C	1.37295900	1.20992400	-0.00706600
C	-0.02084200	1.19695600	-0.00481100
H	-0.57549000	-2.13105100	-0.00039400
H	1.89234200	-2.11691700	-0.00831800
H	3.92608500	0.83128600	0.31289600
H	1.89233900	2.11692200	-0.00811500
H	-0.57548700	2.13105200	-0.00023300
H	3.92608100	-0.83131500	0.31282900

Atomic coordinates for optimized structure of $\boldsymbol{p A B A}$ with $\mathbf{C} 3-\mathrm{H} 3$ and $\mathrm{C} 5-\mathrm{H} 5$ bond lengths fixed at $1.0343 \AA$:

O	-2.84566700	1.13029800	0.00680500
C	-2.28163300	-0.00000100	0.00404100
O	-2.84566400	-1.13029900	0.00706500
C	-0.74925700	0.0000000	-0.00339600
C	-0.02058800	-1.19684900	-0.00491200
C	1.37335500	-1.21042700	-0.00718700
C	2.09179900	0.00000200	-0.00842000
N	3.49369600	0.00000200	-0.07554000
C	1.37335600	1.21042900	-0.00707300
C	-0.02058900	1.19684900	-0.00481500
H	-0.57527900	-2.13096800	-0.00041200
H	1.88716100	-2.10806700	-0.00833200
H	3.92617500	0.83122700	0.31279200
H	1.88716000	2.10807100	-0.00812700
H	-0.57527400	2.13097100	-0.00024700
H	3.92617100	-0.83125700	0.31272500

Atomic coordinates for optimized structure of $p \mathrm{ABA}$ with $\mathrm{C} 3-\mathrm{H} 3$ and $\mathrm{C} 5-\mathrm{H} 5$ bond lengths fixed at $1.0234 \AA$:

O	-2.8455280000	1.1302880000	0.0068090000
C	-2.2814150000	-0.0000010000	0.0040470000
O	-2.8455240000	-1.1302900000	0.0070720000
C	-0.7490990000	0.0000010000	-0.0033930000
C	-0.0203370000	-1.1967400000	-0.0049220000
C	1.3737450000	-1.2109200000	-0.0071990000
C	2.0915560000	0.0000020000	-0.0084000000
N	3.4935600000	0.0000020000	-0.0755070000
C	1.3737460000	1.2109220000	-0.0070840000
C	-0.0203370000	1.1967400000	-0.0048240000
H	-0.5750720000	-2.1308830000	-0.0004320000
H	1.8819830000	-2.0992110000	-0.0083500000
H	3.9262600000	0.8311690000	0.3127040000
H	1.8819820000	2.0992140000	-0.0081440000
H	-0.5750670000	2.1308860000	-0.0002650000
H	3.9262550000	-0.8311990000	0.3126370000

Atomic coordinates for optimized structure of $\boldsymbol{p A B A}$ with $\mathbf{C 3}-\mathrm{H} 3$ and $\mathrm{C} 5-\mathrm{H} 5$ bond lengths fixed at $1.0125 \AA$:

O	-2.84542700	1.13025600	0.00678200
C	-2.28122000	0.00000000	0.00404800
O	-2.84542500	-1.13025700	0.00704600
C	-0.74894300	0.00000100	-0.00336900
C	-0.02009100	-1.19663300	-0.00490600
C	1.37410700	-1.21130500	-0.00716900
C	2.09136900	0.00000100	-0.00829800
N	3.49350000	0.00000200	-0.07556600
C	1.37411100	1.21130600	-0.00705300
C	-0.02008900	1.19663300	-0.00480800
H	-0.57484200	-2.13082100	-0.00045900
H	1.87682500	-2.09020800	-0.00836300
H	3.92643700	0.83111800	0.31250100
H	1.87682800	2.09020900	-0.00815500
H	-0.57483400	2.13082500	-0.00028700
H	3.92643000	-0.83114700	0.31243500

D. SUPPORTING INFORMATION REFERENCES

1. Gaussian 09, Revision D.01, Frisch, M. J.; Trucks, G. W.; Schlegel, H. B.; Scuseria, G. E.; Robb, M. A.; Cheeseman, J. R.; Scalmani, G.; Barone, V.; Mennucci, B.; Petersson, G. A.; Nakatsuji, H.; Caricato, M.; Li, X.; Hratchian, H. P.; Izmaylov, A. F.; Bloino, J.; Zheng, G.; Sonnenberg, J. L.; Hada, M.; Ehara, M.; Toyota, K.; Fukuda, R.; Hasegawa, J.; Ishida, M.; Nakajima, T.; Honda, Y.; Kitao, O.; Nakai, H.; Vreven, T.; Montgomery, J. A., Jr.; Peralta, J. E.; Ogliaro, F.; Bearpark, M.; Heyd, J. J.; Brothers, E.; Kudin, K. N.; Staroverov, V. N.; Kobayashi, R.; Normand, J.; Raghavachari, K.; Rendell, A.; Burant, J. C.; Iyengar, S. S.; Tomasi, J.; Cossi, M.; Rega, N.; Millam, J. M.; Klene, M.; Knox, J. E.; Cross, J. B.; Bakken, V.; Adamo, C.; Jaramillo, J.; Gomperts, R.; Stratmann, R. E.; Yazyev, O.; Austin, A. J.; Cammi, R.; Pomelli, C.; Ochterski, J. W.; Martin, R. L.; Morokuma, K.; Zakrzewski, V. G.; Voth, G. A.; Salvador, P.; Dannenberg, J. J.; Dapprich, S.; Daniels, A. D.; Farkas, Ö.; Foresman, J. B.; Ortiz, J. V.; Cioslowski, J.; Fox, D. J. Gaussian, Inc., Wallingford CT, 2009.
2. Shiota, T.; Baugh, C. M.; Jackson, R.; and Dillard, R. "The enzymatic synthesis of hydroxymethyldihydropteridine pyrophosphate and dihydrofolate." Biochemistry 1969, 8, 5022-5028.
3. Schramm, V. L. "Enzymatic transition-state analysis and transition-state analogs." Methods Enzymol. 1999, 308, 301-355.
4. Schramm, V. L. "Enzymatic transition states and transition state analog design." Annu. Rev. Biochem. 1998, 67, 693-720.
5. Anisimov, V. P., P. "ISOEFF98: A program for studies of isotope effects using Hessian modifications." J. Math Chem. 1999, 26, 75-86.
