Chelate Palladium(II) Complexes with Saturated N-Phosphanyl-N-Heterocyclic Carbene (NHCP) Ligands: Synthesis and Catalysis

Anatoliy Marchenko,^[a] Georgyi Koidan,^[a] Anastasiia N. Hurieva,^[a] Yurii Vlasenko, Aleksandr Kostyuk,^{* [a]} Andrea Biffis ^{*[b]}

^aInstitute of Organic Chemistry National Academy of Sciences of Ukraine, Murmanska 5, Kyiv-94, 02660, Ukraine. Homepage: <u>www.ioch.kiev.ua</u>

^bDipartimento di Scienze Chimiche, Università di Padova, via Marzolo 1, 35131 Padova, Italy.

Supporting Information

Crystallographic parameters of the compounds 3b and 9a-9c; copies of spectra of new compounds

Compound	3b	9a	9b	9c
Cell Parameters				
<i>a</i> [Å]	10.1402(3)	9.4381(2)	7.8616(3)	7.5755(2)
b[Å]	14.3567(4)	12.831(2)	28.4967(10)	29.6946(7)
$c[\text{\AA}]$	14.9971(4)	17.115(3)	12.2214(4)	12.1841(3)
α [°]	93.788(1)	90	90	90
eta[°]	100.686(1)	90	103.744(2)	101.2660(10)
⊁[°]	90.570(1)	90	90	90
$V[Å^3]$	2140.2(1)	2072.5(6)	2659.56(16)	2688.02(12)
Z	4	4	2	4
$D[g cm^{-3}]$	1.075	1.544	1.407	1.453
Crystal system	Triclinic	Orthorhombic	Monoclinic	Monoclinic
Space group	<i>P</i> -1	P2 ₁ 2 ₁ 2 ₁	$P2_1/n$	$P2_1/n$
μ[cm ⁻¹]	0.133	1.233	0.973	1.043
F(000)	760	984	1162	1216
Indexes	$12 \ge h \ge -13$	$6 \ge h \ge -11$	$9 \ge h \ge -9$	$9 \ge h \ge -9$
	$19 \ge k \ge -19$	$15 \ge k \ge -16$	$33 \ge k \ge -35$	$36 \ge k \ge -37$
	$20 \ge l \ge -20$	$20 \ge l \ge -19$	$14 \ge l \ge -15$	$15 \ge l \ge -15$
$\theta_{\max}[^{o}]$	29.3	26.5	26.4	26.7
No. of reflections:				
collected	34078	7586	24815	24771
independent	11102	3839	5439	5662
in refinement				
$(I \geq 3\sigma(I))$	6730	3210	4062	4566
R(int)	0.053	0.042	0.058	0.044
No. of refined	422	217	280	271
parameters	455	217	209	271
Obsd./var.	15.5	14.7	14.1	16.8
Final R indices				
R_1	0.048	0.046	0.035	0.038
$R_{ m w}$	0.097	0.050	0.032	0.034
GOF	0.9092	1.072	1.094	1.108

Table S1. Main crystallographic parameters of the compounds **3b** and **9a-9c**.

Weighting	11.9	4.02	1.21	1.13
coefficients	14.7	-2.46	-1.14	-1.07
	5.91	3.23	0.607	0.622
			-0.276	-0.346
Largest peak/hole [e ·cm ⁻³]	0.45/-0.30	1.26/-0.64	0.50/-0.56	2.16/-0.78
CCDC deposition number	1437123	1437124	1437122	1437233

Figure S2. ¹³C NMR spectrum of **2a**

Figure S3. ³¹P NMR spectrum of **2a**

Figure S4. ¹H NMR spectrum of **2b**

Figure S5. ¹³C NMR spectrum of **2b**

Figure S6. ³¹P NMR spectrum of **2b**

Figure S8. ¹³C NMR spectrum of **3a**

Figure S10. ¹³C NMR spectrum of **3b**

Figure S11. ¹H NMR spectrum of **4a**

Figure S12. ¹³C NMR spectrum of **4a**

Figure S14. ¹³C NMR spectrum of **4b**

Figure S16. ¹³C NMR spectrum of **5a**

Figure S18. ¹³C NMR spectrum of **5b**

Figure S20. ¹³C NMR spectrum of **6a**

Figure S21. ³¹P NMR spectrum of **6a**

Figure S22. ¹H NMR spectrum of **6b**

Figure S24. ³¹P NMR spectrum of **6b**

Figure S26. ¹³C NMR spectrum of **7a**

Figure S28. ¹H NMR spectrum of **7b**

Figure S30. ³¹P NMR spectrum of **7b**

Figure S32. ¹³C NMR spectrum of **8**

Figure S33. ³¹P NMR spectrum of **8**

Figure S34. ¹H NMR spectrum of **9a**

Figure S35. ¹³C NMR spectrum of **9a**

Figure S36. ¹H NMR spectrum of **9b**

Figure S38. ¹H NMR spectrum of **9c**

