Double FLP-Alkyne Exchange Reactions: A Facile Route to Te/B Heterocycles

Fu An Tsao¹, Levy Cao,¹ Stefan Grimme^{2*} and Douglas W. Stephan^{1*}

¹Department of Chemistry, 80 St. George St., University of Toronto, Toronto, Ontario, Canada M5S 3H6 ²Mulliken Center for Theoretical Chemistry, Institut für Physikalische und Theoretische Chemie, Universität Bonn Beringstr. 4, 53115 Bonn, Germany.

Supporting Information

General experimental procedure

All experimental manipulations were conducted using standard Schlenk techniques or in an O₂-free, N₂-filled MBraun LABmaster SP dry box equipped with a -35 °C freezer, in either 4-dram glass vials with screw caps or in flame-dried Schlenk flasks. All proteo solvents (purchased from Caledon Laboratories) were purified using a Grubbs-type column system (Innovative Technologies) and stored over 4 Å sieves or sodium wire in Straus flasks. Deuterated solvents (purchased from Cambridge Isotopes) were dried using appropriate drying agent (CaH₂ for CD₂Cl₂, Na/benzophenone for C₆D₆) and distilled under reduced pressure prior to use. All solvents were also degassed by repeated freeze-pump-thaw cycles prior to use.

Phenylacetylene, 4-ethynylanisole, 4-tert-butylphenylacetylene, 4-trifluoromethylphenylacetylene, 3-chlorophenylacetylene, 3, 5-difluorophenylacetylene, 4-ethynylbiphenyl and ethynylferrocene were purchased from Sigma-Aldrich. 4-bromophenylacetylene and 3-ethynylthiophene were purchased from TCI Chemicals. All alkynes were dried either over 4 Å sieves or CaH₂ prior to use. Compound 1,¹ 2-ethynylfluorene² and 2,4-diethynyl-9,9'-dioctylfluorene³ were prepared using standard literature procedure.

NMR spectroscopy was performed on either a Bruker Advance III 400 MHz, an Agilent DD2 500 MHz, or an Agilent DD2 600 MHz spectrometer. Unless otherwise stated, all spectra were obtained at room temperature. All NMR spectra were referenced to residual proteo solvent peaks (1 H = 5.32 ppm and 13 C = 53.84 ppm for CD₂Cl₂; 1H = 7.16 ppm and 13C = 128.06 ppm for C₆D₆) or an external standard (19 F: CFCl₃ (δ 0.00), 11 B: (Et₂O)BF₃ (δ 0.00), 125 Te: Ph₂Te₂ (δ 420.8)⁴).

Single-crystal X-ray crystallographic analyses were performed on crystals coated in Paratone-N oil and mounted on a Bruker Kappa Apex II diffractometer. The structure was solved using SHELXS and least square refinements were performed using SHELXL-97. UV-Vis absorption spectra of were recorded on a Varian Cary 5000 UV-vis-NIR spectrophotometer as solutions of CH₂Cl₂ at 298 K in quartz cuvettes. The spectrum of compound 5 could not be obtained as it could only be isolated as a mixture of **5** and diphenylacetylene. Combustion elemental analyses were performed on a PerkinElmer CHN Analyzer. HR-MS was performed on a JEOL AccuTOF equipped with a Direct Analysis in Real Time (DART) ion source or a Waters GC Premier TOF-MS equipped with an El/Cl source.

All computed structures were minimized using the Gaussian 09 program⁵ at the B3LYP/SDD level of theory. All minimized structures were found to contain no imaginary frequencies. NICS values were obtained from adding ghost atoms (Bq) in the center of the compounds **1** and **2**, and GIAO method was chosen to perform the NMR calculation

General synthetic procedure for compounds 2-12

1 eq. of compound **1** and 2.2 eq. of alkyne were dissolved in 5 ml of toluene. The orange or yellow solution was then transferred into a 50-ml Schlenk flask equipped with a Teflon tab seal. The solution was heated to 110 °C for 16 h. The orange or red solution was then filtered through a plug of celite before all volatiles were removed. The resulting dark orange or red oil was triturated or sonicated in a variety of solvent to precipitate out the desired product.

Spectroscopic data of 2

60.8 mg (0.11 mmol) of compound **1** was reacted with 22.5 mg (0.22 mmol) of phenylacetylene to give 29.2 mg (0.07 mmol, 63%) of **2**, which precipitated out as a dark yellow powder when sonicated in minimal amounts of $O(TMS)_2$.

¹H (600.0 MHz, CD₂Cl₂): δ 8.28 (s, 2H, *H*(B)C=), 8.22-8.20 (m, 2H, *o*-Ph^B), 7.68-7.65 (m, 4H, *o*-Ph), 7.50-7.46 (m, 9H, *m*-*p*-Ph^B + *m*-*p*-Ph)

¹¹B{¹H} (128.3 MHz, CD₂Cl₂): δ 49.9 (s, v_{1/2} ≈ 790 Hz)

¹³C{¹H} (125.1 MHz, CD₂Cl₂): 164.6 (s, TeC=), 145.9 (s, *i*-Ph), 145.2 (br s, *i*-Ph^B), 139.3 (br s, =CB), 134.9 (s, *o*-Ph^B), 131.0 (s, *p*-Ph), 129.9 (s, *p*-Ph^B), 129.7 (s, *m*-Ph), 128.7 (s, *m*-Ph^B), 127.7 (s, *o*-Ph)

¹²⁵Te (157.8 MHz, CD₂Cl₂, 193 K): δ 659.7 (s)

Anal. Calc. for C₂₂H₁₇TeB : C 62.95 %, H 4.08 %. Found: C 63.23 % H 4.05 %

101.9 mg of compound **1** (0.18 mmol) was reacted with 68.8 mg (0.38 mmol) of 4bromophenylacetylene to give 60.3 mg (0.10 mmol, 58% yield) of **3**, which precipitated out of solution as a bright yellow powder when sonicated in pentane.

¹H (600.0 MHz, C₆D₆): δ 8.21-8.19 (m, 4H, o-Ph^B + *H*(B)C=), 7.42-7.38 (m, 3H, *m*-, *p*-Ph^B), 7.24 (app dt, 4H, ³J_{H-H} = 8.4 Hz, H²-Ph), 7.06 (app dt, 4H, ³J_{H-H} = 8.4 Hz, H³-Ph) ¹¹B{¹H} (128.3 MHz, C₆D₆): δ 50.3 (s, v_{1/2} ≈ 1040 Hz) ¹³C{¹H} (100.6 MHz, C₆D₆): δ 162.3 (s, TeC=), 144.8 (br s, *i*-Ph^B), 144.4 (s, C¹-Ph), 139.8 (br s, =CB), 134.9 (s, o-Ph^B), 132.5 (s, C²-Ph), 131.1 (s, *p*-Ph^B), 128.9 (s, C³-Ph), 128.6 (s, *m*-Ph^B), 123.9 (s, C⁴-Ph) ¹²⁵Te (157.8 MHz, CD₂Cl₂, 193 K): δ 670.3 (s)

[Note: Ph^B denotes the phenyl ring directly bonded to boron]

Anal. Calc. for C₂₂H₁₅TeBBr₂ : C 45.75 %, H 2.62 %. Found: C 45.89 % H 2.39 %

¹H (600.0 MHz, C_6D_6) NMR spectrum of 3

82.5 mg (0.14 mmol) of compound **1** was reacted with 42.8 mg (0.32 mmol) of 4ethynylanisole to give 40.8 mg (0.09 mmol, 61% yield) of **4**, which precipitated out of solution as a dark yellow powder when sonicated in pentane.

¹H (500.0 MHz, CD₂Cl₂): δ 8.21-8.18 (m, 2H, *o*-Ph^B), 8.17 (s, 2H, *H*(B)C=), 7.62 (app dt, 4H, ${}^{3}J_{H-H} = 11$ Hz, H²-Ph), 7.50-7.48 (m, 3H, *m*-, *p*-Ph^B), 7.00 (app dt, 4H, ${}^{3}J_{H-H} = 11$ Hz, H³-Ph), 3.86 (s, 6H, -OCH₃)

¹¹B{¹H} (128.3 MHz, CD₂Cl₂): δ 49.5 (s, v_{1/2} ≈ 720 Hz) ¹³C{¹H} (100.6 MHz, CD₂Cl₂): δ 163.7 (s, TeC=), 161.4 (s, C⁴-Ph), 145.6 (br s, *i*-Ph^B), 138.4 (s, C²-Ph), 137.8 (br s, =CB), 134.7 (s, *o*-Ph^B), 130.7 (s, *p*-Ph^B), 129.0 (s, C³-Ph), 128.6 (s, *m*-Ph^B), 115.0 (s, C¹-Ph), 56.0 (s, -OCH₃) ¹²⁵Te (157.8 MHz, CD₂Cl₂, 193 K): δ 626.3 (s)

[Note: Ph^B denotes the phenyl ring directly bonded to boron]

MS (EI+): cal'd for C₂₄H₂₁O₂BTe [M+]: 482.0697 amu. Found: 482.0694 amu

12.0 11.5 11.0 10.5 10.0 9.5 9.0 8.5 8.0 7.5 7.0 6.5 6.0 5.5 5.0 4.5 4.0 3.5 3.0 2.5 2.0 1.5 1.0 0.5 0.0 1 H (500.0 MHz, CD₂Cl₂) NMR spectrum of 4

84.5 mg (0.15 mmol) of compound **1** was reacted with 50.2 mg (0.32 mmol) of 4-tertbutylphenylacetylene to give 42.8 mg (0.075 mmol, 50% yield) of **5** and 20% PhCCPh. Compound **5** could only be purified by recrystallization in $O(TMS)_2$, and always cocrystallized with PhCCPh at various ratios as orange crystals.

¹H (500.0 MHz, CD₂Cl₂): δ 8.25 (s, 2H, *H*(B)C=), 8.21-8.19 (m, 2H, *o*-Ph^B), 7.61 (app dt, 4H, ${}^{3}J_{H-H} = 8.5$ Hz, H²-Ph), 7.52 (app dt, 4H, ${}^{3}J_{H-H} = 8.5$ Hz, H³-Ph), 7.50-7.47 (m, 3H, *m*-, *p*-Ph^B), 1.38 (s, 18H, C(CH₃)₃) ¹¹B{¹H} (128.3 MHz, CD₂Cl₂): δ 49.6 (s, v_{1/2} ≈ 940 Hz) ¹³C{¹H} (100.6 MHz, CD₂Cl₂): δ 164.4 (s, TeC=), 153.4 (s, C⁴-Ph), 145.4 (br s, *i*-Ph^B), 143.1 (s, C¹-Ph), 138.8 (br s, =CB), 134.8 (s, *o*-Ph^B), 132.1 (s, *p*-Ph^B), 130.8 (s, *m*-Ph^B), 127.4, (s, C²-Ph), 126.7 (s, C³-Ph), 35.3 (s, C(CH₃)₃), 31.6 (s, C(CH₃)₃) ¹²⁵Te (157.8 MHz, CD₂Cl₂, 193 K): δ 649.5 (s) [Note: Ph^B denotes the phenyl ring directly bonded to boron]

MS (EI+): cal'd for C₃₀H₃₃BTe [M+]: 534.1738 amu. Found: 534.1722 amu

75.9 mg (0.13 mmol) of compound **1** was reacted with 50.5 mg (0.30 mmol) of 4trifluoromethylphenylacetylene to give 41.6 mg (0.07 mmol, 57% yield) of **6**, which precipitated out as a light yellow powder when sonicated in minimal amounts of pentane.

¹H (500.0 MHz, CD₂Cl₂): δ 8.32 (s, 2H, *H*(B)C=), 8.22-8.19 (m, 2H, *o*-Ph^B), 7.75 (app s, 8H, H²-Ph + H³-Ph), 7.55-7.48 (m, 3H, *m*-, *p*-Ph^B) ¹¹B{¹H} (128.3 MHz, CD₂Cl₂): δ 49.8 (s, v_{1/2} ≈ 800 Hz) ¹³C{¹H} (125.1 MHz, CD₂Cl₂): δ 162.1 (s, TeC=), 149.0 (br q, J_{C-F} = 1.2 Hz, C⁴-Ph), 144.4 (br s, *i*-Ph^B), 140.8 (br s, =CB), 135.1 (s, *o*-Ph^B), 132.1 (s, C¹-Ph), 131.51 (s, *p*-Ph^B), 131.17 (q, J_{C-F} = 31.3 Hz, -CF₃), 128.8 (s, *m*-Ph^B), 128.2 (s, C²-Ph), 126.6 (q, J_{C-F} = 3.6 Hz, C³-Ph) ¹⁹F{¹H} (376.4 MHz, CD₂Cl₂): -62.9 (s)

¹²⁵Te (157.8 MHz, CD₂Cl₂, 193 K): δ 681.1 (s) [Note: Ph^B denotes the phenyl ring directly bonded to boron]

MS (EI+): cal'd for C₂₄H₁₅BTeF₆ [M+]: 558.0233 amu. Found: 558.0234 amu

2.5 12.0 11.5 11.0 10.5 10.0 9.5 9.0 8.5 8.0 7.5 7.0 6.5 6.0 5.5 5.0 4.5 4.0 3.5 3.0 2.5 2.0 1.5 1.0 0.5 0.0 1 H (500.0 MHz, CD₂Cl₂) NMR spectrum of 6

220 210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -10 $^{13}C{^{1}H}$ (125.1 MHz, CD_2CI_2) NMR spectrum of 6

38.5 mg (0.07 mmol) of compound **1** was reacted with 24.3 mg (0.18 mmol) of 3chlorophenylacetylene to give 21.6 mg (0.04 mmol, 60% yield) of **7**, which precipitated out as a yellow powder when sonicated in minimal amounts of $O(TMS)_2$

¹H (500.0 MHz, CD_2CI_2): δ 8.26 (s, 2H, H(B)C=), 8.20-8.19 (m, 2H, o-Ph^B), 7.66-7.65 (m, 1H, p-Ph^B), 7.54-5.52 (m, 2H, Ar-H), 7.44-7.51 (m, 2H, m-Ph^B), 7.37-7.36 (m, 2H, Ar-H)) ¹¹B{¹H} (128.3 MHz, CD_2CI_2): δ 50.6 (s, $v_{1/2} \approx 560$ Hz) ¹³C{¹H} (100.6 MHz, CD_2CI_2): δ 162.2 (s, TeC=), 147.5 (s, C¹-Ph), 144.6 (br s, *i*-Ph^B), 140.1 (br s, =CB), 135.5 (s, C⁵-Ph), 135.0 (s, o-Ph^B), 131.3 (s, Ar-C), 131.0 (s, Ar-C), 129.7 (s, Ar-C), 128.7 (s, m-Ph^B), 127.5 (s, p-Ph^B), 126.2 (s, Ar-C) ¹²⁵Te (157.8 MHz, CD_2CI_2 , 193 K): δ 675.3 (s) [Note: Ph^B denotes the phenyl ring directly bonded to boron]

MS (EI+): cal'd for C₂₂H₁₅BCl₂Te [M+]: 489.9706 amu. Found: 489.9700 amu

86.4 mg (0.15 mmol) of compound **1** was reacted with 43.9 mg (0.32 mmol) of 3, 5difluorophenylacetylene to give 34.0 mg (0.07 mmol, 46% yield) of **8**, which precipitated out as a bright yellow powder when sonicated in minimal amounts of $O(TMS)_2$.

¹H (400.0 MHz, CD₂Cl₂): δ 8.27 (s, 2H, *H*(B)C=), 8.20-8.17 (m, 2H, *o*-Ph^B), 7.55-7.47 (m, 3H, *m*-, *p*-Ph^B), 7.19 (m, 4H, H²-Ph), 6.94 (tt, 2H, ${}^{3}J_{H-F}$ = 8.8 Hz, ${}^{4}J_{H-H}$ = 2.0 Hz, H⁴-Ph) ${}^{11}B{}^{1}H{}$ (128.3 MHz, CD₂Cl₂): δ 50.5 (s, v_{1/2} ≈ 650 Hz)

¹³C{¹H} (125.1 MHz, CD₂Cl₂): δ 163.8 (dd, ¹J_{C-F} = 248.6 Hz, ³J_{C-F} = 12.9 Hz, C³-Ph), 160.6 (t, ⁴J_{C-F} = 2.5 Hz, TeC=), 148.8 (t, ³J_{C-F} = 9.1 Hz, C¹-Ph), 144.2 (br s, *i*-Ph^B), 140.6 (br s, =CB), 135.1 (s, *o*-Ph^B), 131.6 (s, *p*-Ph^B), 128.8 (s, *m*-Ph^B), 110.9 (dd, ²J_{C-F} = 19.6 Hz, ⁴J_{C-F} = 6.4 Hz), 104.8 (t, ²J_{C-F} = 25.4 Hz, C⁴-Ph) ¹⁹F{¹H} (376.4 MHz, CD₂Cl₂): -109.1 (s) ¹²⁵Te (157.8 MHz, CD₂Cl₂, 193 K): δ 684.3 (s) [Note: Ph^B denotes the phenyl ring directly bonded to boron]

MS (DART+): cal'd for C₂₂H₁₃BF₄Te [M⁺]: 494.01087 amu. Found: 494.01114 amu

12.0 11.5 11.0 10.5 10.0 9.5 9.0 8.5 8.0 7.5 7.0 6.5 6.0 5.5 5.0 4.5 4.0 3.5 3.0 2.5 2.0 1.5 1.0 0.5 0.0 -0.5 1 H (500.0 MHz, CD₂Cl₂) NMR spectrum of 8

82.5 mg (0.14 mmol) of compound 1 was reacted with 54.1 mg (0.30 mmol) of 4ethnylbiphenyl to give 58.9 mg (0.10 mmol, 71% yield) of 9, which precipitated out as a deep yellow powder when triturated with pentane.

¹H (400.0 MHz, THF-d₈): δ 8.36 (s, 2H, *H*(B)C=),8.24-8.22 (m, 2H, *o*-Ph^B), 7.80-7.75 (m, 8H, $H^{6}+H^{7}-Ph$), 7.70 (dm, 4H, ${}^{3}J_{H-H} = 8.4$ Hz, $H^{2}-Ph$), 7.47-7.44 (m, 7H, $H^{3}-Ph + m - p$ -Ph^B), 7.35 (app tt, 2H, ${}^{3}J_{H-H} = 2.0 \text{ Hz}, H^{8}\text{-Ph})$ ${}^{11}B{}^{1}H{}$ (128.3 MHz, THF-d₈): (couldn't be observed)

¹³C{¹H} (125.1 MHz, THF-d₈): δ 164.1 (br s, TeC=) 145.8 (br s, *i*-Ph^B), 145.3 (s, C¹-Ph), 143.3 (s, C⁵-Ph), 141.3 (s, C⁴-Ph), 139.5 (br s, =CB), 135.3 (s, o-Ph^B), 131.3 (s, p-Ph^B), 129.9 (s, C³-Ph), 129.0 (s, m-Ph^B), 128.7 (s, C⁶-Ph+C⁷-Ph), 128.6 (s, C⁸-Ph), 127.9 (s, C^2 -Ph)

¹²⁵Te (157.8 MHz, THF-d₈, 193 K): δ 649.6 (s)

[Note: Ph^B denotes the phenyl ring directly bonded to boron]

3.0 12.5 12.0 11.5 11.0 10.5 10.0 9.5 9.0 8.5 8.0 7.5 7.0 6.5 6.0 5.5 5.0 4.5 4.0 3.5 3.0 2.5 2.0 1.5 1.0 0.5 'H (400.0 MHz, THF-d₈) NMR spectrum of 9

200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 $^{13}C{^{1}H}$ (125.1 MHz, THF-d₈) NMR spectrum of 9

89.5 mg (0.16 mmol) of compound **1** was reacted with 65.4 mg (0.34 mmol) of 2ethynylfluorene to give 67.6 mg (0.12 mmol, 73 % yield) of **10**, which precipitated out of solution as a yellow-orange solid when triturated with pentane.

¹**H** (400.0 MHz, CD₂Cl₂): δ 8.34 (s, 2H, *H*(B)C=), 8.26-8.23 (m, 2H, *o*-Ph^B), 7.90-7.85 (m, 6H, H²+H⁹+H¹³), 7.72 (d, 2H, ³J_{H-H} = 9.0 Hz, H¹²), 7.61 (d, 2H, ³J_{H-H} = 7.2 Hz, H⁶), 7.51-7.49 (m, 3H, *m*-*p*-Ph^B), 7.43 (t, 2H, ³J_{H-H} = 7.5 Hz, H⁸), 7.37 (t, 2H, ³J_{H-H} = 6.6 Hz, H⁷), 4.02 (s, 4H, H⁴)

¹¹B{¹H} (128.3 MHz, CD₂Cl₂): (couldn't be observed)

¹³C{¹H} (125.1 MHz, CD₂Cl₂): 164.9 (s, TeC=), 145.4 (br s, *i*-Ph^B), 144.9 (s, *Ar*-C), 144.5 (s, C¹), 144.4 (s, *Ar*-C), 143.6 (s, *Ar*-C), 141.4 (s, *Ar*-C), 139.0 (br s, =CB), 134.9 (s, *o*-Ph^B), 130.9 (s, *p*-Ph^B), 128.7 (s, *m*-Ph^B), 127.9 (s, C⁷), 127.5 (s, C⁸), 126.8 (s, C¹²), 125.7 (s, C⁶), 124.4 (s, C⁹), 120.9 (s, C²/C¹³), 120.8 (s, C²/C¹³), 37.5 (s, C⁴) ¹²⁵Te (157.8 MHz, CD₂Cl₂, 193 K): δ 652.4 (s)

84.6 mg (0.15 mmol) of compound **1** was reacted with 34.1 mg (0.32 mmol) of 3ethynylthiophene to give 32.1 mg (0.07mmol, 50% yield) of **11**, which precipitated out of solution as a bright yellow powder when sonicated in $O(TMS)_2$.

¹H (400.0 MHz, CD₂Cl₂): δ 8.21 (s, 2H, *H*(B)C=), 8.17-8.15 (m, 2H, o-Ph^B), 7.62 (t, 1H, ${}^{3}J_{H-H} = 2.2 \text{ Hz}$), 7.49-7.48 (m, 8H, *Ar*-H) ¹¹B{¹H} (128.3 MHz, CD₂Cl₂): δ 50.3 (s, v_{1/2} ≈ 590 Hz) ¹³C{¹H} (100.6 MHz, CD₂Cl₂): δ 154.8 (s, TeC=), 147.2 (s, Ar-C), 145.2 (br s, *i*-Ph^B), 137.8 (br s, =CB), 134.7 (s, o-Ph^B), 131.0 (s, C¹), 128.7 (s, *m*-Ph^B), 127.7 (s, *p*-Ph^B), 126.5 (s, Ar-C), 123.7 (s, Ar-C) ¹²⁵Te (157.8 MHz, CD₂Cl₂, 193 K): δ 642.0 (s)

100.5 mg (0.18 mmol) of compound **1** was reacted with 76.8 mg (0.37 mmol) of ethynylferrocene to give 58.7 mg (0.09 mmol, 51% yield) of **12**, which precipitated out as a bright red solid when sonicated in minimal amounts of $O(TMS)_2$.

¹H (500.0 MHz, CD₂Cl₂): δ 8.11-8.09 (m, 2H, *o*-Ph^B), 7.93 (s, 2H, ${}^{3}J_{Te-H} = 40$ Hz, *H*(B)C=), 7.48-7.45 (m, 3H, *m*-, *p*-Ph^B), 4.79 (t, 4H, ${}^{3}J_{H-H} = 2.0$ Hz, H³-Cp), 4.48 (t, 4H, ${}^{3}J_{H-H} = 2.0$ Hz, H²-Cp), 4.20 (s, 10H, Cp') ¹¹B{¹H} (128.3 MHz, CD₂Cl₂): δ 48.5 (s, v_{1/2} ≈ 950 Hz) ¹³C{¹H} (125.7 MHz, CD₂Cl₂): δ 160.6 (s, TeC=), 146.0 (br s, *i*-Ph^B), 134.9 (br s, =CB), 134.3 (s, *o*-Ph^B), 130.4 (s, *p*-Ph^B), 128.5 (s, *m*-Ph^B), 90.4 (s, C¹-Cp), 71.5 (s, Cp'), 70.8 (C²-Cp), 68.5 (C³-Cp). ¹²⁵Te (157.8 MHz, CD₂Cl₂, 193 K): δ 648.0 (s) [Note: Cp' refers to the cyclopentadiene ring not directly bonded to the central Te-B heterocycle. Ph^B denotes the phenyl ring directly bonded to boron]

MS (DART+): cal'd for C₃₀H₂₆BFe₂Te [M+H⁺]: 638.98886 amu. Found: 638.98751 amu

UV-Vis absorption spectra of compounds 2-12

NICS Calculations of compounds 1 and 2

Table S1: NICS calculation results (GIAO-B3LYP/SDD)

PhTePh	PhTePh
Ph B Ph	н В Н
Ph	Ph

Entry	NICS(0)	NICS(1)
Compound 1	-2.7721	-2.9294
Compound 2	-2.8631	-3.3500

Table S2: Cartesian coordinates of compounds used for NICS calculation

Compound 1			
C	1.577995	-1.04835	0.011908
С	1.387562	0.32149	0.018724
С	-1.38765	0.321402	-0.0184
С	-1.578	-1.04845	-0.01214
С	-0.00016	2.63527	-0.00107
С	-0.57363	3.375581	-1.06725
С	0.573169	3.377014	1.064164
С	-0.56099	4.782391	-1.08117
Н	-1.03857	2.849207	-1.89868
С	0.560179	4.783833	1.076389
Н	1.038301	2.851739	1.896175
С	-0.0005	5.494508	-0.00281
Н	-0.99966	5.318615	-1.92014
Н	0.998736	5.321173	1.914709
Н	-0.00065	6.582609	-0.00347
С	2.641934	1.169311	0.059196
С	2.980929	2.01454	-1.02105
С	3.498134	1.140062	1.183127
С	4.147726	2.798341	-0.986
Н	2.326521	2.064085	-1.88771
С	4.661501	1.930371	1.226731
Н	3.251469	0.497489	2.025195
С	4.99437	2.761121	0.139674
Н	4.389893	3.441422	-1.82914
Н	5.305263	1.894665	2.102954
Н	5.893898	3.371803	0.170519
С	-2.64204	1.169256	-0.0576
С	-3.49932	1.140336	-1.1807
С	-2.97989	2.014319	1.023139
С	-4.66265	1.930769	-1.22301

C-4.146632.798249H-2.324622.06362C-4.994392.761328H-5.307261.895314H-4.387913.441203H-5.893883.372113C2.900205-1.75396C3.75464-1.56633C2.2026722.202020	0.989395 1.889174 -0.13546 -2.09862 1.832882 -0.1653 -0.05951 -1.17279 0.951716 -1.26592 -1.95863 0.861578
H-2.324622.06362C-4.994392.761328H-5.307261.895314H-4.387913.441203H-5.893883.372113C2.900205-1.75396C3.75464-1.56633C2.2026722.002020	1.889174 -0.13546 -2.09862 1.832882 -0.1653 -0.05951 -1.17279 0.951716 -1.26592 -1.95863 0.861578
C-4.994392.761328H-5.307261.895314H-4.387913.441203H-5.893883.372113C2.900205-1.75396C3.75464-1.56633C2.2026722.00202	-0.13546 -2.09862 1.832882 -0.1653 -0.05951 -1.17279 0.951716 -1.26592 -1.95863 0.861578
H-5.307261.895314H-4.387913.441203H-5.893883.372113C2.900205-1.75396C3.75464-1.56633C2.2026722.202020	-2.09862 1.832882 -0.1653 -0.05951 -1.17279 0.951716 -1.26592 -1.95863 0.861578
H-4.387913.441203H-5.893883.372113C2.900205-1.75396C3.75464-1.56633C2.202672-2.202020	1.832882 -0.1653 -0.05951 -1.17279 0.951716 -1.26592 -1.95863 0.861578
H -5.89388 3.372113 C 2.900205 -1.75396 C 3.75464 -1.56633 C 2.202672 2.202020	-0.1653 -0.05951 -1.17279 0.951716 -1.26592 -1.95863 0.861578
C 2.900205 -1.75396 C 3.75464 -1.56633 C 2.902673 0.00200	-0.05951 -1.17279 0.951716 -1.26592 -1.95863 0.861578
C 3.75464 -1.56633	-1.17279 0.951716 -1.26592 -1.95863 0.861578
	0.951716 -1.26592 -1.95863 0.861578
C = 3.2930/2 - 2.00202	-1.26592 -1.95863
C 4.971092 -2.26275	-1.95863
H 3.462039 -0.87638	0 861579
C 4.516662 -3.35328	0.0010/0
Н 2.654353 -2.81129	1.81947
C 5 359421 -3 15784	-0 24866
H 5.614182 -2.10692	-2.12876
H 4.807942 -4.03833	1.654283
Н 6.302553 -3.69404	-0.32158
C -2.90009 -1.75425	0.059317
C -3.75439 -1.56701	1.172753
C -3.29357 -2.6627	-0.9521
C -4 97073 -2 26363	1 265883
Н -3.46178 -0.87718	1.958692
C -4.51645 -3.35355	-0.86196
H -2 65436 -2 81103	-1 81999
C -5.35907 -3.15852	0.248459
Н -5.61372 -2.10811	2.128857
H -4.80775 -4.03843	-1.6548
H -6.30211 -3.69489	0.321369
B -4.4E-05 1.052607	-0.00019
Te 0.000127 -2.42898	-0.00059
Bg 0.000041 -0.68819	-0.0004
Bg 0.039139 -0.6883	0.998841
1	
Compound 2	
C 1.345568 0.97108	0.037865
C -1.34683 0.969623	0.014483
C -1.57692 -0.3833	-0.0284
C 1.577717 -0.38186	0.008387
H 2.262018 1.57138	0.065764
H -2.26419 1.569165	0.019067
B -0.0272 1.726957	0.013384
Te -0.02439 -1.78175	-0.08058
C 2.946882 -0.97418	-0.03567
C 3.298059 -2.11049	0.734265
C 3.93738 -0.39252	-0.86776
C 4.598184 -2.64358	0.681053
H 2.565915 -2.55676	1.404513
C 5.235616 -0.92791	-0.92206
H 3.677567 0.46116	-1.48785
C 5.572911 -2.05594	-0 14804

Н	4.850018	-3.50891	1.289378
Н	5.978559	-0.47269	-1.57273
Н	6.577051	-2.47048	-0.19201
С	-2.94511	-0.97934	-0.01571
С	-3.29473	-2.07338	-0.84525
С	-3.93621	-0.44471	0.846668
С	-4.59397	-2.61068	-0.82026
Н	-2.56211	-2.48194	-1.53864
С	-5.23355	-0.98437	0.872626
Н	-3.67752	0.374957	1.511509
С	-5.56932	-2.06988	0.0394
Н	-4.84465	-3.44262	-1.47396
Н	-5.97697	-0.56588	1.546977
Н	-6.57276	-2.48783	0.061424
С	-0.05177	3.302564	0.025638
С	-1.18214	4.036563	-0.43066
С	1.05526	4.064306	0.493518
С	-1.20617	5.442449	-0.43066
Н	-2.05184	3.503469	-0.80914
С	1.035428	5.470087	0.515316
Н	1.941272	3.552807	0.863895
С	-0.09646	6.166636	0.047835
Н	-2.08291	5.971196	-0.79875
Н	1.89534	6.020158	0.891759
Н	-0.11343	7.2545	0.056265
Bq	-0.0258	-0.02695	-0.03358
Bq	-0.05719	-0.0537	0.965566

Theoretical Methods and Technical Details of the Computations

The quantum chemical calculations were carried out with the TURBOMOLE suite of programs.⁶ All structures were fully optimized at the dispersion-corrected DFT level using the PBEh-3c density functional.⁷ This new compound method contains a modified PBE based hybrid functional together with an efficient valence double-zeta AO basis set. The method also involves an approximate counter-poise correction for BSSE, as well as three-body dispersion effects, see Ref.7 for details. We exploit the efficiency of this method to optimize transition state structures as well as to calculate vibrational harmonic frequencies. Single-point energies were computed with the larger polarized triple-zeta (def2-TZVP) sets by Ahlrichs *et al.*⁸ in combination with the accurate PW6B95 hybrid functional.⁹ The atom pairwise D3 correction with BJ-damping is included to account for intra- and intermolecular London dispersion interactions.¹⁰ The combined level of theory used in the following is PW6B95-D3//PBEh-3c.

In all DFT treatments, the resolution-of-the-identity approximation has been used¹¹ for the Coulomb integrals to speed up the computations. The numerical quadrature grid *m4* has been employed for the integration of the exchange-correlation contribution. In the main text, we report pure electronic gas phase energies (termed ΔE) as well as Gibbs free energies at 298.15 K in toluene as a solvent (termed ΔG). The ro-vibrational corrections to the free energy are obtained from a modified rigid rotor, harmonic oscillator statistical treatment¹² based on the harmonic frequencies obtained at the PBEh-3c level (see above). For the entropy, all frequencies with wavenumbers below 100 cm⁻¹ were treated as mixed rigid rotors and harmonic oscillators. In two cases very small imaginary modes of about i7 cm⁻¹ were obtained computed which were treated as numerical artifacts and used with their absolute value. The harmonic frequencies in PBEh-3c were scaled by a factor of 0.95.

Solvent effects on the thermochemical properties have been obtained by the COSMO-RS method¹³ (COSMOtherm software package¹⁴) based on BP86/TZVP¹⁵ single-point calculations (parametrization from 2014). Solvation contributions to free energies at 298.15 K in toluene solution are computed from the gas phase structures obtained at the above mentioned levels of theory. The computed free energies are then obtained by $\Delta G = \Delta E + \Delta G_{RRHO} + \Delta \delta G_{COSMO-RS}$, where the last two terms refer to the above mentioned ro-vibrational and solvation contributions, respectively, to the free energy.

In the main text we discuss only the higher-level PW6B95-D3 based thermochemical data but note in passing that the more economical PBEh-3c level alone provides very similar reaction energies (see below) that within 1-2 kcal/mol of the PW6B95-D3/def2-TZVP level. Wiberg bond orders are reported to analyse the bonding situation in the transition states and these are based on the PW6B95-D3/def2-TZVP orbitals.

Cartesian coordinates (PBEh-3c) in Bohr

EDUCT

\$coord

-0.04347913824729	1.30303403970473	-5.37201682236869	te
-1.29764467151612	-2.00236025645874	-3.67385682788921	С
-1.94670716647166	-2.15906812102269	-1.19706464467932	С
-0.74629196160821	2.70741555042277	0.15695476719686	С
0.06021069812502	3.51002488174946	-2.13874785533266	С
-3.16953164831743	-0.38588860716815	3.37492467163417	С
-1.92805431302988	0.08329504653156	5.65881134384662	С
-3.09474761164859	-0.35637213177135	7.96207203587987	С
-5.57117517051849	-1.21249144159851	8.04222887810459	С
-6.85752317187459	-1.65374188710308	5.80170496115892	С
-5.65412612281827	-1.27417776484562	3.50647141333211	С
-1.25051799706877	-4.12593960481560	-5.49429492375964	С
-2.63348913124919	-4.01514064671210	-7.73397483983543	С
-2.52690645002539	-5.97699414872176	-9.46908827852534	С
-1.01996203524299	-8.06686718806077	-9.00219199472795	С
0.37140216813689	-8.19004369543471	-6.78163838141651	С
0.25463531803811	-6.24228041761132	-5.04100473388482	С
-2.77072144677118	-4.68318403349533	-0.25452509127619	С
-4.82411315261568	-5.93938048899222	-1.31850438375404	С
-5.58053320664387	-8.27886063065537	-0.41746082495586	С
-4.28393619894802	-9.41205930250357	1.55791719459188	С
-2.23796050719580	-8.17667002235637	2.63484685821385	С
-1.49870774095942	-5.82721329642892	1.74682110976193	С
-0.47687503633163	4.55786081584595	2.26423900242516	С
1.91173979325719	5.29214625527255	3.08461218008919	С
2.18255651591141	7.00332323264684	5.05003891747547	С
0.06543400308064	8.01498577730008	6.21647952316733	С
-2.32348505726721	7.29418352906731	5.41049611963880	С
-2.59099747583759	5.56979973684650	3.45927528965856	С
1.02247809565892	6.07341792552098	-2.70631156936959	С
3.48405809311089	6.41320432988134	-3.57792280570843	С
4.37516020155804	8.81336130610431	-4.13760333409726	С
2.81280626010512	10.89639289509945	-3.85522406965578	С
0.35426051036596	10.56959163979381	-3.00086340870833	С
-0.53664023112323	8.17798605070748	-2.42839953285378	С
-1.90718648891697	0.07287987076348	0.72647411137475	b
4.02515807959694	-2.67595405970858	5.97106544744525	С
4.85002574927775	-1.97849378908604	3.97237945151748	С
-0.00926626250684	0.78979370105372	5.64666734881876	h
-2.07857352411101	0.00614199321671	9.70086217090742	h
-6.49409553639953	-1.53218401867352	9.83982065245571	h
-8.79022563638682	-2.32249538093914	5.84142933069489	h

-6.67986114895919	-1.67988492378813	1.78129214683835	h
-3.84451330895171	-2.40496297632480	-8.10113207287385	h
-3.63052145781641	-5.86889999352777	-11.18685448341867	h
-0.93193259338417	-9.59532145056264	-10.35708542559667	h
1.54878324945370	-9.81685432779386	-6.39787323237976	h
1.32099430473502	-6.37015730408114	-3.30176832799605	h
-5.85007418068596	-5.06856057232781	-2.85997408635416	h
-7.18750579630600	-9.21902085904458	-1.26404522779850	h
-4.87119303975393	-11.24014080407265	2.26138071051404	h
-1.22085961323784	-9.03619742240035	4.18704553090416	h
0.07311385116060	-4.86025469598276	2.63437542570312	h
3.56728082220787	4.50098755441735	2.17754148932499	h
4.05395059968407	7.55004313365204	5.66856962830339	h
0.27411378878144	9.35319418180760	7.74873414466335	h
-3.98743113018464	8.06385998009419	6.31676000880831	h
-4.46046710481697	4.98619749382762	2.86681241268412	h
4.72054729387962	4.79140245485690	-3.75768741537689	h
6.29774867244433	9.05340319790131	-4.79160232065397	h
3.50576031070058	12.76845689270360	-4.29765276401599	h
-0.87589074698688	12.18707715382881	-2.77636020152765	h
-2.45080880220423	7.93073677453440	-1.75549154597119	h
3.27036116136557	-3.28438651235541	7.73135704334981	h
5.80113602700247	-1.18324004340098	1.58278809851189	С
5.03446291807224	-2.41985735579157	-0.61702485762691	С
5.96526409130705	-1.67230793462993	-2.94319912529133	С
7.66856718058595	0.31664631850614	-3.10131485420419	С
8.42935371968743	1.56314306291006	-0.92245456160918	С
7.50564207996083	0.82192410691336	1.41142913868254	С
3.70910615519823	-3.96935226318932	-0.48162667302825	h
5.35952781763739	-2.64743558945499	-4.63504053701948	h
8.39992707736310	0.89267587938086	-4.92222644284554	h
9.75536752235488	3.11534135562631	-1.03857518451238	h
8.10359888513412	1.78076784440253	3.11500510522202	h

INTERMEDIATE

\$coord

1.96167515587252	-3.01664810649698	-2.46904156183572	te
0.73916479030740	-3.39215507067559	1.33523391982690	С
0.13586474533914	-1.20280065330851	2.43379841359922	С
-1.48746678318661	1.20488742097861	-1.72409121798303	С
-1.05629312616982	-0.57307715534918	-3.45584658025320	С
-0.62896806084832	4.02258848723316	2.40212901212712	С
0.39479481172688	6.36844480541389	1.75152698039432	С
-0.39180992194072	8.61133206503238	2.85948901556799	С
-2.26649925726494	8.58310835864864	4.68619745965985	С
-3.34880207263446	6.29291838658449	5.35291057153100	С

-2.54479335531948	4.07066586956879	4.22133034324563	С
0.97106661895790	-5.96120828788661	2.37336632037365	С
-0.30885525754794	-7.98564254726389	1.27587256216369	С
-0.07304439332901	-10.40637797591602	2.24807885394757	С
1.45280378831188	-10.84092345859489	4.33393187069221	С
2.74182804517470	-8.84052435698793	5.43555475298610	С
2.51113187667512	-6.42197554279601	4.46271233003144	С
-0.48227935981393	-1.28361755565653	5.16078683091893	С
-2.45845585446303	-2.76245160450475	6.07357366907871	С
-3.00121674171196	-2.82525559310938	8.63554366410075	С
-1.55462824907969	-1.43734528701947	10.32345175931624	С
0.42690243147305	0.02989950365522	9.42932076138499	С
0.94575516564323	0.12536395333609	6.86617382478932	С
-3.49799844505581	3.07208911023568	-2.27901149913126	С
-3.22675569819070	4.74332472460014	-4.29099811228442	С
-5.09974271392700	6.49184388149497	-4.83380543719624	С
-7.28112292516384	6.57727085065947	-3.38600311733013	С
-7.56932595360095	4.91038216671899	-1.38306506297588	С
-5.68583983959290	3.18176940828844	-0.82342275309796	с
-2.34429165781047	-1.15738434481540	-5.84702449625404	С
-0.99002147829241	-1.39629256833162	-8.09498681606705	С
-2.21048549497781	-1.94685496928790	-10.34534762685955	с
-4.81075431508565	-2.27115639168653	-10.38389911981510	с
-6.17696276967429	-2.04064280716112	-8.15796540513194	С
-4.95747219039381	-1.49605751285522	-5.90728646081635	С
0.23937328550528	1.52006954626962	0.88233405474115	b
3.17158505079190	1.73406843630774	-0.06905785181679	С
4.37195005850502	0.06851594295276	-1.50738178686342	С
1.83136231556344	6.48174076045624	0.29401347680889	h
0.45584263714704	10.38324213402653	2.28462183143445	h
-2.88785279140355	10.32255095957665	5.56558846459722	h
-4.83309295427284	6.23051809366971	6.76054402841028	h
-3.46537340616674	2.33407123074975	4.78666276076404	h
-1.53392805921738	-7.65956725379763	-0.33435635033618	h
-1.09173298631377	-11.95209691041585	1.37967877366208	h
1.63807331783907	-12.72887862379551	5.09646488080261	h
3.93780476625822	-9.16349555773789	7.06231873019401	h
3.51786898659477	-4.86834781198041	5.32977189507662	h
-3.58275690269740	-3.86123749437791	4.76436546377131	h
-4.55278690676104	-3.97184206412891	9.31421738249338	h
-1.97385391362770	-1.49040875246325	12.32413372134204	h
1.55609238667929	1.13132256141455	10.73058780190371	h
2.45506828438215	1.31900549643928	6.17336383554980	h
-1.53206573621679	4.67090871415388	-5.43474357493643	h
-4.85548396791348	7.78492138207805	-6.39939958452309	h
-8.74616152760256	7.93934242713370	-3.80982663647619	h

-9.26164987327650	4.96756191545370	-0.23640797453038	h
-5.91891298374961	1.89675000051015	0.74960294143112	h
1.03889556520527	-1.10428096142146	-8.10026946715756	h
-1.12812799727212	-2.11044616683669	-12.07238333830554	h
-5.76725755491923	-2.70070897383836	-12.13905506904997	h
-8.20645736211103	-2.28898169095267	-8.17072498413912	h
-6.03280604902281	-1.31654462517920	-4.17861065928617	h
4.28999116941503	3.33771509541770	0.57899814211790	h
6.94661510286126	0.08819706911478	-2.52268275855147	С
8.45833269081414	-2.07150621599843	-2.55395498698846	С
10.90133414594693	-1.98544745485473	-3.48985130458194	С
11.88249558617253	0.26334479284724	-4.41280253182691	С
10.39819104192079	2.42403564659036	-4.39441743170279	С
7.95012679594505	2.33605017490131	-3.47186241346612	С
7.74419685781796	-3.83641844067367	-1.79641848265051	h
12.04589617989727	-3.67978149242075	-3.48627936227831	h
13.78902879956240	0.32904469378771	-5.14755124344875	h
11.14112205164227	4.18463364651730	-5.12232779787572	h
6.78195238167104	4.01488256775912	-3.50609024301281	h
PRODUCT			
\$coord			
4.83617436796204	-5.34075001925557	-0.09676132644292	te
1.73945896610500	-4.17898937518828	2.04127198405243	С
1.08909251013408	-1.73364576302241	2.46813634250277	С
-5.18511862513555	3.09695375170360	-3.15785641975699	С
-3.51384126936884	2.12957976716397	-4.37099738239620	С
1.76287113823188	3.35673606893616	2.08302663597642	С
3.56317550543732	5.15604550724050	2.79904846184739	С
2.89123650365127	7.63311057594573	3.32546574364112	С
0.39481216244831	8.39295247218241	3.06936403575093	С
-1.41933557512358	6.65870859288239	2.31006979174073	С
-0.73935993918287	4.17178195701580	1.86034663456203	С
0.41893213314532	-6.40741056911646	3.09953435566441	С
-0.66872791091182	-8.20966586052639	1.51687625990945	С
-1.88644371729301	-10.30243131953770	2.52070613186559	С
-2.01037974451179	-10.63167095511171	5.11539597911338	С
-0.91369879010220	-8.85464096821416	6.70374225340698	С
0.29062964996132	-6.75827810907384	5.70748673548588	С
-1.21637186435588	-1.30842123932934	4.02915524155576	С
-3.56003073586636	-2.24287744083750	3.27697365397212	С
-5.69181978929740	-1.87422976765990	4.75574624285053	С
-5.51785023872166	-0.54870038883819	7.01034808418691	С
-3.19778061725128	0.41025136876490	7.76644260525255	С
-1.07093083006949	0.04033443917031	6.28519296367420	С
-7.10478968082120	4.27980902732485	-1.69884950194952	С

-8.53200339379134	6.25774425468023	-2.71318842558029	С
-10.36700829760526	7.43508655648600	-1.26885955022697	С
-10.79949751364941	6.67035906140162	1.20338009805813	С
-9.39049957154294	4.70709169691168	2.22258706743788	С
-7.56156725107455	3.51111718513252	0.78649961302866	С
-1.53254006461964	1.04066066696916	-5.81952606695496	С
-0.85406871499730	2.10523358185870	-8.14035040949483	С
1.07515946587621	1.05926116554553	-9.56230736191908	С
2.35203953853865	-1.06255806858525	-8.69593602470794	С
1.68944032342829	-2.13104918534966	-6.39471761731691	С
-0.23165549348675	-1.08995459207183	-4.95642085923704	С
2.59893839546329	0.58436716809694	1.47119608530634	b
4.97188836255895	0.33777942882861	-0.18845356470176	С
6.12991647282655	-1.75697774810207	-1.05765089640308	С
5.52968294253185	4.60638229941844	2.97425384277520	h
4.31780753211791	8.97656578571608	3.91315151589336	h
-0.13294800645590	10.33209086579152	3.45105099500379	h
-3.36951263049840	7.23200634947311	2.07896553404775	h
-2.18254648652037	2.84679474365909	1.28319645249185	h
-0.61013581949482	-7.94852309777343	-0.51339480141039	h
-2.74473648646488	-11.67146093450902	1.26803519730291	h
-2.95798994980229	-12.26482951978052	5.89953529570136	h
-1.00105292030444	-9.10008863123907	8.73152116444203	h
1.13336021034185	-5.37231486855737	6.95147196881682	h
-3.72116190514107	-3.26770156725373	1.51381709194996	h
-7.49219825753168	-2.62327887082967	4.13865468593269	h
-7.17823937780971	-0.26461500290423	8.17015532352145	h
-3.04199538623759	1.45980020243957	9.51427868312946	h
0.72582526242231	0.81434901460486	6.88224734650724	h
-8.18642701913453	6.85949311377600	-4.63550715975080	h
-11.46111755696154	8.96339420150530	-2.07459200595554	h
-12.22919048892220	7.60197731627546	2.32957189682169	h
-9.70543794855515	4.10054051160249	4.15002894459076	h
-6.47122327554546	1.98256879941361	1.59377924657622	h
-1.85276420474930	3.75757810196842	-8.81148373727015	h
1.58201911104733	1.90188528046889	-11.35508884435033	h
3.86233706970427	-1.88195484863281	-9.80440782876545	h
2.68140257436287	-3.78117370370410	-5.70700563875912	h
-0.73234793398863	-1.91932216424803	-3.15499060708814	h
5.83328940446502	2.09629876624292	-0.82914279455142	h
8.27100626933849	-1.71903167574062	-2.83289149247477	С
10.40251258738585	-3.23144577534764	-2.48245579175147	С
12.38423598636201	-3.15798894221088	-4.19244167625772	С
12.26302834084367	-1.58376538607704	-6.28482632459132	С
10.14995499302033	-0.07532866162891	-6.65266630116724	С
8.16828971477448	-0.13947354502391	-4.94378053214358	С

10.54672627581589	-4.43067725569780	-0.82842311757317	h
14.03282014864856	-4.32653668594967	-3.88141288943899	h
13.80864926235615	-1.53298075422399	-7.62217740183036	h
10.03667483727333	1.15332070258200	-8.28327782242500	h
6.50295726431728	1.00473291197356	-5.25986601170352	h
TS1			
\$coord			
-2.37017899796959	-3.76391837192999	0.19450205114943	te
1.48566821210066	-3.54915796036073	-0.48855789422538	С
2.68692059240684	-1.30235507743801	-0.38597843177024	С
-1.03014567449296	1.33115095861274	2.16687693906959	С
-2.74937192500279	-0.52805772141606	2.39232251616779	С
2.96474002171500	3.80609805318636	0.39587498838491	С
2.02986860507258	6.14420920153500	-0.39845429520310	С
3.37057401715224	8.36941215898066	-0.06430441335392	С
5.70639135036984	8.32675849822950	1.12136982603680	С
6.66685722648978	6.04117516901392	1.96495204529875	С
5.31626453425844	3.82479665115565	1.59704240249859	С
2.51102392562566	-5.96818787017997	-1.43366846176885	С
2.42967310557380	-8.15273533669714	0.03578231480941	С
3.35175183305181	-10.42359307102575	-0.89210134229020	С
4.34865387560268	-10.54924869860454	-3.31113886480389	С
4.41958032475064	-8.38888933548255	-4.79782513361882	С
3.50883308564684	-6.11899788237800	-3.87050642858784	С
5.40511667364835	-1.29781314276272	-1.09618622789603	С
7.14755901456578	-2.77718308386910	0.20942968618708	С
9.67778749718210	-2.78267815617260	-0.46763242181580	С
10.50818131791133	-1.31935323420753	-2.47650185056385	С
8.78864820684879	0.15987888424234	-3.79149321557092	С
6.26549151595009	0.18235356466645	-3.09618850712252	С
-1.47422871753523	3.67075745131884	3.66150530444404	С
-3.57953926418674	5.17247782705795	3.17990032116325	С
-3.98337007648962	7.38610106547614	4.52116833934019	С
-2.29179056757906	8.12497341044861	6.38013085728240	С
-0.19300959020539	6.63552371660719	6.88240774852653	С
0.21553387622811	4.43322902129777	5.52866416578078	С
-5.02986271901258	-0.53648148420573	3.99847735606443	С
-7.41959475306767	-0.851381/2841565	2.93338835028281	С
-9.56406686049695	-0.8/60/044551159	4.43893942968138	С
-9.35088831537446	-0.59339297109857	7.03425293828637	С
-6.9/96188322/534	-0.28610150501817	8.11230/3/092990	С
-4.83/11125//0498	-0.2616143599/199	0.0112524598/234	C
1.309/1308546405	1.2804/029084424	0.2/3/3652256991	D
-0.58921452512502	1.52049500773792	-3.09646321735126	С
-2.32280943197182	0.17048113489172	-3.89996595685930	С

0.16749035431653	6.26349941733820	-1.24672530359501	h
2.57502360236529	10.14228448830831	-0.70420238031801	h
6.75985887142724	10.05855811910443	1.39618334209833	h
8.48279044798479	5.97522492329808	2.90555740512223	h
6.12541628583268	2.07731659568147	2.28768353308881	h
1.66720777867457	-8.06303151926953	1.93352548891840	h
3.29259955263592	-12.09630427091187	0.28258791036262	h
5.06663406219810	-12.32085138979565	-4.03681100847236	h
5.19330173403445	-8.47105734507076	-6.68892668571738	h
3.57958551860696	-4.43656128899341	-5.03081630696064	h
6.51145179533168	-3.92807545745030	1.77678747270295	h
11.00252250423382	-3.93993259630148	0.57579629697564	h
12.48224160052088	-1.32473199806969	-3.00980813932785	h
9.41702132865525	1.31781685517156	-5.35577092068663	h
4.94933632829336	1.36747278007031	-4.11862987356544	h
-4.90673440050693	4.60207545234827	1.73045835646786	h
-5.62748669325352	8.53309201149193	4.11495967730615	h
-2.60258402384489	9.85313701639609	7.42833017023789	h
1.14350806817865	7.19942109114629	8.32385596663173	h
1.87366333354195	3.29950160449868	5.91286371041891	h
-7.61463975731972	-1.03642237611554	0.90052220606535	h
-11.40431884839762	-1.10902104864265	3.57812519747056	h
-11.02206663031625	-0.61182816444753	8.21202666590047	h
-6.79626241185066	-0.06366020250363	10.13665581305510	h
-2.99401746607054	-0.01814762103098	7.46047440925329	h
0.47495130380903	3.10965045927397	-3.78604301258807	h
-4.38951515889913	-0.91002789678675	-5.23511716221452	С
-4.03118816809294	-2.97638419272919	-6.84540946946021	С
-6.04256598629806	-3.94777261054588	-8.19533530367968	С
-8.43480436427013	-2.88612548402529	-7.95727098717932	С
-8.80202442028646	-0.83189589707127	-6.36988555014473	С
-6.79431749502538	0.16235903393903	-5.01808498856745	С
-2.17273727367232	-3.81674827252187	-6.99893741838237	h
-5.75114855008648	-5.54679754887532	-9.43555492923523	h
-10.00603788911143	-3.65941945052919	-9.01177114107335	h
-10.65811594682493	0.00698038277365	-6.19098802451466	h
-7.06406937563890	1.77327577229108	-3.78762228741830	h
TS2			
\$coord			
-1.65171009832751	-4.52604770752016	0.56901783409177	te
2.24277904595423	-4.47842606721013	0.22868310095502	С
3.38578853842124	-2.22832224988783	0.46953760328620	С
-0.31139229715293	0.46350020348481	2.81039185644242	С
-2.06307274218029	-1.38227454524429	2.89747709981785	С
3.96709945698694	2.74500586969477	1.11897449001664	с

S30

3.06194968373680	5.21795084851914	0.86273913764764	С
4.66509511350937	7.27953570588886	0.78315549651702	С
7.25636466544197	6.94254452671165	1.02067059297485	С
8.20918760391075	4.52680730225189	1.34057976150850	С
6.58065151854790	2.46975356846158	1.37247442009594	С
3.42412055228804	-6.83793066243626	-0.63572658705038	С
2.96542647506295	-9.14545570221409	0.55501509770123	С
4.10133184229887	-11.34200515477421	-0.30604841802059	С
5.71106335374059	-11.27383207374199	-2.37379521455306	С
6.17706081665161	-8.99161498588203	-3.57741111361795	С
5.03937717342903	-6.79465393385299	-2.72240727893967	С
5.41587045887418	-2.27212580904053	0.12122175079801	h
-0.75504775477802	2.71113490531566	4.43782961476194	С
-2.89934900392495	4.20428317570897	4.12334855554088	С
-3.29400507176253	6.31376654373858	5.62455176885586	С
-1.55924791767165	6.95054480451759	7.48277796584727	С
0.58015694521314	5.47195567395954	7.81507246210152	С
0.98669743067847	3.38116794031881	6.29329273926652	С
-4.39892833930376	-1.44436758104902	4.42229886052600	С
-6.75607506150436	-1.66139922645492	3.26508775582250	С
-8.94833471480962	-1.73656972278174	4.69851851583923	С
-8.81507503063096	-1.60193986512795	7.31118027385838	С
-6.47623117394337	-1.39320698604626	8.47992145946569	С
-4.28593154726573	-1.31936067390325	7.05112050205098	С
2.14754110774738	0.36786759160241	1.10700207118519	b
0.15943141927766	0.46767958890490	-2.71672757704717	С
-1.51310762440703	-1.12764455054326	-3.18370824436286	С
1.05261847279142	5.54852662029030	0.68800466545324	h
3.89175324327656	9.15692259025752	0.53902613476053	h
8.51761241332990	8.55290400347118	0.96821944121476	h
10.22323048781404	4.23605779208147	1.55760068662835	h
7.39705657737356	0.60977730303185	1.62753344294998	h
1.74562297328226	-9.21229522778160	2.19779184280458	h
3.73701252664813	-13.11146460053342	0.65154203375525	h
6.59411621367400	-12.99067679430619	-3.04634483570467	h
7.41651860116794	-8.92361601849614	-5.20229476902759	h
5.36532107833624	-5.02510011305133	-3.69619972179661	h
-4.26258912292559	3.71403694499856	2.67857957610424	h
-4.96612783582653	7.45807981118625	5.34589209622886	h
-1.86772735453253	8.59404145458583	8.65986063628085	h
1.95217343138969	5.96096832377760	9.25045876677480	h
2.68314018716472	2.26348146345187	6.53327098823557	h
-6.88852640309663	-1.72843422746199	1.21968270220650	h
-10.76259092871484	-1.89230417195967	3.76815291865777	h
-10.52376934103624	-1.65963840912427	8.43245009256582	h
-6.35578523313944	-1.28721814350089	10.51834126657414	h

-1.15166917138665	7.96975926036546	h
2.61065096043011	-3.97251341610116	С
-2.09977495447042	-4.75743374770824	С
-4.23112681416882	-6.26922419265940	С
-5.09498552839640	-7.82776806078967	С
-3.86558995341110	-7.88847586421668	С
-1.75352274637696	-6.38800003507994	С
-0.86886462813400	-4.83196420515616	С
-5.19469612369602	-6.21250755208383	h
-6.73792567121782	-9.00255738464425	h
-4.55323285734068	-9.10305995252994	h
-0.78236868169998	-6.43242481137503	h
0.78574851854701	-3.66632759709157	h
4.74291154855086	-4.51315979442066	С
6.80982126213663	-5.70147455193359	С
6.77006696362760	-6.37527141899364	С
4.64045741887419	-5.86203034626797	С
2.58044122793171	-4.66000707934379	С
4.78095995470518	-3.97410513406936	h
8.45848688409301	-6.09980961488356	h
8.39058369702797	-7.28919989392262	h
4.59707443619931	-6.36911238711309	h
0.94618490588985	-4.21101653803122	h
	-1.15166917138665 2.61065096043011 -2.09977495447042 -4.23112681416882 -5.09498552839640 -3.86558995341110 -1.75352274637696 -0.86886462813400 -5.19469612369602 -6.73792567121782 -4.55323285734068 -0.78236868169998 0.78574851854701 4.74291154855086 6.80982126213663 6.77006696362760 4.64045741887419 2.58044122793171 4.78095995470518 8.45848688409301 8.39058369702797 4.59707443619931 0.94618490588985	-1.15166917138665 7.96975926036546 2.61065096043011 -3.97251341610116 -2.09977495447042 -4.75743374770824 -4.23112681416882 -6.26922419265940 -5.09498552839640 -7.82776806078967 -3.86558995341110 -7.88847586421668 -1.75352274637696 -6.38800003507994 -0.86886462813400 -4.83196420515616 -5.19469612369602 -6.21250755208383 -6.73792567121782 -9.00255738464425 -4.55323285734068 -9.10305995252994 -0.78236868169998 -6.43242481137503 0.78574851854701 -3.66632759709157 4.74291154855086 -4.51315979442066 6.80982126213663 -5.70147455193359 6.77006696362760 -6.37527141899364 4.64045741887419 -5.86203034626797 2.58044122793171 -4.66000707934379 4.78095995470518 -3.97410513406936 8.45848688409301 -6.09980961488356 8.39058369702797 -7.28919989392262 4.59707443619931 -6.36911238711309 0.94618490588985 -4.21101653803122

Thermochemical data at PBEh-3c level. The various relative energy, enthalpy, and entropy contributions for the reactions are given (kcal/mol, the two leftmost columns are the total values in Hartree).

thermo reade	r tmer3 for:	EDUCT -> TS	61
-1908.32212	-1908.29497	17.03	E_gas(tot)
-0.09903	-0.10068	-1.03	H_solv
-0.07679	-0.07792	-0.71	G_solv
-0.02224	-0.02277	-0.33	TS_solv
0.62212	0.61986	-1.42	H_rovib
0.51592	0.51679	0.55	G_rovib
0.10621	0.10307	-1.97	TS_rovib
-1907.70000	-1907.67512	15.62	H_tot_gas
-1907.80620	-1907.77819	17.58	G_tot_gas
0.43913	0.43887	-0.16	E->G_solution
-1907.79903	-1907.77580	14.58	H_tot_solution
0.08396	0.08031	-2.29	TS_tot_solution
0.28161	0.26935	-7.69	S_tot_solution
-1907.88299	-1907.85610	16.87	G tot solution

thermo reade	r tmer3 for:	EDUCT -> IN	TERMEDIATE
-1908.32212	-1908.33308	-6.88	E_gas(tot)
-0.09903	-0.10009	-0.67	H solv
-0.07679	-0.07754	-0.47	G solv
-0.02224	-0.02255	-0.20	TS solv
0.62212	0.62219	0.04	H rovib
0.51592	0.52036	2.79	G rovib
0.10621	0.10183	-2.75	TS rovib
-1907.70000	-1907.71089	-6.84	H tot gas
-1907.80620	-1907.81272	-4.09	G tot gas
0.43913	0.44282	2.32	E->G solution
-1907.79903	-1907.81099	-7.50	H tot solution
0.08396	0.07928	-2.94	TS tot solution
0.28161	0.26589	-9.86	S tot solution
-1907.88299	-1907.89026	-4.56	G_tot_solution
thermo reade	r tmer3 for: I	EDUCT -> TS	S2
-1908.32212	-1908.29725	15.61	E_gas(tot)
-0.09903	-0.10046	-0.89	H_solv
-0.07679	-0.07769	-0.56	G_solv
-0.02224	-0.02277	-0.33	TS_solv
0.62212	0.62076	-0.86	H_rovib
0.51592	0.51775	1.15	G_rovib
0.10621	0.10301	-2.00	TS_rovib
-1907.70000	-1907.67649	14.75	H_tot_gas
-1907.80620	-1907.77950	16.76	G_tot_gas
0.43913	0.44006	0.58	E->G_solution
-1907.79903	-1907.77695	13.86	H_tot_solution
0.08396	0.08024	-2.33	TS_tot_solution
0.28161	0.26914	-7.83	S_tot_solution
-1907.88299	-1907.85719	16.19	G_tot_solution
thermo reade	r tmor3 for:		 חסס
-1908 32212	-1908 33758	-9 70	F gas(tot)
-0.09903	-0.10294	-2.45	H solv
-0 07679	-0 07946	-1 68	G solv
-0 02224	-0 02348	-0.77	TS solv
0.62212	0.62334	0.76	H rovib
0.51592	0.51651	0.37	G rovib
0 10621	0 10683	0.39	TS rovib
-1907 70000	-1907 71424	-8.94	H tot das
-1907 80620	-1907 82107	_9.33	G tot gas
0 43013	0 43704	-1.31	F->G solution
-1907 70003	-1907 81718	_11 30	H tot solution
0.08396	0.08335	-0.38	TS_tot_solution

0.28161	0.27956	-1.28 -11.01	S_tot_solution
thermo reade	r tmer3 for:		TE -> TS1
-1908.33308	-1908.29497	23.91	E_gas(tot)
-0.10009	-0.10068	-0.37	H_SOIV
-0.07754	-0.07792	-0.24	G_SOIV
-0.02255	-0.02277	-0.13	
0.62219	0.61986	-1.46	H_rovib
0.52036	0.51679	-2.24	G_rovib
0.10183	0.10307	0.78	
-1907.71089	-1907.67512	22.45	H_tot_gas
-1907.81272	-1907.77819	21.67	G_tot_gas
0.44282	0.43887	-2.48	E->G_solution
-1907.81099	-1907.77580	22.08	H_tot_solution
0.07928	0.08031	0.65	IS_tot_solution
0.26589	0.26935	2.17	S_tot_solution
-1907.89026	-1907.85610	21.43	G_tot_solution
thermo reade	r tmer3 for:	NTERMEDIA	TE -> TS2
-1908.33308	-1908.29725	22.48	E_gas(tot)
-0.10009	-0.10046	-0.23	H_solv
-0.07754	-0.07769	-0.09	G_solv
-0.02255	-0.02277	-0.13	TS_solv
0.62219	0.62076	-0.90	H_rovib
0.52036	0.51775	-1.64	G_rovib
0.10183	0.10301	0.74	TS_rovib
-1907.71089	-1907.67649	21.59	H_tot_gas
-1907.81272	-1907.77950	20.85	G_tot_gas
0.44282	0.44006	-1.73	E->G_solution
-1907.81099	-1907.77695	21.36	H_tot_solution
0.07928	0.08024	0.61	TS_tot_solution
0.26589	0.26914	2.04	S_tot_solution
-1907.89026	-1907.85719	20.75	G_tot_solution
thermo reade	r tmer3 for:	NTERMEDIA	TE -> PROD
-1908.33308	-1908.33758	-2.82	E_gas(tot)
-0.10009	-0.10294	-1.79	H_solv
-0.07754	-0.07946	-1.21	G_solv
-0.02255	-0.02348	-0.58	TS_solv
0.62219	0.62334	0.72	H_rovib
0.52036	0.51651	-2.42	G_rovib
0.10183	0.10683	3.14	TS_rovib
-1907.71089	-1907.71424	-2.10	H_tot_gas
-1907.81272	-1907.82107	-5.24	G_tot_gas
0.44282	0.43704	-3.63	E->G_solution

-1907.81099	-1907.81718	-3.89	H_tot_solution
0.07928	0.08335	2.56	TS_tot_solution
0.26589	0.27956	8.58	S_tot_solution
-1907.89026	-1907.90054	-6.45	G_tot_solution

Thermochemical data at PW6B95-D3// PBEh-3c level. The various relative energy, enthalpy, and entropy contributions for the reactions are given (kcal/mol, the two leftmost columns are the total values in Hartree). These values are discussed in the main text.

thermo reade	r tmer3 for: I	EDUCT -> T	S1
-1914.96244	-1914.93492	17.27	E gas(tot)
-0.09903	-0.10068	-1.03	H solv
-0.07679	-0.07792	-0.71	G solv
-0.02224	-0.02277	-0.33	TS solv
0.62212	0.61986	-1.42	H rovib
0.51592	0.51679	0.55	G rovib
0.10621	0.10307	-1.97	TS rovib
-1914.34032	-1914.31506	15.85	[–] H tot gas
-1914.44652	-1914.41814	17.81	G tot gas
0.43913	0.43887	-0.16	E->G solution
-1914.43935	-1914.41575	14.81	H tot solution
0.08396	0.08031	-2.29	TS tot solution
0.28161	0.26935	-7.69	S_tot_solution
-1914.52331	-1914.49605	17.11	G_tot_solution
thermo reade	r tmer3 for: I	EDUCT -> IN	ITERMEDIATE
-1914.96244	-1914.96792	-3.44	E gas(tot)
-0.09903	-0.10009	-0.67	H solv
-0.07679	-0.07754	-0.47	G_solv
-0.02224	-0.02255	-0.20	TS_solv
0.62212	0.62219	0.04	H_rovib
0.51592	0.52036	2.79	G rovib
0.10621	0.10183	-2.75	TS_rovib
-1914.34032	-1914.34573	-3.39	 H_tot_gas
-1914.44652	-1914.44756	-0.65	G_tot_gas
0.43913	0.44282	2.32	E->G_solution
-1914.43935	-1914.44582	-4.06	H_tot_solution
0.08396	0.07928	-2.94	TS_tot_solution
0.28161	0.26589	-9.86	S_tot_solution
-1914.52331	-1914.52510	-1.12	G_tot_solution
thermo reade	r tmer3 for: I	EDUCT -> T	S2
-1914.96244	-1914.93790	15.40	E_gas(tot)

-0.09903 -0.07679 -0.02224 0.62212 0.51592 0.10621 -1914.34032 -1914.44652 0.43913 -1914.43935 0.08396	-0.10046 -0.07769 -0.02277 0.62076 0.51775 0.10301 -1914.31714 -1914.42015 0.44006 -1914.41760 0.08024	-0.89 -0.56 -0.33 -0.86 1.15 -2.00 14.54 16.55 0.58 13.65 -2.33	H_solv G_solv TS_solv H_rovib G_rovib TS_rovib H_tot_gas G_tot_gas E->G_solution H_tot_solution TS_tot_solution
0.28161	0.26914 -1914 49784	-7.83 15.98	S_tot_solution
thermo reade -1914.96244 -0.09903 -0.07679 -0.02224 0.62212 0.51592 0.10621 -1914.34032 -1914.44652 0.43913 -1914.43935 0.08396 0.28161	r tmer3 for: F -1914.97674 -0.10294 -0.07946 -0.02348 0.62334 0.51651 0.10683 -1914.35340 -1914.46023 0.43704 -1914.45635 0.08335 0.27056	EDUCT -> PI -8.97 -2.45 -1.68 -0.77 0.76 0.37 0.39 -8.21 -8.60 -1.31 -10.66 -0.38 1.28	ROD E_gas(tot) H_solv G_solv TS_solv H_rovib G_rovib TS_rovib H_tot_gas G_tot_gas E->G_solution H_tot_solution TS_tot_solution
-1914.52331	-1914.53970	-10.28	G_tot_solution
thermo reade	r tmer3 for: 1		
-1914.96792 -0.10009 -0.07754 -0.02255 0.62219 0.52036 0.10183 -1914.34573 -1914.44756 0.44282 -1914_44582	-1914.93492 -0.10068 -0.07792 -0.02277 0.61986 0.51679 0.10307 -1914.31506 -1914.41814 0.43887 -1914.41575	20.70 -0.37 -0.24 -0.13 -1.46 -2.24 0.78 19.24 18.46 -2.48 18.87	E_gas(tot) H_solv G_solv TS_solv H_rovib G_rovib TS_rovib H_tot_gas G_tot_gas E->G_solution H_tot_solution
0.07928 0.26589 -1914.52510	0.08031 0.26935 -1914.49605	0.65 2.17 18.22	TS_tot_solution S_tot_solution G_tot_solution

thermo reade	r tmer3 for: I	NTERMEDIA	TE -> TS2
-1914.96792	-1914.93790	18.83	E_gas(tot)
-0.10009	-0.10046	-0.23	H_solv
-0.07754	-0.07769	-0.09	G_solv
-0.02255	-0.02277	-0.13	TS_solv
0.62219	0.62076	-0.90	H_rovib
0.52036	0.51775	-1.64	G_rovib
0.10183	0.10301	0.74	TS_rovib
-1914.34573	-1914.31714	17.94	H_tot_gas
-1914.44756	-1914.42015	17.20	G_tot_gas
0.44282	0.44006	-1.73	E->G_solution
-1914.44582	-1914.41760	17.71	H_tot_solution
0.07928	0.08024	0.61	TS_tot_solution
0.26589	0.26914	2.04	S_tot_solution
-1914.52510	-1914.49784	17.10	G_tot_solution
thermo reade	r tmer3 for: I	NTERMEDIA	TE -> PROD
thermo reade -1914.96792	r tmer3 for: I -1914.97674	NTERMEDIA -5.54	TE -> PROD E gas(tot)
thermo reade -1914.96792 -0.10009	r tmer3 for: I -1914.97674 -0.10294	NTERMEDIA -5.54 -1.79	TE -> PROD E_gas(tot) H solv
thermo reade -1914.96792 -0.10009 -0.07754	r tmer3 for: I -1914.97674 -0.10294 -0.07946	NTERMEDIA -5.54 -1.79 -1.21	TE -> PROD E_gas(tot) H_solv G_solv
thermo reade -1914.96792 -0.10009 -0.07754 -0.02255	r tmer3 for: I -1914.97674 -0.10294 -0.07946 -0.02348	NTERMEDIA -5.54 -1.79 -1.21 -0.58	TE -> PROD E_gas(tot) H_solv G_solv TS_solv
thermo reade -1914.96792 -0.10009 -0.07754 -0.02255 0.62219	r tmer3 for: I -1914.97674 -0.10294 -0.07946 -0.02348 0.62334	NTERMEDIA -5.54 -1.79 -1.21 -0.58 0.72	TE -> PROD E_gas(tot) H_solv G_solv TS_solv H_rovib
thermo reade -1914.96792 -0.10009 -0.07754 -0.02255 0.62219 0.52036	r tmer3 for: I -1914.97674 -0.10294 -0.07946 -0.02348 0.62334 0.51651	NTERMEDIA -5.54 -1.79 -1.21 -0.58 0.72 -2.42	TE -> PROD E_gas(tot) H_solv G_solv TS_solv H_rovib G_rovib
thermo reade -1914.96792 -0.10009 -0.07754 -0.02255 0.62219 0.52036 0.10183	r tmer3 for: I -1914.97674 -0.10294 -0.07946 -0.02348 0.62334 0.51651 0.10683	NTERMEDIA -5.54 -1.79 -1.21 -0.58 0.72 -2.42 3.14	TE -> PROD E_gas(tot) H_solv G_solv TS_solv H_rovib G_rovib TS_rovib
thermo reade -1914.96792 -0.10009 -0.07754 -0.02255 0.62219 0.52036 0.10183 -1914.34573	r tmer3 for: I -1914.97674 -0.10294 -0.07946 -0.02348 0.62334 0.51651 0.10683 -1914.35340	NTERMEDIA -5.54 -1.79 -1.21 -0.58 0.72 -2.42 3.14 -4.82	TE -> PROD E_gas(tot) H_solv G_solv TS_solv H_rovib G_rovib TS_rovib H_tot_gas
thermo reade -1914.96792 -0.10009 -0.07754 -0.02255 0.62219 0.52036 0.10183 -1914.34573 -1914.44756	r tmer3 for: I -1914.97674 -0.10294 -0.07946 -0.02348 0.62334 0.51651 0.10683 -1914.35340 -1914.46023	NTERMEDIA -5.54 -1.79 -1.21 -0.58 0.72 -2.42 3.14 -4.82 -7.95	TE -> PROD E_gas(tot) H_solv G_solv TS_solv H_rovib G_rovib TS_rovib H_tot_gas G_tot_gas
thermo reade -1914.96792 -0.10009 -0.07754 -0.02255 0.62219 0.52036 0.10183 -1914.34573 -1914.44756 0.44282	r tmer3 for: I -1914.97674 -0.10294 -0.07946 -0.02348 0.62334 0.51651 0.10683 -1914.35340 -1914.46023 0.43704	NTERMEDIA -5.54 -1.79 -1.21 -0.58 0.72 -2.42 3.14 -4.82 -7.95 -3.63	TE -> PROD E_gas(tot) H_solv G_solv TS_solv H_rovib G_rovib TS_rovib H_tot_gas G_tot_gas E->G_solution
thermo reade -1914.96792 -0.10009 -0.07754 -0.02255 0.62219 0.52036 0.10183 -1914.34573 -1914.44756 0.44282 -1914.44582	r tmer3 for: I -1914.97674 -0.10294 -0.07946 -0.02348 0.62334 0.51651 0.10683 -1914.35340 -1914.46023 0.43704 -1914.45635	NTERMEDIA -5.54 -1.79 -1.21 -0.58 0.72 -2.42 3.14 -4.82 -7.95 -3.63 -6.60	TE -> PROD E_gas(tot) H_solv G_solv TS_solv H_rovib G_rovib TS_rovib H_tot_gas G_tot_gas E->G_solution H_tot_solution
thermo reade -1914.96792 -0.10009 -0.07754 -0.02255 0.62219 0.52036 0.10183 -1914.34573 -1914.44756 0.44282 -1914.44582 0.07928	r tmer3 for: I -1914.97674 -0.10294 -0.07946 -0.02348 0.62334 0.51651 0.10683 -1914.35340 -1914.46023 0.43704 -1914.45635 0.08335	NTERMEDIA -5.54 -1.79 -1.21 -0.58 0.72 -2.42 3.14 -4.82 -7.95 -3.63 -6.60 2.56	TE -> PROD E_gas(tot) H_solv G_solv TS_solv H_rovib G_rovib TS_rovib H_tot_gas G_tot_gas E->G_solution H_tot_solution TS_tot_solution
thermo reader -1914.96792 -0.10009 -0.07754 -0.02255 0.62219 0.52036 0.10183 -1914.34573 -1914.44756 0.44282 -1914.44582 0.07928 0.26589	r tmer3 for: I -1914.97674 -0.10294 -0.07946 -0.02348 0.62334 0.51651 0.10683 -1914.35340 -1914.46023 0.43704 -1914.45635 0.08335 0.27956	NTERMEDIA -5.54 -1.79 -1.21 -0.58 0.72 -2.42 3.14 -4.82 -7.95 -3.63 -6.60 2.56 8.58	TE -> PROD E_gas(tot) H_solv G_solv TS_solv H_rovib G_rovib TS_rovib TS_rovib H_tot_gas E->G_solution H_tot_solution TS_tot_solution

Wiberg bond orders (>0.07) of B and Te atoms (PW6B95/def2-TVP//PBEh-3c)

TS1 (c37 and c38 are the alkyne carbon atoms)

te c 5 1.102 c 2 1.081 c 38 0.156 b 36 0.122 c 65 0.117 b c 3 1.020 c 4 1.012 c 6 0.960 c 37 0.422 te 1 0.122 c 38 0.112

TS2 (c32 and c33 are the alkyne carbon atoms)

te c 5 1.112 c 2 1.069 c 33 0.290 c 32 0.137 b 31 0.085 b c 3 1.076 c 4 1.025 c 6 0.986 c 32 0.339 c 33 0.098 te 1 0.085

INTERMEDIATE

te c 2 1.006 c 5 0.996 c 38 0.958 b c 6 0.894 c 4 0.873 c 37 0.864 c 3 0.852

References

- 1. Tsao, F. A.,; Lough, A. J.; Stephan, D. W. Chem. Commun. (Cambridge, U. K.) **2015**, *51* (20), 4287-4289.
- 2. Goerl, C.; Alt, H. G., J. Organomet. Chem. 2007, 692 (21), 4580-4592.
- 3. Liu, B.; Yu, W. –L.; Pei, J.; Liu, S. –Y; Lai, Y. –H.; Huang, W., *Macromolecules* **2001**, *34* (23), 7932-7940.
- Granger, P.; Chapell, S.; McWinnie, W. R.; Al-Rubaie, A., J. Organomet. Chem. 1981, 220 (2), 149-158.
- Gaussian 09, Revision B.01, Frisch, M. J.; Trucks, G. W.; Schlegel, H. B.; Scuseria, G. E.; Robb, M. A.; Cheeseman, J. R.; Scalmani, G.; Barone, V.; Mennucci, B.; Petersson, G. A.; Nakatsuji, H.; Caricato, M.; Li, X.; Hratchian, H. P.; Izmaylov, A. F.; Bloino, J.; Zheng, G.; Sonnenberg, J. L.; Hada, M.; Ehara, M.; Toyota, K.; Fukuda, R.; Hasegawa, J.; Ishida, M.; Nakajima, T.; Honda, Y.; Kitao, O.; Nakai, H.; Vreven, T.; Montgomery, Jr., J. A.; Peralta, J. E.; Ogliaro, F.; Bearpark, M.; Heyd, J. J.; Brothers, E.; Kudin, K. N.; Staroverov, V. N.; Keith, R; Kobayashi, R.; Normand, J.; Raghavachari, K.; Rendell, A.; Burant, J. C.; Iyengar, S. S.; Tomasi, J.; Cossi, M.; Rega, N.; Millam, J. /m.; Klene, M.; Knox, J. E.; Cross, J. B.; Bakken, V.; Adamo, C.; Jaramillo, J.; Gomperts, R.; Stratmann, R. E.; Yazyev, O.; Austin, A. J.; Cammi, R.; Pomelli, C.; Ochterski, J. W.; Martin, R. L.; Morokuma, K.; Zakrzewski, V. G.; Voth, G. A.; Salvador, P.; Dannenberg, J. J.; Dapprich, S.; Daniels, A. D.; Farkas, Ö.; Foresman, J. B.; Ortiz, J. V.; Cioslowski, J.; Fox, D. J. Gaussian, Inc., Wallingford CT, 2010.
- Ahlrichs, R. ;Bär, M.; Häser, M.; Horn, H.; Kölmel, C. *Chem. Phys. Lett.* **1989**, *162*, 165; TURBOMOLE, version 6.5: TURBOMOLE GmbH, Karlsruhe **2013**. See http://www.turbomole.com.
- Grimme, S; Brandenburg, J. G.; Bannwarth, C.; Hansen, A. J. Chem. Phys. 2015, 143, 054107
- 8. Weigend, F. ;Ahlrichs, R. Phys. Chem. Chem. Phys. 2005, 7, 3297 3305.
- 9. Zhao, Y.; Truhlar, D. G. J. Phys. Chem.A 2005, 109, 5656-5667.
- 10. Grimme, S.; Antony, J.; Ehrlich, S.; Krieg, H. J. Chem. Phys. 2010, 132, 154104;
 Grimme, S.; Ehrlich, S.; Goerigk, L. J. Comput. Chem, 2011, 32, 1456 1465.
- Eichkorn, K.; Treutler, O.; Öhm, H.; Häser, M.; Ahlrichs, R. Chem. Phys. Lett.
 1995, 240, 283; Eichkorn, K.; Weigend, F.; Treutler, O.; Ahlrichs, R. Theor. Chem. Acc. **1997**, 97, 119.
- 12. Grimme, S. Chem. Eur. J. 2012, 18, 9955 9964.

- 13. Eckert, F.; Klamt, A. *AIChE J.* **2002**, *48*, 369 385; Klamt, A. *J. Phys. Chem.* **1995**, 99, 2224 2235.
- 14. Eckert, F.; Klamt, A. COSMOtherm, Version C3.0, Release 12.01; COSMOlogic GmbH & Co. KG, Leverkusen, Germany, 2012.
- 15. Becke, A. D. *Phys. Rev. A* **1988**, *38*, 3098 3100; Perdew, J. P. *Phys. Rev. B* **1986**, *33*, 8822 8824.