Supporting Information

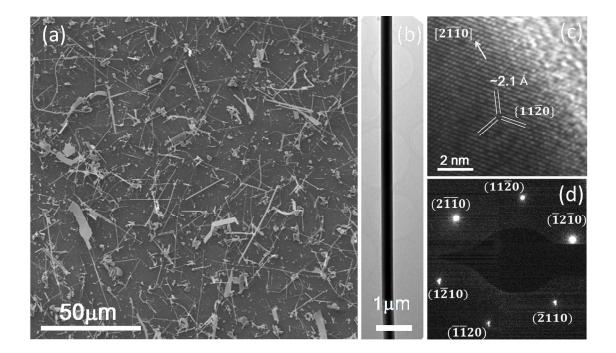
Surface-Facet-Dependent Phonon Deformation Potential in Individual Strained Topological Insulator Bi₂Se₃ Nanoribbons

Yuan Yan,^{§,†,*} Xu Zhou,^{#,±,†} Han Jin,^{#,†} Cai-Zhen Li,[#] Xiaoxing Ke,^Δ Gustaaf Van Tendeloo,^Δ Kaihui Liu,^{#, †,±} Dapeng Yu,^{#,†,±} Martin Dressel,[§] and Zhi-Min Liao^{#, †,*}

[§]1. Physikalisches Institut, Universität Stuttgart, 70550 Stuttgart, Germany,

[#]State Key Laboratory for Mesoscopic Physics, Department of Physics, Peking University, 100871 Beijing, China,

[±]Academy for Advanced Interdisciplinary Studies, Peking University, 100871 Beijing, China,


^ΔEMAT (Electron Microscopy for Materials Science), University of Antwerp, Groenenborgerlaan 171,

B-2020 Antwerp, Belgium,

[†]Collaborative Innovation Center of Quantum Matter, Beijing, China

[†]These authors contributed equally to this work

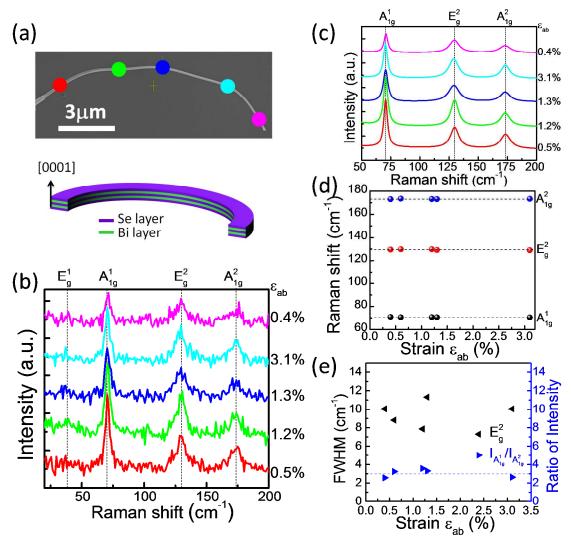
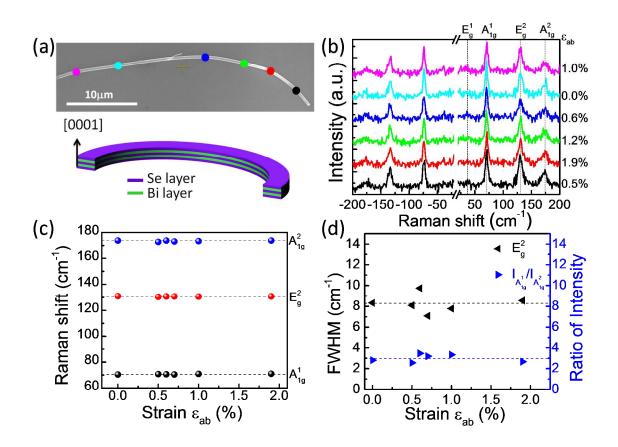
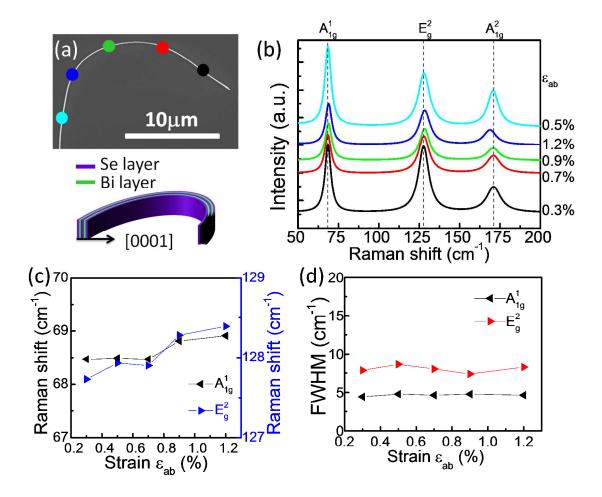

*Address correspondence to <u>yuan.yan@pi1.physik.uni-stuttgart.de</u>; <u>liaozm@pku.edu.cn</u>

Figure S1. Characterization of as-grown Bi₂Se₃ nanoribbons. (a) SEM, (b) TEM, (c) HRTEM images and (d) SAED pattern of as grown Bi₂Se₃ nanoribbons.


Figure S2. Atomic force microscopy (AFM) characterization of a representative Bi₂Se₃ nanoribbon after Raman measurements. The thickness is 250 nm.


Figure S3. Raman spectra of a strained Bi₂Se₃ nanoribbon with the {0001} surface parallel to the substrate plane. (a) SEM image and schematic illustration of a bent Bi₂Se₃ nanoribbon with a width of 145 nm and a thickness of 130 nm. (b) Raman spectra and (c) Lorentzian fitted Raman spectra collected at different positions along the Bi₂Se₃ nanoribbon. The colored curves correspond to five different positions on the Bi₂Se₃ nanoribbon. Frequencies of the vibrational modes are indicated by dashed lines. (d) Raman shift of the vibrational modes (A_{1g}¹, E_g², A_{1g}²) *versus* strain. (e) FWHM of E_g^2 mode and ratio of intensities $I_{A_{1g}^1}/I_{A_{1g}^2}$ as a function of strain.

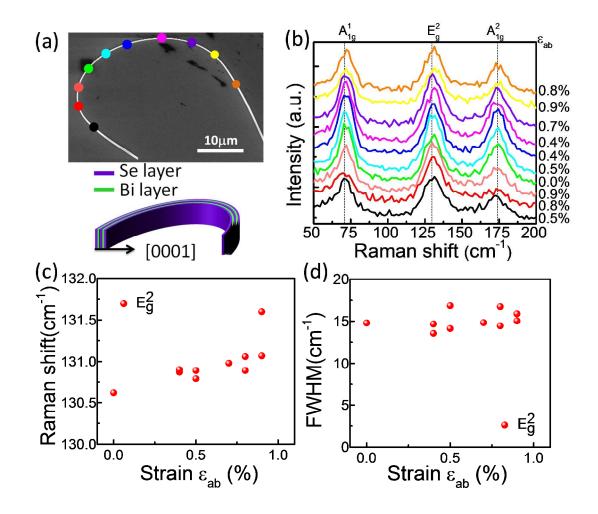

Figure S4. Raman spectra of a strained Bi₂Se₃ nanoribbon with the {0001} surface parallel to the substrate plane. (a) SEM image and schematic illustration of a bent Bi₂Se₃ nanoribbon with a width of 320 nm and a thickness of 250 nm. (b) Raman spectra collected at different positions along the Bi₂Se₃ nanoribbon. The color of each curve corresponds to seven different points on the Bi₂Se₃ nanoribbon. Frequencies of each vibrational mode are indicated by dashed lines. (c) Raman shift of the vibrational modes $(A_{1g}^{1}, E_{g}^{2}, A_{1g}^{2})$ *versus* strain. (d) FWHM of E_{g}^{2} mode and ratio of intensities $I_{A_{1g}^{1}}/I_{A_{1g}^{2}}$ as a function of strain.

Figure S5. Raman spectra of a strained Bi₂Se₃ nanoribbon with the {0001} surface parallel to the substrate plane. (a) SEM image and schematic illustration of a bent Bi₂Se₃ nanoribbon with a width of 425 nm and a thickness of 170 nm. (b) Raman spectra collected at the different positions along the Bi₂Se₃ nanoribbon. The color of each curve corresponds to six different points on the Bi₂Se₃ nanoribbon. Frequencies of each vibrational mode are indicated by dashed lines. (c) Raman shift of the vibrational modes $(A_{1g}^{1}, E_{g}^{2}, A_{1g}^{2})$ versus strain. (d) FWHM of E_{g}^{2} mode and ratio of intensities $I_{A_{1g}^{1}}/I_{A_{1g}^{2}}$ as a function of strain.

Figure S6. Raman spectra of a strained Bi₂Se₃ nanoribbon with the {0001} surface perpendicular to the substrate plane and the exposed {0115} top surface. (a) SEM image and schematic illustration of a bent Bi₂Se₃ nanoribbon with a thickness of 120 nm. (b) Lorentzian fitted Raman spectra collected at the different positions along the Bi₂Se₃ nanoribbon. The color of each curve corresponds to five different points on the Bi₂Se₃ nanoribbon. (c) Raman shift and (d) FWHM of A_{1g}^1 and E_g^2 modes *versus* strain.

Figure S7. Raman spectra of a strained Bi₂Se₃ nanoribbon with the {0001} surface perpendicular to the substrate plane and the exposed {0115} top surface. (a) SEM image and schematic illustration of a bent Bi₂Se₃ nanoribbon with a thickness of 190 nm. (b) Raw Raman spectra collected at the different positions along the Bi₂Se₃ nanoribbon. The color of each curve corresponds to ten different points on the Bi₂Se₃ nanoribbon. (c) Raman shift and (d) FWHM of E_g^2 mode *versus* strain.