One-Pot Conversion of N -allyl a-cyano esters to a-allyl-a-cyano lactams through a hydrolysis/ketene formation/cyclization/Claisen Rearrangment Sequence

Mei-Hua Shen,* Mei Han and Hua-Dong Xu*

shenmh@cczu.edu.cn, hdxu@cczu.edu.cn
School of Pharmaceutical Engineering and Life Science, Changzhou University. 1 Middle Gehu Rd., Changzhou, Jiangsu Province, 213164, China

Supporting Information Contents

I. General Information and Materials.. 2

III. Preparation of α-cyano N -allyl amino acid..................................... 87
IV. The preparation of α-allyllactam 9 ... 8
V. Synthesis of highly functionalized bicyclic amides 15............................s13
VI. References... 14
VII. NMR Spectra of Compounds..s15
VIII. VIII HPLC spectra for (+/-)-15 and (-)-15 51

I. General Information and Materials

NMR spectra were recorded using Bruker AV-400 / AV-500 spectrometers. The data are reported as follows: chemical shift in ppm from internal tetramethylsilane on the δ scale, multiplicity ($\mathrm{br}=$ broad, $\mathrm{s}=$ singlet, $\mathrm{d}=$ doublet, $\mathrm{t}=$ triplet, $\mathrm{q}=$ quartet, $\mathrm{m}=$ multiplet), coupling constants (Hz) and integration. High resolution mass spectra were acquired on an agilent 6230 spectrometer and were obtained by peak matching. Analytical thin layer chromatography was performed on 0.25 mm extra hard silica gel plates with UV254 fluorescent indicator and/or by exposure to phosphormolybdic acid/cerium (IV) sulfate/ninhydrine followed by brief heating with a heat gun. Liquid chromatography (flash chromatography) was performed on 200-300 \AA mesh silica gel $\left(\mathrm{SiO}_{2}\right)$. All reactions were carried out under nitrogen or argon with anhydrous solvents in oven-dried glassware, unless otherwise noted. Commercially available reagents were used without further purification.

II. A: Preparation of amino ester (10a, 10i, 10m, 10n)

A solution of $\mathbf{S 1}{ }^{1}$ ($5.0 \mathrm{mmol}, 1.0 \mathrm{eq}$) in 15 mL THF is added dropwise to a solution of LDA ($12.5 \mathrm{mmol}, 2.5 \mathrm{eq}$) in THF cooled to $-78^{\circ} \mathrm{C}$. The reaction mixture is allowed to stir at $-78^{\circ} \mathrm{C}$ for 30 min . and then at room temperature for an additional 30 minutes.The reaction mixture is then cooled $-78^{\circ} \mathrm{C}$ and a solution of ethyl chloroformate in 10 ml THF is added via syringe. The reaction mixture is stirred at $-78^{\circ} \mathrm{C}$ for 2.5 hours. The reaction mixture is quenched with 10 mL saturated ammonium chloride and extracted with 75 mL diethyl ether. The ether is washed with $10 \% \mathrm{HCl}(2 \times 30 \mathrm{~mL})$, brine (30 mL) and dried with MgSO_{4}. The solvent is removed under reduced pressure and the resulting crude oil is purified using silica gel chromatography ($3 \% \mathrm{EtOAc}$ in PE) to yield the desired cyanoesters 10a, 10i, 10m , 10n.

B: Synthesis of amino ester ($\mathbf{1 0 b}-\mathrm{h}, \mathbf{j}, \mathbf{k}, \mathbf{l}$)

The mixture of $\mathbf{S 2}^{2,3}$ ($2.0 \mathrm{mmol}, 1.0 \mathrm{eq}$), N -allylamine ($3.0 \mathrm{mmol}, 1.5 \mathrm{eq}$) and $\mathrm{La}(\mathrm{OTf})_{3}(0.2 \mathrm{eq})$ in $\mathrm{MeCN}(5 \mathrm{ml})$ in a sealed reaction vessel was stirred and heated at $100{ }^{\circ} \mathrm{C}$ in microwave reactor (Anton Paar Monowave 300). The reaction was filtered through a glass funnel, the filtrate was concentrated under reduced pressure and the residue was purified by flash chromatography ($10 \% \mathrm{EtOAc}$ in PE) to yield corresponding amino ester ($\mathbf{1 0 b} \mathbf{- h}, \mathbf{j}, \mathbf{k}$).

10a
10a: $1.11 \mathrm{~g}, 78 \%$, colorless oil. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.26-7.16(\mathrm{~m}, 5 \mathrm{H})$, $5.84-5.74(\mathrm{~m}, 1 \mathrm{H}), 5.13(\mathrm{~d}, J=4.9 \mathrm{~Hz}, 1 \mathrm{H}), 5.09(\mathrm{~s}, 1 \mathrm{H}), 4.13(\mathrm{q}, J=7.1 \mathrm{~Hz}, 2 \mathrm{H})$, $3.68(\mathrm{t}, 1 \mathrm{H}), 3.51(\mathrm{q}, J=13.5 \mathrm{~Hz}, 2 \mathrm{H}), 3.06-2.95(\mathrm{~m}, 2 \mathrm{H}), 2.64-2.51(\mathrm{~m}, 2 \mathrm{H})$, $2.11-2.03(\mathrm{~m}, 1 \mathrm{H}), 1.97-1.89(\mathrm{~m}, 1 \mathrm{H}), 1.21(\mathrm{t}, J=7.1 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR $(100 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}\right) \delta 163.7,138.2,134.9,129.2,128.2,127.1,118.2,114.8,63.8,57.9,56.0,54.1$, 48.9, 31.5, 13.8. HRMS(ESI) m / z calculated for $\mathrm{C}_{17} \mathrm{H}_{23} \mathrm{~N}_{2} \mathrm{O}_{2}{ }^{+}[\mathrm{M}+\mathrm{H}]^{+}$287.1754, found 287.1750 .

10b
10b: $391 \mathrm{mg}, 62 \%$, colorless oil. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.20(\mathrm{~d}, J=8.6 \mathrm{~Hz}$, $2 \mathrm{H}), 6.86-6.84(\mathrm{~m}, 2 \mathrm{H}), 5.89-5.79(\mathrm{~m}, 1 \mathrm{H}), 5.20-5.18(\mathrm{~m}, 1 \mathrm{H}), 5.15(\mathrm{~s}, 1 \mathrm{H}), 4.26-$ $4.15(\mathrm{q}, \mathrm{J}=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 3.79(\mathrm{~s}, 3 \mathrm{H}), 3.76-3.73(\mathrm{t}, \mathrm{J}=12.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.52(\mathrm{q}, J=12.0 \mathrm{~Hz}$, $2 \mathrm{H}), 3.12-3.00(\mathrm{~m}, 2 \mathrm{H}), 2.66-2.58(\mathrm{~m}, 2 \mathrm{H}), 2.17-2.08(\mathrm{~m}, 1 \mathrm{H}), 2.04-1.97(\mathrm{~m}, 1 \mathrm{H})$, $1.29(\mathrm{t}, J=7.1 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 166.3,158.7,135.0,130.1$, 118.1, 116.7, 113.7, 62.6, 57.5, 56.4, 55.2, 49.6, 34.8, 27.9, 13.9. HRMS(ESI) m/z calculated for $\mathrm{C}_{18} \mathrm{H}_{24} \mathrm{~N}_{2} \mathrm{O}_{2} \mathrm{Na}^{+}[\mathrm{M}+\mathrm{Na}]^{+} 339.1679$, found 339.1680.

10c: $300 \mathrm{mg}, 50 \%$, colorless oil. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.27(\mathrm{t}, J=7.4 \mathrm{~Hz}$, $2 \mathrm{H}), 7.18(\mathrm{t}, J=7.7 \mathrm{~Hz}, 3 \mathrm{H}), 5.88-5.78(\mathrm{~m}, 1 \mathrm{H}), 5.19(\mathrm{t}, J=12.0 \mathrm{~Hz}, 2 \mathrm{H}), 4.22(\mathrm{q}, J=$ $8.0 \mathrm{~Hz}, 2 \mathrm{H}), 3.57-3.53(\mathrm{t}, \mathrm{J}=7.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.21(\mathrm{dd}, J=13.8,5.9 \mathrm{~Hz}, 1 \mathrm{H}), 3.13$ (dd, J $=13.8,6.7 \mathrm{~Hz}, 1 \mathrm{H}), 2.73-2.66(\mathrm{~m}, 6 \mathrm{H}), 2.11-2.04(\mathrm{~m}, 1 \mathrm{H}), 1.99-1.92(\mathrm{~m}, 1 \mathrm{H}), 1.31$ $(\mathrm{t}, J=7.1 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 166.5,140.3,134.9,128.8,128.4$, 126.1, 118.0, 116.8, 62.6, 56.8, 55.3, 49.9, 34.6, 33.4, 29.7, 27.9, 14.0. HRMS(ESI) m / z calculated for $\mathrm{C}_{18} \mathrm{H}_{25} \mathrm{~N}_{2} \mathrm{O}_{2}{ }^{+}[\mathrm{M}+\mathrm{H}]^{+}$301.1911, found 301.1902.

10d: $270 \mathrm{mg}, 45 \%$, colorless oil. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.33-7.24(\mathrm{~m}, 5 \mathrm{H})$, $4.92(\mathrm{~d}, J=15.0 \mathrm{~Hz}, 2 \mathrm{H}),{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.33-7.24(\mathrm{~m}, 5 \mathrm{H}), 4.94(\mathrm{~s}$, $1 \mathrm{H}), 4.90(\mathrm{~s}, 1 \mathrm{H}), 4.18(\mathrm{q}, \mathrm{J}=7.2 \mathrm{~Hz}, 2 \mathrm{H}), 3.73(\mathrm{dd}, J=8.0,5.6 \mathrm{~Hz}, 1 \mathrm{H}), 3.58(\mathrm{~d}, J=$ $13.6 \mathrm{~Hz}, 1 \mathrm{H}), 3.46(\mathrm{~d}, J=13.2 \mathrm{~Hz}, 1 \mathrm{H}), 2.95(\mathrm{q}, J=13.2 \mathrm{~Hz}, 2 \mathrm{H}), 2.64-2.59(\mathrm{~m}, 1 \mathrm{H})$, $2.55-2.49(\mathrm{~m}, 1 \mathrm{H}), 2.18-2.10(\mathrm{~m}, 1 \mathrm{H}), 2.03-1.92(\mathrm{~m}, 1 \mathrm{H}), 1.77(\mathrm{~s}, 3 \mathrm{H}), 1.27(\mathrm{t}, J=$ $7.2 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (100MHz, $\left.\mathrm{CDCl}_{3}\right) \delta 166.2,142.9,138.7,128.8,128.2,127.0$, $116.5,113.6,62.5,61.3,58.3,50.0,34.6,27.9,20.7,13.8$. HRMS(ESI) m/z calculated for $\mathrm{C}_{18} \mathrm{H}_{25} \mathrm{~N}_{2} \mathrm{O}_{2}^{+}[\mathrm{M}+\mathrm{H}]^{+}$301.1911, found 301.1921.

10e: $256 \mathrm{mg}, 40 \%$, colorless oil. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.34-7.24(\mathrm{~m}, 5 \mathrm{H})$, 6.09 (d, $J=13.6 \mathrm{~Hz}, 1 \mathrm{H}), 5.97$ (dd, $J=13.6,6.8 \mathrm{~Hz}, 1 \mathrm{H}), 4.21$ (q, $J=7.2 \mathrm{~Hz}, 2 \mathrm{H})$, 3.72 (dd, $J=7.6,6.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.58(\mathrm{q}, J=13.6 \mathrm{~Hz}, 2 \mathrm{H}), 3.08(\mathrm{~d}, J=6.8 \mathrm{~Hz}, 2 \mathrm{H}), 2.67$ $-2.64(\mathrm{~m}, 2 \mathrm{H}), 2.17-2.08(\mathrm{~m}, 1 \mathrm{H}), 2.05-1.97(\mathrm{~m}, 1 \mathrm{H}), 1.29(\mathrm{t}, J=7.2 \mathrm{~Hz}, 3 \mathrm{H}){ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 166.1,138.0,129.6,128.7,128.3,127.2,120.6,116.4$, 62.6, 57.9, 52.9, 49.7, 34.7, 27.7, 13.8. HRMS(ESI) m / z calculated for $\mathrm{C}_{17} \mathrm{H}_{22} \mathrm{ClN}_{2} \mathrm{O}_{2}^{+}[\mathrm{M}+\mathrm{H}]^{+}$321.1364, found 321.1363.

$10 f$
10f: $270 \mathrm{mg}, 43 \%$, colorless oil. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.30-7.23(\mathrm{~m}, 5 \mathrm{H})$, $5.24(\mathrm{t}, J=6.8 \mathrm{~Hz}, 1 \mathrm{H}), 4.20(\mathrm{q}, J=7.0 \mathrm{~Hz}, 2 \mathrm{H}), 3.82-3.78(\mathrm{t}, \mathrm{J}=7.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.56(\mathrm{q}$, $J=12.8 \mathrm{~Hz}, 2 \mathrm{H}), 3.01(\mathrm{~d}, J=5.9 \mathrm{~Hz}, 2 \mathrm{H}), 2.65-2.58(\mathrm{~m}, 2 \mathrm{H}), 2.14-2.11(\mathrm{~m}, 1 \mathrm{H})$, $2.01-1.97(\mathrm{~m}, 1 \mathrm{H}), 1.73(\mathrm{~s}, 3 \mathrm{H}), 1.58(\mathrm{~s}, 3 \mathrm{H}), 1.28(\mathrm{t}, \mathrm{J}=7.2 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 166.5,135.8,128.9,128.3,127.1,120.9,116.8,62.6,58.6,51.2$, 49.9, 34.9, 29.7, 25.9, 18.1, 14.0. HRMS(ESI) m / z calculated for $\mathrm{C}_{19} \mathrm{H}_{27} \mathrm{~N}_{2} \mathrm{O}_{2}{ }^{+}$ $[\mathrm{M}+\mathrm{H}]^{+} 315.2067$, found 315.2060 .

10g: $343 \mathrm{mg}, 55 \%$, colorless oil. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.37-7.28(\mathrm{~m}, 3 \mathrm{H})$, $7.25-7.18(\mathrm{~m}, 2 \mathrm{H}), 5.86-5.76(\mathrm{~m}, 2 \mathrm{H}), 5.20-5.14(\mathrm{~m}, 4 \mathrm{H}), 4.27-4.21(\mathrm{~m}, 2 \mathrm{H})$, 4.09-4.01 (m, 1H), $3.59(\mathrm{~s}, 1 \mathrm{H}), 3.32-3.29(\mathrm{~m}, 2 \mathrm{H}), 2.77-2.57(\mathrm{~m}, 3 \mathrm{H}), 2.28(\mathrm{~d}, J=$ $14.8 \mathrm{~Hz}, 1 \mathrm{H}), 2.09(\mathrm{t}, J=9.9 \mathrm{~Hz}, 1 \mathrm{H}), 1.34-1.29(\mathrm{~m}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 166.6,165.9,137.9,136.36,128.7,128.5,128.3,128.1,127.7,127.1,117.5,116.6$, $77.3,77.0,76.7,62.6,59.1,52.7,52.4,35.0,34.8,32.1,31.9,31.4,19.2,13.9$. HRMS(ESI) m/z calculated for $\mathrm{C}_{19} \mathrm{H}_{25} \mathrm{~N}_{2} \mathrm{O}_{2}{ }^{+}[\mathrm{M}+\mathrm{H}]^{+} 313.1911$, found 313.1918.

10h
10h: $383 \mathrm{mg}, 56 \%$, colorless oil. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.10-7.06(\mathrm{~m}, 2 \mathrm{H})$, $6.84(\mathrm{~d}, J=8.6 \mathrm{~Hz}, 2 \mathrm{H}), 5.79-5.73(\mathrm{~m}, 2 \mathrm{H}), 5.16-5.10(\mathrm{~m}, 4 \mathrm{H}), 4.19(\mathrm{q}, J=7.1 \mathrm{~Hz}$, 2H), 4.01-3.97, 3.62-3.58 (m, 2H), 3.73 (s, 3H), $3.60(\mathrm{t}, J=6.4 \mathrm{~Hz}, 1 \mathrm{H}), 3.27-$ $3.23(\mathrm{~m}, 2 \mathrm{H}), 2.73-2.50(\mathrm{~m}, 3 \mathrm{H}), 2.23-1.97(\mathrm{~m}, 1 \mathrm{H}), 1.26(\mathrm{t}, J=7.1 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 166.3,165.7,158.7,136.3,129.3,128.1,127.8,116.9$, $116.4,113.1,77.3,77.2,77.0,76.7,62.1,59.1,58.254 .7,52.3,52.1,34.8,34.6,31.9$, 31.7, 13.5. $\mathrm{HRMS}\left(\right.$ ESI) m/z calculated for $\mathrm{C}_{20} \mathrm{H}_{27} \mathrm{~N}_{2} \mathrm{O}_{3}{ }^{+}[\mathrm{M}+\mathrm{H}]^{+}$343.2016, found 343.2019 .

10i
10i: $944 \mathrm{mg}, 80 \%$, colorless oil. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 5.83-5.73(\mathrm{~m}, 2 \mathrm{H})$, $5.15-5.11(\mathrm{~m}, 4 \mathrm{H}), 4.21(\mathrm{q}, J=7.0 \mathrm{~Hz}, 2 \mathrm{H}), 3.73(\mathrm{t}, J=6.7 \mathrm{~Hz}, 1 \mathrm{H}), 3.15-2.95(\mathrm{~m}$, $4 \mathrm{H}), 2.59(\mathrm{~d}, J=5.1 \mathrm{~Hz}, 2 \mathrm{H}), 2.11-2.08(\mathrm{~m}, 1 \mathrm{H}), 2.02-1.99(\mathrm{~m}, 1 \mathrm{H}), 1.28(\mathrm{t}, J=7.0$ $\mathrm{Hz}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 166.3,134.8,117.9,116.6,62.5,56.6,49.2$, 34.9, 27.7, 13.8. HRMS(ESI) m / z calculated for $\mathrm{C}_{13} \mathrm{H}_{20} \mathrm{~N}_{2} \mathrm{O}_{2} \mathrm{Na}^{+}[\mathrm{M}+\mathrm{Na}]^{+} 259.2016$, found 259.2019.

10j: $190 \mathrm{mg}, 38 \%$, colorless oil. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 5.80-5.70(\mathrm{~m}, 1 \mathrm{H})$, $5.10(\mathrm{dd}, J=14.0,6.0 \mathrm{~Hz}, 2 \mathrm{H}), 4.81(\mathrm{~d}, J=7.9 \mathrm{~Hz}, 2 \mathrm{H}), 4.19(\mathrm{q}, \mathrm{J}=6.4 \mathrm{~Hz}, 2 \mathrm{H}), 3.74$ (t, J=7.0Hz , 1H), 3.02 (dd, $J=14.1,6.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.95-2.91$ (m, 2H), 2.84 (d, $J=$ $13.4 \mathrm{~Hz}, 1 \mathrm{H}), 2.62-2.55(\mathrm{~m}, 1 \mathrm{H}), 2.52-2.46(\mathrm{~m}, 1 \mathrm{H}), 2.13-2.06(\mathrm{~m}, 1 \mathrm{H})$, $1.99-1.91(\mathrm{~m}, 1 \mathrm{H}), 1.67(\mathrm{~s}, 3 \mathrm{H}), 1.26(\mathrm{t}, \mathrm{J}=7.2 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$ 166.2, 142.9, 134.9, 117.6, 116.5, 113.1, 77.3, 77.0, 76.7, 62.4, 60.7, 56.2, 49.6, 34.6, 27.7, 20.5, 13.7. $\mathrm{HRMS}(\mathrm{ESI}) \mathrm{m} / \mathrm{z}$ calculated for $\mathrm{C}_{14} \mathrm{H}_{23} \mathrm{~N}_{2} \mathrm{O}_{2}^{+}[\mathrm{M}+\mathrm{H}]^{+}$251.1754, found 251.1768 .

10k: $299 \mathrm{mg}, 48 \%$, colorless oil. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.42-7.40(\mathrm{~m}, 2 \mathrm{H})$, $7.34-7.25(\mathrm{~m}, 3 \mathrm{H}), 5.84-5.74(\mathrm{~m}, 1 \mathrm{H}), 5.42(\mathrm{~s}, 1 \mathrm{H}), 5.24(\mathrm{~d}, J=1.0 \mathrm{~Hz}, 1 \mathrm{H}), 5.17$ (s, 1H), $5.17-5.13$ (m, 1H), 4.18 (q, $J=7.1 \mathrm{~Hz}, 2 \mathrm{H}), 3.52$ (d, $J=13.9 \mathrm{~Hz}, 1 \mathrm{H}), 3.54$ $-3.37(\mathrm{~m}, 2 \mathrm{H}), 3.13(\mathrm{dd}, J=14.0,6.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.02(\mathrm{dd}, J=14.1,7.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.69-$ $2.63(\mathrm{~m}, 1 \mathrm{H}), 2.61-2.55(\mathrm{~m}, 1 \mathrm{H}), 2.14-2.08(\mathrm{~m}, 1 \mathrm{H}), 1.93-1.86(\mathrm{~m}, 1 \mathrm{H}), 1.28(\mathrm{t}, \mathrm{J}=$ $7.1 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 166.5,145.5,139.9,134.8,128.2,127.6$, $126.5,118.2,116.9,115.6,62.5,58.5,56.7,49.6,34.4,28.0,13.9$. HRMS(ESI) m/z calculated for $\mathrm{C}_{19} \mathrm{H}_{25} \mathrm{~N}_{2} \mathrm{O}_{2}{ }^{+}[\mathrm{M}+\mathrm{H}]^{+} 313.1911$, found 313.1907.

101: $218 \mathrm{mg}, 35 \%$, colorless oil. ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.32-7.15(\mathrm{~m}, 5 \mathrm{H})$, $6.43(\mathrm{~d}, J=15.9 \mathrm{~Hz}, 1 \mathrm{H}), 6.18-6.09(\mathrm{~m}, 1 \mathrm{H}), 5.84-5.70(\mathrm{~m}, 1 \mathrm{H}), 5.15-5.09(\mathrm{~m}, 2 \mathrm{H})$, $4.14(\mathrm{q}, J=7.0 \mathrm{~Hz}, 2 \mathrm{H}), 3.71(\mathrm{t}, \mathrm{J}=6.9 \mathrm{~Hz} 1 \mathrm{H}), 3.18-3.16(\mathrm{~m}, 2 \mathrm{H}), 3.06(\mathrm{t}, J=5.8 \mathrm{~Hz}$, $2 \mathrm{H}), 2.63-2.58(\mathrm{~m}, 2 \mathrm{H}), 2.13-1.95(\mathrm{~m}, 2 \mathrm{H}), 1.21(\mathrm{t}, J=7.1 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (75 $\mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 166.3,136.8,134.9,132.9,128.5,127.4,126.4,126.2,118.1,116.7$, 62.6, 56.7, 55.9, 49.4, 34.9, 27.7, 13.9. HRMS(ESI) m / z calculated for $\mathrm{C}_{19} \mathrm{H}_{24} \mathrm{~N}_{2} \mathrm{O}_{2} \mathrm{Na}^{+}[\mathrm{M}+\mathrm{Na}]^{+} 335.1730$, found 335.1727.

10m: $1.12 \mathrm{~g}, 75 \%$, colorless oil. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.33-7.22(\mathrm{~m}, 5 \mathrm{H})$, $5.90-5.81(\mathrm{~m}, 1 \mathrm{H}), 5.18(\mathrm{dd}, J=24.0,6.2 \mathrm{~Hz}, 2 \mathrm{H}), 4.23(\mathrm{q}, J=7.1 \mathrm{~Hz}, 2 \mathrm{H}), 3.54(\mathrm{~d}$, $J=5.4 \mathrm{~Hz}, 2 \mathrm{H}), 3.50-3.45(\mathrm{~m}, 1 \mathrm{H}), 3.06(\mathrm{~d}, J=5.7 \mathrm{~Hz}, 2 \mathrm{H}), 2.46(\mathrm{t}, J=6.6 \mathrm{~Hz}, 2 \mathrm{H})$, $1.99-1.88(\mathrm{~m}, 2 \mathrm{H}), 1.69-1.63(\mathrm{~m}, 2 \mathrm{H}), 1.30(\mathrm{t}, J=7.1 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (100 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 166.1,139.2,135.4,128.7,128.1,126.9,117.5,116.5,62.5,58.1,56.6,51.5$, 36.9, 27.5, 23.8, 13.9. HRMS(ESI) m / z calculated for $\mathrm{C}_{17} \mathrm{H}_{23} \mathrm{~N}_{2} \mathrm{O}_{2}{ }^{+}[\mathrm{M}+\mathrm{H}]^{+}$301.1911, found 301.1897.

10n
10n: $1.03 \mathrm{~g}, 83 \%$, colorless oil. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 5.84-5.74(\mathrm{~m}, 2 \mathrm{H})$, $5.16-5.09(\mathrm{~m}, 4 \mathrm{H}), 4.23(\mathrm{q}, J=7.1 \mathrm{~Hz}, 2 \mathrm{H}), 3.59(\mathrm{dd}, J=7.8,6.4 \mathrm{~Hz}, 1 \mathrm{H}), 3.03(\mathrm{~d}, J$ $=6.5 \mathrm{~Hz}, 4 \mathrm{H}), 2.44(\mathrm{t}, J=6.8 \mathrm{~Hz}, 2 \mathrm{H}), 2.00-1.88(\mathrm{~m}, 2 \mathrm{H}), 1.66-1.58(\mathrm{~m}, 2 \mathrm{H}), 1.29(\mathrm{t}$, $J=7.1 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 166.2,135.5,117.5,116.6,62.6,56.6$, 51.8, 37.3, 27.9, 23.9, 14.0. HRMS(ESI) m/z calculated for $\mathrm{C}_{13} \mathrm{H}_{21} \mathrm{~N}_{2} \mathrm{O}_{2}{ }^{+}[\mathrm{M}+\mathrm{H}]^{+}$ 251.1754, found 251.1753 .

III. Preparation of α-cyano \mathbf{N}-allyl amino acid

To a solution of $\mathbf{1 0}(1.0 \mathrm{eq})$ in $\mathrm{MeOH} / \mathrm{THF}(1: 1)$ was added $\mathrm{LiOH}_{2} \mathrm{O}$ (1.2 eq), The mixture was reacted overnight.Then the lithium salt was acidized in $\mathrm{NaHSO}_{4}(1.2 \mathrm{eq})$ and stirred 30 minutes. Then the solid was filtered and the filtrate is removed under reduced pressure, the remaining sticky liquid was redissolved in dried THF and concentrated under reduced pressure. Repeat this process three times. The remaining oily residue was the corresponding acid product 8 .

8a
8: ${ }^{1}{ }^{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 11.10(\mathrm{~s}, 1 \mathrm{H}), 7.45-7.36(\mathrm{~m}, 2 \mathrm{H}), 7.36-7.28(\mathrm{~m}$, $3 \mathrm{H}), 5.97-5.83(\mathrm{~m}, 1 \mathrm{H}), 5.38(\mathrm{t}, J=13.5 \mathrm{~Hz}, 2 \mathrm{H}), 4.11-3.98(\mathrm{~m}, 2 \mathrm{H}), 3.58(\mathrm{t}, J=$ $6.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.44(\mathrm{t}, J=5.7 \mathrm{~Hz}, 2 \mathrm{H}), 3.09(\mathrm{t}, J=7.0 \mathrm{~Hz}, 2 \mathrm{H}), 2.36-2.23(\mathrm{~m}, 2 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 169.3,131.0,130.4,129.1,128.9,127.9,124.1,119.1$, 56.5, 54.2, 49.9, 37.6, 25.1. $\mathrm{HRMS}(\mathrm{ESI}) \mathrm{m} / \mathrm{z}$ calculated for $\mathrm{C}_{15} \mathrm{H}_{19} \mathrm{~N}_{2} \mathrm{O}_{2}{ }^{+}[\mathrm{M}+\mathrm{H}]^{+}$ 259.1441, found 259.1441 .

1-H was prepared from $\mathbf{S 3}{ }^{1}$ according to the general procedure similar to $\mathbf{8 a}$.
1-H: ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 12.07(\mathrm{~s}, 1 \mathrm{H}), 5.99-5.85(\mathrm{~m}, 2 \mathrm{H}), 5.37-5.29(\mathrm{~m}$, 4 H), $3.40(\mathrm{~d}, J=7.0 \mathrm{~Hz}, 4 \mathrm{H}), 2.82(\mathrm{t}, J=6.7 \mathrm{~Hz}, 2 \mathrm{H}), 2.42(\mathrm{t}, \mathrm{J}=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 1.91-$ $1.82(\mathrm{~m}, 2 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 175.8,129.4,122.9,55.2,52.4,34.6,20.4$. HRMS(ESI) m / z calculated for $\mathrm{C}_{10} \mathrm{H}_{18} \mathrm{NO}_{2}{ }^{+}[\mathrm{M}+\mathrm{H}]^{+}$184.1332, found 184.1332.

IV. The preparation of α-allyllactam 9

To a solution of $\mathbf{1 0}(0.59 \mathrm{mmol}, 1.0 \mathrm{eq})$ in $\mathrm{MeOH} / \mathrm{THF}(1: 1)$ was added $\mathrm{LiOH}_{2} \mathrm{O}$ ($0.71 \mathrm{mmol}, 1.2 \mathrm{eq}$), the mixture was reacted overnight. Then the lithium salt was acidized with $\mathrm{NaHSO}_{4}(0.71 \mathrm{mmol}, 1.2 \mathrm{eq})$ and stirred for 30 minutes. The reaction mixture was concentrated and dried in vacuum. Then the residue was dissolved in DCM (5 ml) and carbonyl diimidazole (CDI) ($1.06 \mathrm{mmol}, 1.5 \mathrm{eq}$) was added and stirred overnight. The reaction mixture was concentrated in vacuum and the residue was purified directly by column chromatography ($20 \% \mathrm{EtOAc}$ in PE) to yield corresponding α-allyllactam 9 .

9a
9a: $114 \mathrm{mg}, 81 \%$, colorless oil. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.27-7.18(\mathrm{~m}, 3 \mathrm{H})$, $7.13-7.11$ (m, 2H), 5.76-5.65 (m, 1H), 5.19-5.14 (m, 2H), 4.37 (q, $J=14.8 \mathrm{~Hz}, 2 \mathrm{H})$, 3.27-3.21 (m, 1H), 3.13-3.07 (m, 1H), 2.70-2.64 (m, 1H), $2.41-2.28(\mathrm{~m}, 2 \mathrm{H})$, 2.09-2.02 (m, 1H). ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 168.0,135.1,130.4,128.7,127.9$, 127.9, 121.0, 119.1, 77.3, 77.0, 76.7, 47.2, 44.1, 43.2, 38.9, 28.6. HRMS(ESI) m/z calculated for $\mathrm{C}_{15} \mathrm{H}_{17} \mathrm{~N}_{2} \mathrm{O}^{+}[\mathrm{M}+\mathrm{H}]^{+}$241.1335, found 241.1332.

9b
9b: $135 \mathrm{mg}, 85 \%$, colorless oil. ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.15(\mathrm{~d}, J=8.6 \mathrm{~Hz}$, $2 \mathrm{H}), 6.88-6.83(\mathrm{~m}, 2 \mathrm{H}), 5.86-5.72(\mathrm{~m}, 1 \mathrm{H}), 5.28-5.22(\mathrm{~m}, 2 \mathrm{H}), 4.40(\mathrm{q}, J=19.2 \mathrm{~Hz}$, $2 \mathrm{H}), 3.78(\mathrm{~s}, 3 \mathrm{H}), 3.36-3.28(\mathrm{~m}, 1 \mathrm{H}), 3.21-3.14(\mathrm{~m}, 1 \mathrm{H}), 2.78-2.71(\mathrm{~m}, 1 \mathrm{H}), 2.49-$ $2.34(\mathrm{~m}, 2 \mathrm{H}), 2.17-2.07(\mathrm{~m}, 1 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 167.9,159.2,130.4$, 129.4, 127.1, 121.0, 119.2, 114.1, 55.1, 46.6, 44.2, 43.0, 38.9, 28.6. HRMS(ESI) m/z calculated for $\mathrm{C}_{16} \mathrm{H}_{18} \mathrm{~N}_{2} \mathrm{O}_{2} \mathrm{Na}^{+}[\mathrm{M}+\mathrm{Na}]^{+}$293.1260, found 293.1274.

9c: $131 \mathrm{mg}, 88 \%$, colorless oil. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.27(\mathrm{t}, J=7.3 \mathrm{~Hz}, 2 \mathrm{H})$, $7.21-7.16(\mathrm{~m}, 3 \mathrm{H}), 5.71-5.61(\mathrm{~m}, 1 \mathrm{H}), 5.20-5.15(\mathrm{~m}, 2 \mathrm{H}), 3.66-3.59(\mathrm{~m}, 1 \mathrm{H})$, 3.51-3.44 (m, 1H), 3.27-3.21 (m, 1H), 3.14-3.08 (m, 1H), $2.84(\mathrm{t}, J=7.2 \mathrm{~Hz}, 2 \mathrm{H})$, 2.63-2.58 (m, 1H), 2.32-2.26 (m, 2H), 2.06-1.99 (m, 1H). ${ }^{13} \mathrm{C}$ NMR (100 MHz ,

CDC13) $\delta 167.7,137.7,130.4,128.4,126.4,120.7,119.0,44.4,44.1,43.9,38.8,33.1$, 28.7. $\mathrm{HRMS}($ ESI $) \mathrm{m} / \mathrm{z}$ calculated for $\mathrm{C}_{12} \mathrm{H}_{19} \mathrm{~N}_{2} \mathrm{O}^{+}[\mathrm{M}+\mathrm{H}]^{+}$255.1492, found 255.1478 .

9d
9d: $124 \mathrm{mg}, 83 \%$, colorless oil. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.34-7.27(\mathrm{~m}, 3 \mathrm{H})$, $7.20(\mathrm{~d}, J=6.9 \mathrm{~Hz}, 2 \mathrm{H}), 4.97(\mathrm{~s}, 1 \mathrm{H}), 4.86(\mathrm{~s}, 1 \mathrm{H}), 4.45(\mathrm{~s}, 2 \mathrm{H}), 3.37-3.30(\mathrm{~m}, 1 \mathrm{H})$, 3.21-3.16 (m, 1H), $2.80(\mathrm{~d}, J=14.3 \mathrm{~Hz}, 1 \mathrm{H}), 2.44-2.35(\mathrm{~m}, 2 \mathrm{H}), 2.20-2.13(\mathrm{~m}, 1 \mathrm{H})$, $1.82(\mathrm{~s}, 3 \mathrm{H}){ }^{13}{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 168.4,139.2,135.1$ 128.8, 128.0, 127.9, $119.5,116.5,47.4,43.6,43.2,42.1,29.3,23.0 . \operatorname{HRMS}(E S I) \mathrm{m} / \mathrm{z}$ calculated for $\mathrm{C}_{16} \mathrm{H}_{18} \mathrm{~N}_{2} \mathrm{ONa}^{+}[\mathrm{M}+\mathrm{Na}]^{+} 277.1311$, found 277.1299.

9e
9e: $132 \mathrm{mg}, 82 \%$, colorless oil. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.35-7.29(\mathrm{~m}, 3 \mathrm{H})$, $7.21-7.19(\mathrm{~m}, 2 \mathrm{H}), 5.91-5.82(\mathrm{~m}, 1 \mathrm{H}), 5.53(\mathrm{~d}, J=16.8 \mathrm{~Hz}, 1 \mathrm{H}), 5.34(\mathrm{~d}, J=10.2$ $\mathrm{Hz}, 1 \mathrm{H}), 4.91(\mathrm{~d}, J=7.4 \mathrm{~Hz}, 1 \mathrm{H}), 4.53(\mathrm{~d}, J=14.6 \mathrm{~Hz}, 1 \mathrm{H}), 4.37(\mathrm{~d}, J=14.6 \mathrm{~Hz}, 1 \mathrm{H})$, 3.38-3.32 (m, 1H), 3.23-3.17 (m, 1H), 2.51-2.38 (m, 2H). ${ }^{13} \mathrm{C}$ NMR $(100 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}\right) \delta 165.3,134.7,130.7,128.8,128.2,128.1,122.2,117.9,62.5,51.3,47.5,43.5$, 25.7. $\mathrm{HRMS}(\mathrm{ESI}) \mathrm{m} / \mathrm{z}$ calculated for $\mathrm{C}_{15} \mathrm{H}_{16} \mathrm{ClN}_{2} \mathrm{O}^{+}[\mathrm{M}+\mathrm{H}]^{+} 275.0946$, found 275.0946.

9f
9f: $139 \mathrm{mg}, 88 \%$, colorless oil. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.33-7.25(\mathrm{~m}, 3 \mathrm{H})$, 7.21 - 7.19 (m, 2H), 5.89 (dd, $J=17.5,10.6 \mathrm{~Hz}, 1 \mathrm{H}), 5.15$ (d, $J=2.3 \mathrm{~Hz}, 1 \mathrm{H}), 5.11$ (d, $J=3.1 \mathrm{~Hz}, 1 \mathrm{H}), 4.44(\mathrm{dd}, J=40.6,14.6 \mathrm{~Hz}, 2 \mathrm{H}), 3.28-3.22(\mathrm{~m}, 1 \mathrm{H}), 3.13-3.07$ $(\mathrm{m}, 1 \mathrm{H}), 2.31-2.25(\mathrm{~m}, 1 \mathrm{H}), 2.22-2.15(\mathrm{~m}, 1 \mathrm{H}), 1.34(\mathrm{~s}, 3 \mathrm{H}), 1.30(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 167.2,141.0,135.2,128.7,128.0,127.8,119.1,115.4,51.2,47.3$, 43.1, 41.9, 27.3, 23.1, 22.4. HRMS(ESI) m/z calculated for $\mathrm{C}_{17} \mathrm{H}_{21} \mathrm{~N}_{2} \mathrm{O}^{+}[\mathrm{M}+\mathrm{H}]^{+}$ 269.1648, found 269.1644.

9 g
9g: $117 \mathrm{mg}, 75 \%$, colorless oil. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.38-7.33(\mathrm{~m}, 3 \mathrm{H})$, $7.22-7.20(\mathrm{~m}, 2 \mathrm{H}), 5.87-5.76(\mathrm{~m}, 1 \mathrm{H}), 5.59-5.54(\mathrm{~m}, 1 \mathrm{H}), 5.32-5.28(\mathrm{~m}, 2 \mathrm{H}), 5.13$ (d, $J=10.1 \mathrm{~Hz}, 1 \mathrm{H}), 4.94(\mathrm{~d}, J=17.1 \mathrm{~Hz}, 1 \mathrm{H}), 4.52(\mathrm{t}, \mathrm{J}=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 4.34(\mathrm{dd}, J=$ $15.0,4.8 \mathrm{~Hz}, 1 \mathrm{H}$), 3.07 (dd, $J=15.0,8.0 \mathrm{~Hz}, 1 \mathrm{H}$), 2.78-2.73 (m, 1H), 2.69-2.64 (m, $1 \mathrm{H}), 2.58-2.53(\mathrm{~m}, 1 \mathrm{H}), 2.38-2.33(\mathrm{~m}, 1 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 168.5$, 138.3, 130.6, 130.2, 129.2, 128.8, 126.9, 121.5, 119.6, 119.4, 58.8, 43.9, 43.6, 39.9, 37.8. $\mathrm{HRMS}\left(\right.$ ESI m / z calculated for $\mathrm{C}_{17} \mathrm{H}_{19} \mathrm{~N}_{2} \mathrm{O}^{+}[\mathrm{M}+\mathrm{H}]^{+}$267.1492, found 267.1508.

9h: $122 \mathrm{mg}, 70 \%$, colorless oil. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.13(\mathrm{~d}, J=8.7 \mathrm{~Hz}$, 2H), 6.89 (d, $J=8.7 \mathrm{~Hz}, 2 \mathrm{H}$), 5.86-5.76 (m, 1H), 5.61-5.51 (m, 1H), 5.31-5.27 (m, $2 \mathrm{H}), 5.12(\mathrm{~d}, J=10.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.94(\mathrm{~d}, J=17.1 \mathrm{~Hz}, 1 \mathrm{H}), 4.48(\mathrm{t}, J=7.3 \mathrm{~Hz}, 1 \mathrm{H})$, 4.29 (dd, $\mathrm{J}=15.0,4.7 \mathrm{~Hz}, 1 \mathrm{H}$), 3.78 (s, 3H), 3.05 (dd, $J=15.0,8.0 \mathrm{~Hz}, 1 \mathrm{H}$), 2.76-2.71 $(\mathrm{m}, 1 \mathrm{H}), 2.66-2.61(\mathrm{~m}, 1 \mathrm{H}), 2.56-2.51(\mathrm{~m}, 1 \mathrm{H}), 2.35-2.30(\mathrm{~m}, 1 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 168.3,159.8,130.7,130.2,129.9,128.2,121.4,119.6,119.2$, 114.4, 58.2, 55.2, 43.7, 43.6, 39.7, 37.9. HRMS(ESI) m / z calculated for $\mathrm{C}_{18} \mathrm{H}_{20} \mathrm{~N}_{2} \mathrm{O}_{2} \mathrm{Na}^{+}[\mathrm{M}+\mathrm{Na}]^{+} 319.1417$, found 319.1412.

9i
9i: $87 \mathrm{mg}, 78 \%$, colorless oil. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 5.83-5.64(\mathrm{~m}, 2 \mathrm{H})$, $5.27-5.17(\mathrm{~m}, 4 \mathrm{H}), 3.95-3.84(\mathrm{~m}, 2 \mathrm{H}), 3.45-3.39(\mathrm{~m}, 1 \mathrm{H}), 3.31-3.25(\mathrm{~m}, 1 \mathrm{H})$, 2.75-2.70 (m, 1H), 2.47-2.39 (m, 2H), 2.20-2.13 (m, 1H). ${ }^{13} \mathrm{C}$ NMR (100 MHz , CDCl_{3}) $\delta 167.8,131.0,130.5,121.1,119.2,118.9,45.9,44.2,43.4,39.1,28.8$. HRMS(ESI) m / z calculated for $\mathrm{C}_{11} \mathrm{H}_{15} \mathrm{~N}_{2} \mathrm{O}^{+}[\mathrm{M}+\mathrm{H}]^{+}$191.1179, found 191.1181.

9j

9j: $96 \mathrm{mg}, 80 \%$, colorless oil. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 5.85-5.74(\mathrm{~m}, 1 \mathrm{H})$, $5.28-5.23(\mathrm{~m}, 2 \mathrm{H}), 4.92(\mathrm{~s}, 1 \mathrm{H}), 4.81(\mathrm{~s}, 1 \mathrm{H}), 3.84(\mathrm{~s}, 2 \mathrm{H}), 3.43-3.37(\mathrm{~m}, 1 \mathrm{H})$, 3.27-3.22 (m, 1H), 2.78-2.72 (m, 1H), 2.49-2.40 (m, 2H), 2.20-2.13 (m, 1H), $1.66(\mathrm{~s}$, $3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 167.9,139.0,130.6,121.1,119.2,113.8,49.4$, 44.2, 43.4, 39.0, 28.9, 19.8. HRMS(ESI) m/z calculated for $\mathrm{C}_{12} \mathrm{H}_{16} \mathrm{~N}_{2} \mathrm{ONa}^{+}[\mathrm{M}+\mathrm{Na}]^{+}$ 227.1155 , found 227.1169 .

9k
9k: $134 \mathrm{mg}, 86 \%$, colorless oil. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ 7.40-7.30 (m, 5H), $5.66-5.53(\mathrm{~m}, 1 \mathrm{H}), 5.46(\mathrm{~d}, J=0.8 \mathrm{~Hz}, 1 \mathrm{H}), 5.35(\mathrm{~s}, 1 \mathrm{H}), 5.22-5.14(\mathrm{~m}, 2 \mathrm{H})$, $3.84-3.71(\mathrm{~m}, 2 \mathrm{H}), 3.34-3.24(\mathrm{~m}, 1 \mathrm{H}), 3.13-3.08(\mathrm{~m}, 1 \mathrm{H}), 3.00(\mathrm{~d}, J=14.4,1 \mathrm{H})$, 2.24-2.17(m, 1H), $2.04-1.97(\mathrm{~m}, 1 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 167.9,142.6$, $140.3,131.2,128.6,128.2,126.5,126.2,119.0,118.9,45.9,44.9,43.6,39.8,29.5$. HRMS(ESI) m / z calculated for $\mathrm{C}_{17} \mathrm{H}_{19} \mathrm{~N}_{2} \mathrm{O}^{+}[\mathrm{M}+\mathrm{H}]^{+} 267.1492$, found 267.1488.

91
91: $128 \mathrm{mg}, 82 \%$, colorless oil. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.32-7.25(\mathrm{~m}, 5 \mathrm{H}), 6.30$ - $6.21(\mathrm{~m}, 1 \mathrm{H}), 5.66-5.58(\mathrm{~m}, 1 \mathrm{H}), 5.29-5.13(\mathrm{~m}, 4 \mathrm{H}), 3.92(\mathrm{~d}, J=8.3 \mathrm{~Hz}, 1 \mathrm{H})$, 3.87-3.80 (m, 2H), 3.29-3.23 (m, 1H), 2.83-2.77 (m, 1H), 2.43 (t, $J=6.7 \mathrm{~Hz}, 2 \mathrm{H}){ }^{13}{ }^{3} \mathrm{C}$ NMR (100MHz, $\left.\mathrm{CDCl}_{3}\right) \delta 167.1,137.2,134.2,131.1,128.9,128.7,128.0,120.1$, 119.2, 118.9, 53.9, 49.6, 46.0, 43.5, 27.6. HRMS(ESI) m / z calculated for $\mathrm{C}_{17} \mathrm{H}_{18} \mathrm{~N}_{2} \mathrm{ONa}^{+}[\mathrm{M}+\mathrm{Na}]^{+} 289.1311$, found 289.1305.

9m
9m: $59 \mathrm{mg}, 40 \%$, colorless oil. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.34-7.28(\mathrm{~m}, 3 \mathrm{H}), 7.22$ (d, $J=7.2 \mathrm{~Hz}, 2 \mathrm{H}), 5.86-5.76(\mathrm{~m}, 1 \mathrm{H}), 5.26-5.21(\mathrm{~m}, 2 \mathrm{H}), 4.58(\mathrm{~s}, 2 \mathrm{H}), 3.29-3.17$ $(\mathrm{m}, 2 \mathrm{H}), 2.95-2.90(\mathrm{~m}, 1 \mathrm{H}), 2.70-2.64(\mathrm{~m}, 1 \mathrm{H}), 2.20-2.15(\mathrm{~m}, 1 \mathrm{H}), 2.04-1.97(\mathrm{~m}$, 1H), $1.93-1.87(\mathrm{~m}, 2 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 164.5,136.2,131.3,128.8$, 128.0, 127.8, 120.9, 120.5, 51.2, 47.1, 43.9, 40.8, 30.5, 19.4. HRMS(ESI) m/z calculated for $\mathrm{C}_{15} \mathrm{H}_{17} \mathrm{~N}_{2} \mathrm{O}^{+}[\mathrm{M}+\mathrm{H}]^{+} 255.1492$, found 255.1476.

9n: $36 \mathrm{mg}, 30 \%$, colorless oil. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 5.85-5.69(\mathrm{~m}, 2 \mathrm{H}$), $5.25-5.14(\mathrm{~m}, 4 \mathrm{H}), 3.98(\mathrm{dd}, J=6.0,1.3 \mathrm{~Hz}, 2 \mathrm{H}), 3.36-3.24(\mathrm{~m}, 2 \mathrm{H}), 2.91-2.86(\mathrm{~m}$, $1 \mathrm{H}), 2.65-2.60(\mathrm{~m}, 1 \mathrm{H}), 2.21-2.16(\mathrm{~m}, 1 \mathrm{H}), 2.09-2.00(\mathrm{~m}, 1 \mathrm{H}), 1.98-1.86(\mathrm{~m}, 2 \mathrm{H})$. ${ }^{13} \mathrm{C}$ NMR (100MHz, CDCl_{3}) $\delta 164.0,131.7,131.3,120.8,120.5,118.1,50.4,47.2$, 43.7, 40.8, 30.5, 19.5. HRMS(ESI) m / z calculated for $\mathrm{C}_{11} \mathrm{H}_{15} \mathrm{~N}_{2} \mathrm{O}^{+}[\mathrm{M}+\mathrm{H}]^{+}$205.1335, found 205.1334.

V. Synthesis of highly functionalized bicyclic amides 15

(Triphenylphosphoranylidene)acetonitrile ($4.5 \mathrm{~g}, 15 \mathrm{mmol}, 1.5 \mathrm{eq}$) was added a solution of $\mathbf{1 1}\left\{[\alpha]^{\mathrm{D}}{ }_{25}=-87.4(\mathrm{c}=1.0, \mathrm{EA}), 1.99 \mathrm{~g}, 10 \mathrm{mmmol}, 1.0 \mathrm{eq}\right\}$ in EA $(40 \mathrm{ml})$ and the mixture was refluxed overnight. The reaction mixture was concentrated in vacuum and the residue was purified directly by column chromatography (20% EtOAc in PE) to yield the corresponding alkene: $[\alpha]^{\mathrm{D}}{ }_{25}=-85.1$ (c $=1.1$, EA) (green liquid, $1.87 \mathrm{~g}, 84 \%$).
A reactor (50 ml) was charged with the precursor of $\mathbf{1 2}(1.0 \mathrm{~g}, 4.5 \mathrm{mmol}, 1.0 \mathrm{eq})$, $\mathrm{Pd} / \mathrm{C}(5 \%)(47 \mathrm{mg}, 0.45 \mathrm{mmol}, 0.1 \mathrm{eq})$, absolute $\mathrm{EtOH}(20 \mathrm{ml})$, the mixture was blowed with hydrogen and stirred overnight at room temperature. Then the solid was filtered and washed with EA (5 ml) three times. The filtrate was concentrated under reduced pressure and the residue was purified by flash chromatography ($20 \% \mathrm{EtOAc}$ in PE) to yield corresponding $12[\alpha]^{\mathrm{D}}{ }_{25}=-50.0(\mathrm{c}=0.3$, EA) (colorless liquid, 850 mg , 85\%).

To a solution of $\mathbf{1 2}(850 \mathrm{mg}, 3.8 \mathrm{mmol}, 1.0 \mathrm{eq})$ in DCM (15 ml) was added TFA (1.15 $\mathrm{ml}, 15.2 \mathrm{mmol}, 4.0 \mathrm{eq}$) at $0{ }^{\circ} \mathrm{C}$. After stirring at ambient temperature for 3 h , the reaction mixture was concentrated in vacuum and the crude product was used immediately without further purification. The crude salt was dissolved in MeCN (3 $\mathrm{mL})$; then to this solution was introduced TBAI ($0.38 \mathrm{mmol}, 140 \mathrm{mg}, 0.1 \mathrm{eq}$), TEA ($2.6 \mathrm{ml}, 18.9 \mathrm{mmol}, 5.0 \mathrm{eq}$), allyl bromide ($0.35 \mathrm{ml}, 4.16 \mathrm{mmol}, 1.1 \mathrm{eq}$). Then the resulting reaction mixture was refluxed overnight and concentrated in vacuum; the residue was purified directly by column chromatography ($40 \% \mathrm{EtOAc}$ in PE) to yield corresponding tertiary amine $\mathbf{1 3}[\alpha]^{\mathrm{D}}{ }_{25}=-82.8(\mathrm{c}=0.14, \mathrm{EA})$ as a yellow oil $(360 \mathrm{mg}$, 58% for two steps). ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 5.92-5.82(\mathrm{~m}, 1 \mathrm{H}), 5.18(\mathrm{dd}, J=$ $17.1,1.2 \mathrm{~Hz}, 1 \mathrm{H}), 5.09(\mathrm{~d}, J=10.1 \mathrm{~Hz}, 1 \mathrm{H}), 3.36(\mathrm{dd}, J=13.5,5.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.08-$ 3.04 (m, 1H), 2.83 (dd, $J=13.4,7.4 \mathrm{~Hz}, 1 \mathrm{H}), 2.51-2.44(\mathrm{~m}, 1 \mathrm{H}), 2.43-2.39(\mathrm{~m}, 1 \mathrm{H})$, 2.34-2.27 (m, 1H), $2.20(\mathrm{dd}, J=17.7,8.8 \mathrm{~Hz}, 1 \mathrm{H}), 1.95-1.90(\mathrm{~m}, 2 \mathrm{H}), 1.75-1.63$ $(\mathrm{m}, 3 \mathrm{H}), 1.48-1.43(\mathrm{~m}, 1 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 135.7,120.0,117.0$, 62.1, 57.4, 54.0, 29.7, 29.5, 22.4, 13.5. HRMS (ESI) m/z calculated for $\mathrm{C}_{10} \mathrm{H}_{17} \mathrm{~N}_{2}{ }^{+}$ $[\mathrm{M}+\mathrm{H}]^{+} 165.1386$, found 165.1389 .
$(-)-\mathbf{1 4}[\alpha]^{\mathrm{D}}{ }_{25}=-66.3(\mathrm{c}=0.16, \mathrm{EA})$ was prepared according to general procedure \mathbf{A}. yellow oil, 60%. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 5.87(\mathrm{~m}, 5.87-5.86,1 \mathrm{H}), 5.18(\mathrm{~d}, J=$ $17.1 \mathrm{~Hz}, 1 \mathrm{H}), 5.10(\mathrm{~d}, J=10.1 \mathrm{~Hz}, 1 \mathrm{H}), 4.25(\mathrm{q}, J=7.1 \mathrm{~Hz}, 2 \mathrm{H}), 3.62(\mathrm{t}, J=6.9 \mathrm{~Hz}$, $1 \mathrm{H}), 3.38$ (dd, $J=13.5,5.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.07-3.02(\mathrm{~m}, 1 \mathrm{H}), 2.88(\mathrm{~s}, 1 \mathrm{H}), 2.71-2.65(\mathrm{~m}$, $1 \mathrm{H}), 2.31-2.25(\mathrm{~m}, 1 \mathrm{H}), 2.19-2.12(\mathrm{~m}, 1 \mathrm{H}), 2.04-1.95(\mathrm{~m}, 2 \mathrm{H}), 1.77-1.72(\mathrm{~m}, 2 \mathrm{H})$, $1.55-1.53(\mathrm{~m}, 1 \mathrm{H}), 1.32(\mathrm{t}, J=7.2 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 166.4$, $135.8,135.5,117.5,117.2,117.0,116.8,63.2,62.7,62.2,61.0,60.7,57.4,53.9,53.6$, 53.4, 34.3, 30.0, 22.8, 13.9. HRMS(ESI) m/z calculated for $\mathrm{C}_{13} \mathrm{H}_{21} \mathrm{~N}_{2} \mathrm{O}_{2}{ }^{+}[M+H]^{+}$ 237.1598 , found 237.1599.
$(-)-\mathbf{1 5}[\alpha]^{\mathrm{D}}{ }_{25}=-44.7(\mathrm{c}=0.16, \mathrm{EA})$ was prepared according to general procedure similar to 9. colorless oil, 75%. ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 5.99-5.85(\mathrm{~m}, 1 \mathrm{H})$, 5.56-5.51 (m, 2H), 4.01-3.90 (m, 2H), 3.88-3.79 (m, 1H), $3.55(\mathrm{dd}, J=13.1,8.4 \mathrm{~Hz}$, $1 \mathrm{H}), 3.03-2.93(\mathrm{~m}, 1 \mathrm{H}), 2.84(\mathrm{dd}, J=12.9,8.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.39-2.28(\mathrm{~m}, 2 \mathrm{H})$, 1.2.07-1.88 (m, 3H). ${ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 163.5,126.4,126.3,120.4,63.5$, 61.0, 58.0, 33.4, 30.8, 23.5. HRMS(ESI) m / z calculated for $\mathrm{C}_{11} \mathrm{H}_{15} \mathrm{~N}_{2} \mathrm{O}^{+}[\mathrm{M}+\mathrm{H}]^{+}$ 191.1179, found 191.1176.

Enantiomeric excess was determined to be 97% (determined by HPLC using chiral IC-H column, n-Hexane/EtOH/Diethylamine $=60 / 40 / 0.1, \lambda=254 \mathrm{~nm}, 35{ }^{\circ} \mathrm{C}$, $0.8 \mathrm{~mL} / \mathrm{min}, \mathrm{t}_{\text {major }}=24.54 \mathrm{~min}, \mathrm{t}_{\text {minor }}=26.63 \mathrm{~min}$).

Note, the racemic compound (+/-)-15 was made by using the same route for (-)-15 and using (D / L)-proline as starting materials.

VI. Reference

1. Couty, Francois.; Prim, Damien. Tetrahedron: Asymmetry. 2002, 13, 2619-2624.
2. Xue, Yong-Lai. Asian Journal of Chemistry. 2012, 24, 3016-3018.
3. You-Yun Zhou.; Yong Tang. J. Am. Chem. Soc. 2012, 134, 9066-9069.
4. Chinmay Bhat.; Santosh G. Tilve. Tetrahedron Lett. 2011, 52, 6566-6568.

VII. ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra of compounds

190	180	170	160	150	140	130	120	110	${ }_{\text {f1 }} 1$		80	70	60	50	40	30	20	10	0

f1解 |

190	180	170	160	150	140	130	120	110			80	70	60	50	40	30	20	10	
									f1										0

190	180	170	160	150	140	130	120	110	${ }^{100} \mathrm{f} 1$		80	70	60	50	40	30	20	10	0

[^0]

in fin

															${ }_{40}$			10	
190	180	170	160	150	140	130	120	110	${ }^{100}$ f1		80	70	60	50	40	30	20	10	0

${ }^{1} \mathbf{H}-{ }^{1} \mathrm{H}$ Cosy spectra of 9 g

${ }^{1} \mathrm{H}-{ }^{\mathbf{1}} \mathrm{H}$ Noesy spectra of $\mathbf{9 g}$

(

$$
\begin{aligned}
& \text { Nif }
\end{aligned}
$$

190	180	170	160	150	140	130	120	110	100	90	80	70	60	50	40	10	10	10	
									$f 1$			70	60	50	40	30	20	10	0

13

190	180	170	160	150	140	130	120	110	${ }_{\text {f1 }}^{100}$	90	80	70	60	50	40	30	20	10	0

14

15

15

190	180	170	160	150	140	130	120	110	100	90	80	70	60	50	40	30	20	10	0

VIII HPLC spectra for (+/-)-15 and (-)-15
mV

Racemic 15

Pea	Time	Area	Area \%	Plate number	Tailing	Resolution
1	24.519	3525002	49.6750	12411.563	1.081	--
2	26.574	3571128	50.3250	12119.459	1.082	2.227

mV

Enantiomerically enriched 15

Peak	Time	Area	Area \%	Plate number	Tailing	Resolution
1	24.539	2571162	98.5958	12369.166	1.077	--
2	26.626	36618	1.4042	12475.546	1.043	2.274

Enantiomeric excess was determined to be 97% (determined by HPLC using chiral IC-H column, n-Hexane/EtOH/Diethylamine $=60 / 40 / 0.1, \lambda=254 \mathrm{~nm}, 35{ }^{\circ} \mathrm{C}$, $0.8 \mathrm{~mL} / \mathrm{min}, \mathrm{t}_{\text {major }}=24.54 \mathrm{~min}, \mathrm{t}_{\text {minor }}=26.63 \mathrm{~min}$).

[^0]:

