Supporting Information An In-situ and Green Method to Prepare Pt-free Cu₂ZnSnS₄ (CZTS) Counter Electrodes for Efficient and Low-cost Dye Sensitized Solar Cells

Shanlong Chen, Aichun Xu, Jie Tao,* Haijun Tao,* Yizhou Shen, Lumin Zhu, Jiajia Jiang,

Tao Wang and Lei Pan

College of Material Science and Technology, Nanjing University of Aeronautics and Astronautics, Nanjing 210016, China

Figure S1. Cross-sectional SEM images of the TiO₂ photoanode

Figure S2. SEM image of CZTS 3 films, and corresponding EDS elemental mappings for Cu, Zn, Sn, and S.

Figure S3. The cross-sectional FE-SEM images of the CZTS films for CZTS 1 (a), CZTS 2 (b), CZTS 3 (c), CZTS 4 (d), and CZTS 5 (e).

Figure S4. SEM image (a) of CZTS 3 film, and elemental spectrum (b-f) of several dots on the thin film. The Sn signal becomes larger than the S signal for (d) and (e) due to the X-ray contribution from the SnO/TCO layer, and is not completely representative of the thin nanosheet composition. However, the spectrum does reveal that the nanosheet is indeed CZTS.

Sample	EDS estimated composition	[Zn]/[Sn]	[Cu]/[S]
	(% atomic ratio Cu/Zn/Sn/S)	~1.25(Expected)	~0.5(Expected)
Dot 1	20.91/18.82/18.68/41.60	1.00	0.50
Dot 2	23.43/17.80/18.67/40.11	0.95	0.58
Dot 3	/	/	/
Dot 4	/	/	/
Dot 5	22.74/17.68/16.43/43.15	1.10	0.52

Table S1. Elemental ratios of several dots on the CZTS 3 thin film.