Supporting Information

Metal Ion Complexes of N,N'-Bis(2-Pyridylmethyl)-trans-1,2-Diaminocyclohexane-N,N'-Diacetic Acid, H₂bpcd; Cis/Trans Isomerization Equilibria

Jan Florián, [±] Craig C. McLauchlan, [#] Daniel S. Kissel, [±] Chad C. Eichman, [±] and Albert W. Herlinger*, [±]

[±]Department of Chemistry and Biochemistry, Loyola University Chicago, 1032 W Sheridan Rd., Chicago, IL 60660 USA

[#]Department of Chemistry, Illinois State University, Campus Box 4160, Normal, IL 61790-4160 USA

Figure S1. Thermal displacement plot (50%) of the [Ga(bpcd)]PF₆. H atoms are shown as circles of arbitrary size. i. Symmetry code: 1-x, $\frac{1}{2}-y$, z.

Figure S2. Packing diagrams of $[Ga(bpcd)]PF_6$ shown along a) a, b) b, and c) c. Short interactions inside the unit cell are shown in cyan.

Figure S3. Species represented in Tables S1 and S2.

Figure S4. ¹H NMR spectrum for *N,N'-bis*(2-pyridylmethyl)-1,2-diaminocyclohexane, bpmdac, in CDCl₃ at 25 °C.

Figure S5. ¹H NMR spectra of $[\text{Co(bpcd)}]^+$ in CD₃CN (top) and D₂O (bottom) at 25 °C, the * indicates solvent or an impurity. The insert expands the region around the solvent signal. Signals centered at 2.85 and 3.90 ppm $\Delta v_{AB}/J = 28.7$), and 4.07 and 4.57 ppm $(\Delta v_{AB}/J = 16.8)$ in the CD₃CN spectrum (top) have relative intensity four and are assigned as the methylene AX quartets.

Figure S6. 13 C NMR spectrum (top) and 1 H NMR spectrum (bottom) of [Ga(bpcd)]⁺ in DMSO-d₆ at 25 $^{\circ}$ C, the * indicates solvent or an impurity. The signals in the 1 H NMR spectrum centered at Signals centered at 2.30 and 3.49 ppm, and 3.17 and 3.92 ppm are assigned as the pendant arm methylene AX quartets.

Table S1. Bond Distances (Å) and Experimental Data for $Co(bpcd)^+$, $Ga(bpcd)^+$, $Ga(bppd)^+$, Ga(HCHX) octapa), and $[Fe^{II}(H_2bpcd)(C_3H_6O)]^{2^+}$. Structures are show in Figure S3.

Bond (Å)	Co(bpcd) ^{+a}	Ga(bpcd) ^{+b}	Ga(bppd) ^{+c}	Ga(H <i>CHX</i> octapa) ^d	$\left[\mathrm{Fe^{II}(H_2bpcd)(C_3H_6O)}\right]^{2+e}$
$M-O_{ac1}$	1.8868 (8)	1.9343 (9)	1.9459 (15)	1.953 (3)	2.293 (2)
$M-O_{ac2}$	*	1.9344 (9)**	1.8956 (14)	1.894 (3)	2.288 (2)
$M-N_{am}1$	1.9548 (9)	2.0866 (10)	2.0673 (16)	2.152 (4)	2.309 (3)
$M-N_{am}2$	*	*	2.1061 (17)	2.174 (3)	2.300(3)
$M-N_{py}1$	1.9448 (9)	2.0574 (10)	2.0156 (17)	1.999 (3)	2.162 (3)
$M-N_{py}2$	*	2.0575 (10)**	2.1377 (17)	***	2.163 (3)
C-O _{ac1}	1.3029 (13)	1.3025 (15)	1.286 (3)	1.293 (5)	1.308 (6)
$C=O_{ac1}$	1.2212 (14)	1.2151 (15)	1.211 (3)	1.216 (5)	1.226 (4)
C-O _{ac2}	*	*	1.287 (3)	1.319 (5)	1.297 (6)
$C=O_{ac2}$	*	*	1.208 (3)	1.208 (5)	1.235 (5)
$M-O_{ac3 of}$				1.959 (3)	
$C-\overset{py}{O}_{ac3\ of}$				1 201 (5)	
py				1.301 (5)	
$C = O_{ac3 of}$				1.215 (5)	
M-O _{acetone}					2.172 (2)
M above					,
N/N/N/X	0****	0****	0.0387 (9)	0.136***	****
plane					
Temp, K	100	100	296	100	150

^aMcLauchlan et al. ¹⁶ ^bThis work. ^cKissel et al. ¹⁵ ^dRamogida et al. ⁸ with values from deposited data, not as reported in manuscript. ^eOddon et al. ¹⁰ *N/A. Symmetry equivalent. ** Symmetry equivalent, but a difference in the distances is noted in the refinement output file. *** N/A. N₃O₃ donor set. This plane is closest to the plane that would contain the cyclohexyl unit, i.e. it contains the two N_{am}, 1 N_{pyr}, and O_{ac3 of py}. **** Special position. ***** N/A. Not a relevant descriptor for 7-coordinate geometry. Reference numbers refer to the numbering in the main manuscript

Table S2. Selected Bond Angles (°) for Co(bpcd)⁺, Ga(bpcd)⁺, Ga(bppd)⁺, Ga(HCHXoctapa), and

 $[Fe^{II}(H_2bpcd)(C_3H_6O)]^{2+}$ Structures. Structures are show in Figure S3.

Angle (deg)	Co(bpcd) ^{+a}	Ga(bpcd) ^{+b}	Ga(bppd) ^{+c}	Ga(H <i>CHX</i> octapa) ^d	$[Fe^{II}(H_2bpcd)(C_3H_6O)]^{2+e}$
O _{ac1} -M-O _{ac2}	176.08 (5)	176.56 (5)	91.83 (7)	92.89 (13)	152.23 (8)
$N_{am1}\!\!-\!\!M\!\!-\!\!N_{am2}$	89.33 (5)	85.30 (5)	96.47 (7)	81.92 (12)	76.96 (10)
N_{pyr1} – M – N_{py2}	106.74 (5)	114.95 (6)	90.80 (6)	**	177.41 (11)
$N_{am1}\!\!-\!\!M\!\!-\!\!N_{py1}$	82.17 94)	80.51 (4)	81.46 (7)	79.77 (14)	75.64 (11)
$N_{am2}\!\!-\!\!M\!\!-\!\!N_{py2}$	*	*	80.39 (7)	**	76.50 (11)
$N_{am1}\!\!-\!\!M\!\!-\!\!O_{ac1}$	87.84 (4)	85.36(4)	83.59 (7)	82.94 (12)	70.27 (10)
N_{pyr1} – M – O_{ac1}	89.92 (4)	91.19 (4)	99.41 (7)	89.13 (13)	99.00 (11)
$O=C-O_{ac}$	124.95 (10)	125.09 (12)	125.0 (3)	124.9 (4)	124.26
	*	*	123.5 (2)	125.1 (4)	124.32
				114.3 (4)	
$C(O)-O_{ac}-M$	114.57 (7)	115.26 (8)	117.81 (15)	117.6 (3)	112.54
	*	*	114.77 (14)	117.4 (3)	111.65
				116.9 (3)	

^aMcLauchlan et al. ¹⁶ ^bThis work. ^cKissel et al. ¹⁵ ^dRamogida et al. ⁸ with values from deposited data, not as reported in manuscript. ^eOddon et al. ¹⁴ *N/A. Symmetry equivalent. ** N/A. N₃O₃ donor set. Reference numbers refer to the numbering in the main manuscript