Supporting Information

Shape-controlled fabrication of the polymer-based micromotor based on the polydimethylsiloxane template

Miaoda Su, Mei Liu, Limei Liu, Yunyu Sun, Mingtong Li, Dalei Wang, Hui Zhang, Bin Dong*

Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices and Collaborative Innovation Center (CIC) of Suzhou Nano Science and Technology, Soochow University, Suzhou 215123 (P. R. China), E-mail: bdong@suda.edu.cn

Video S1 The autonomous motion of one solid cylindrical Pt-PCL micromotor (10 μ m in diameter and 24 μ m in length) in the H₂O₂ aqueous solution.

Video S2 The autonomous motion showing one solid cylindrical Pt-PCL micromotor (60 μ m in diameter and 24 μ m in height) in the H₂O₂ aqueous solution.

Video S3 The fluorescence video showing the controlled movement of one solid cylindrical Pt-PCL_{circle-60-0.4} containing Fe₃O₄NP and R6G in the H_2O_2 aqueous solution.

Video S4 The autonomous and controlled movement of a hollow cup-like Pt-PCL-Fe₃O₄ micromotor in the H_2O_2 aqueous solution.

Video S5 The cargo manipulation based on the hollow cup-like Pt-PCL-Fe₃O₄ structure. The cargo is the PCL microsphere.