Supporting Information for: Atmospheric deposition of indium in the northeastern United States: flux and historical trends

Sarah Jane O. White, *,†,‡ Carrie Keach,† and Harold F. Hemond†

Dept. of Civil and Environmental Engineering, MIT, Cambridge, MA

E-mail: sjowhite@hsph.harvard.edu

13 pages, 4 figures, 2 tables

$_{2}$ Methods

1

³ ²¹⁰Pb Dating

0.75g (for the upper 15cm) or 3g samples were packaged for gamma counting in polypropylene
vials (2oz. and 4oz., respectively) and left for at least 3 weeks before counting, to allow
secular equilibrium to be established between ²²²Rn production and decay, which translates
to secular equilibrium for ²¹⁴Pb, which is used to determine supported ²¹⁰Pb activity.

⁸ Samples for dating were counted for gamma decays on a γ -counter (Canberra Instruments,

⁹ GL2020 detector with series 40 multi-channel analyzer). Lead-210 was measured at an

^{*}To whom correspondence should be addressed

[†]Dept. of Civil and Environmental Engineering, MIT, Cambridge, MA

[‡]Current address: Dept. of Environmental Health, Harvard School of Public Health, Boston, MA

¹⁰ energy of 46.5 keV. ²¹⁴Pb was measured as a proxy for supported ²¹⁰Pb activity, at 295 and ¹¹ 352 keV. ¹³⁷Cs was measured at 662 keV. Energies were calibrated initially using pitchblende ¹² (U.S. EPA, Environmental Monitoring Systems Laboratory-Las Vegas, Quality Assurance ¹³ Division, Standard Pitchblend Ore) and individual gamma sources (²²Na, ⁵⁴Mn, ⁵⁷Co, ⁶⁰Co, ¹⁴ ¹⁰⁹Cd, ¹³³Ba, ¹³⁷Cs, 1 μ Ci, The Nucleus, Inc, Oak Ridge, TN), and re-checked periodically ¹⁵ with pitchblende.

Background ²¹⁰Pb and ²¹⁴Pb was measured for an empty plastic vial, and subtracted from 16 the total ²¹⁰Pb and ²¹⁴Pb counts. (The ²¹⁰Pb background was 0.01 counts per minute (cpm), 17 at most 15% of the sample signal. The ²¹⁴Pb background was 0.02 cpm, in some cases repre-18 senting as much as a 100% correction due to the low ²¹⁴Pb signal in the samples.) Counting 19 efficiencies for the samples [(counts per minute)/(decays per minute)] were determined by 20 the addition of two pitchblende spikes. The original sample was counted as described above, 21 then 30–65 mg pitchblende was added, mixed, and counted after 3 weeks equilibration time. 22 A second addition of pitchblende was carried out in the same way. This set of additions 23 was done for two samples of each sample size (0.75 g and 3 g samples), since changes in 24 the geometry of a sample can affect the counting efficiency. In this case, the efficiencies for 25 both sample sizes were not distinguishable: 0.5% for ²¹⁰Pb and 2% for ²¹⁴Pb. For the 3 g 26 sample, relative error on these efficiencies was as much as 17%, determined by the difference 27 between the efficiency calculated for the two 3 g samples. This error is most likely due to 28 both instrumental error, and to slight density differences in the samples that cause the overall 29 volume of the samples to vary slightly. The 0.75 g samples had one point that was seemingly 30 substantially in error, perhaps due to inadequate mixing of the pitchblende with the sample, 31 which can have a significant effect on efficiency. With this point included, relative error on 32 this sample size was 29% and 38% for ²¹⁰Pb and ²¹⁴Pb, respectively. Without this point, 33 relative error was 2-3%. 34

³⁵ Model dates were assigned according to the Constant Rate of Supply (CRS) Model (1-3). ³⁶ ²¹⁰Pb is a radioactive decay product in the ²³⁸U series.

$$^{238}U \xrightarrow{4.5\times10^{9}y} ^{226}Ra \xrightarrow{1602y} ^{222}Rn \xrightarrow{3.82d} ^{214}Pb \xrightarrow{27m} ^{27m} ^{210}Pb \xrightarrow{22.3y} ^{210}Po \xrightarrow{138.4d} ^{206}Pb$$

Because Rn is volatile and has a several-day lifetime in the atmosphere and widespread 37 sources, ²¹⁰Pb is relatively well-distributed on a hemispheric scale, although concentrations 38 may vary depending on geographic location and rainfall (1, 4). The CRS model assumes a 39 constant rate of input of ²¹⁰Pb on a year timescale (DPM/(cm²-yr)), but allows for variable 40 sedimentation rates (g sediment/(cm^2 -yr)). It therefore allows for any difference in sedimen-41 tation rate that may occur each year, based both on changes in Sphagnum growth rate from 42 year to year, as well as compaction and decomposition that takes place as the peat ages. 43 After quantification of unsupported ²¹⁰Pb (by subtraction of the measured ²¹⁴Pb from the 44 total 210 Pb), a total inventory (dpm/cm²) was calculated following Appleby (1), and the age 45 of each sediment layer was determined by 46

$$A_x = A_0 e^{-\lambda t} \tag{S1}$$

where A_x is the inventory of ²¹⁰Pb below depth x, A_0 is the inventory of the full core, λ is the decay constant for ²¹⁰Pb of 0.0311 yr⁻¹, and t is the time before present, in years. Cumulative mass (g/cm²) can be substituted for depth, and is often a better unit for comparison among cores that may be affected by compression.

Of the 34 core samples analyzed, 25 were dated using this technique. Intervening dates 51 were linearly interpolated or extrapolated for the purposes of plotting indium depth profiles. 52 Cesium-137 enters the atmosphere from nuclear activity such as bomb testing and nuclear 53 meltdowns. Peaks in ¹³⁷Cs can be seen in sediments and peat corresponding to two dates: 54 1963, the peak year of nuclear bomb testing; and 1986, the nuclear reactor meltdown at 55 Chernobyl (1, 5). The background signal for ¹³⁷Cs measured for an empty plastic vial was 56 0.00 cpm/g. Efficiencies were not calculated for ¹³⁷Cs, since only relative activities are needed 57 for determining the 1963 and 1986 peaks. 58

59 Metals Analysis

Homogenized peat samples (0.5–1 g) were digested based on a slightly modified EPA Method 60 3050B. Samples were refluxed in teflon beakers on a hotplate with 30 mL concentrated nitric 61 acid (Malinckrodt Chemical reagent grade) for approximately 4 hr before adding 10 mL 62 70% perchloric acid (Alfa Aesar reagent grade) and refluxing for another 4 hr. After sitting 63 at room temperature overnight, another 10 mLs concentrated nitric acid was added before 64 taking the samples to dryness. Perchlorate was driven off finally with the addition of 10 65 mL nitric acid, which was again taken to dryness. Each sample was resuspended in 10 mL 66 2% nitric acid, left for 30 minutes, then the acid decanted into a 15 mL polypropylene vial. 67 After addition of indium spikes, samples were filtered using an acid washed Whatman or 68 VWR brand polypropylene 0.45 μ m syringe filter, and a non-acid-washed normject 10 ml 69 polypropylene syringe. Reagent blanks and acid blanks were filtered in the same manner 70 and showed no significant indium or lead contamination from this process, and standards 71 showed that neither indium nor lead was lost significantly during filtration. 72

In order to account for matrix effects and drift of the instrument signal over time, the method of standard additions was used to quantify total indium. Each sample was split in two, one of those samples was spiked with 0.1 μ g/L indium, and the samples run back-toback on the ICP-MS. The concentration of indium in the original sample, $[In]_{smpl}$, was then determined by:

$$[In]_{smpl} = ([In]_{spike} / (CPS_{spiked} - CPS_{smpl})) \times CPS_{smpl}$$
(S2)

⁷⁸ where $[In]_{spike}$ is the concentration of the indium spike (10 μ g/L), CPS_{spiked} is the counts per ⁷⁹ second of the spiked sample, and CPS_{smpl} is the counts per second of the unspiked sample. ⁸⁰ ¹¹⁵Sn (0.34% of total Sn) is an isotopic interferent for ¹¹⁵In. It is linear and predictable, ⁸¹ and was corrected for by monitoring ¹¹⁷Sn or ¹¹⁸Sn and subtracting the corresponding counts ⁸² that would be attributed to ¹¹⁵Sn (6). Calculations using the two Sn isotope corrections agree to better than 1%, indicating that this is a reasonable correction and that there are no other interferences present. The correction for ¹¹⁵Sn were as high as 50% of the total counts at 115. Samples with a range of concentrations of tin spiked into them showed that indium concentrations could still be analyzed accurately even when ¹¹⁵Sn counts were high relative to ¹¹⁵In. Polyatomic interferences (RuO, AsAr, ArBr, BrS, and MoO) were ruled out by running pure standards of each of these elements and monitoring for signal at 115.

As discussed in the main text, lead was quantified using indium as an internal standard to account for matrix effects and drift of the instrument signal over time (7).

quality Control

All plastic and teffon vessels were acid washed prior to use. During core processing, blanks 92 were tested at all steps of the process, both by exposing the potential contributing sur-93 face (saw blade, scissors, homogenization vial, homogenization balls) to acid as a stringent 94 measure of indium content, and by comparing the indium concentrations in two halves of 95 a peat slice — one that was processed normally, and one that was subjected to repetitive 96 exposure to the saw blade or scissors. In all cases the concentration of indium supplied by 97 these surfaces was undetectable; acid blank signals were below detection limits (and <1%98 of sample signal), and the peat that was exposed to saw blade and scissors was within 9%99 of the non-exposed sample, a difference less than the method uncertainty of 20%. Lead was 100 not tested in the cutting and homogenizing blanks; though contamination from these sur-101 faces is not expected, contamination would be assumed to affect all sample depths equally, 102 potentially affecting the magnitude of lead depositional fluxes, but not affecting the shape 103 of the flux profile, which is what is used for comparison. While metal inputs to the bog may 104 be heterogeneous over the scale of the bog (8), several tests done on indium concentrations 105 in two halves of one vertical core slice indicate that metal inputs are homogeneous on the 106 scale of the core (13 cm). 107

¹⁰⁸ During digestion and ICP-MS analysis, blanks were tested at all steps of the process,

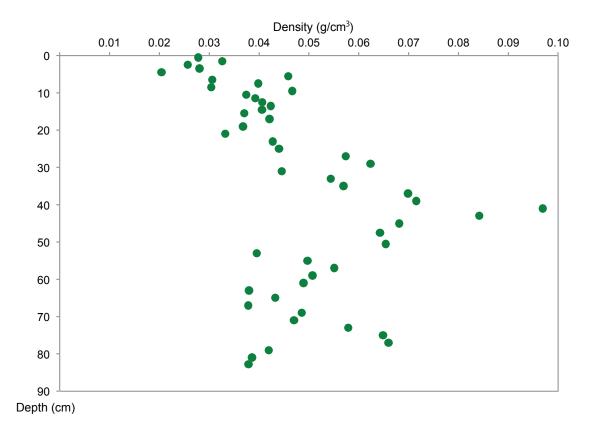


Figure S1: Dry density $\left(\frac{dry \text{ weight}}{volume}\right)$ of Thoreau's Bog core samples.

including acid blanks, reagent blanks, filter blanks, and standard recoveries. Acid-washed teflon beakers and watchglasses were used for these digests, along with acid-washed glassribbed watchglasses for taking the samples to dryness. Initial digests were done using reagent grade acids and a non-laminar flow perchloric acid hood, while subsequent dilutions for the measurement of Pb were done using double distilled HNO3. Reagent blanks were run with each sample set and subtracted from the sample signal; they should reflect any contamination during and post-digest, and contributed at most 5% of the sample signal for both In and Pb.

¹¹⁶ Data Tables and Figures

The following tables contain the raw data presented in this chapter for ²¹⁰Pb dating calculations and for the profile of indium concentrations and fluxes in Thoreau's Bog.

Depth	cumulative mass	²¹⁰ Pb	±	Inventory	±	Age	±	Model Date
cm	$ m g/cm^2$	dpm/g		$\rm dpm/cm^2$		у		
0	0			38.4	6.2	0	0	2010
1	0.03	21.9	3.4	37.8	1.2	1	1	2009
3	0.09	27.6	2.9	36.2	1.2	2	1	2008
5	0.13	24.4	3.0	35.0	1.2	3	1	2007
7	0.21	21.7	2.8	33.4	1.1	5	1	2005
9	0.28	20.1	2.9	32.0	1.1	6	2	2004
11	0.37	20.3	2.8	30.3	1.1	8	2	2002
13	0.45	17.7	2.7	28.9	1.0	9	2	2001
15	0.53	12.2	2.7	27.8	1.0	10	2	2000
18	0.65	12.6	0.9	26.3	1.0	12	2	1998
22	0.79	9.8	0.8	24.9	1.0	14	2	1996
26	0.96	10.7	0.9	23.1	0.9	16	2	1994
30	1.20	8.2	0.8	21.1	0.9	19	2	1991
34	1.40	10.4	0.9	19.0	0.9	23	2	1987
38	1.65	12.7	1.0	15.8	0.9	29	2	1981
42	1.99	6.9	0.8	13.5	0.8	34	2	1976
46	2.30	7.6	0.8	11.2	0.8	40	3	1970
52	2.68	7.1	0.8	8.4	0.8	49	3	1961
56	2.86	7.1	0.8	7.1	0.7	54	3	1956
58	2.97	9.0	0.9	6.1	0.7	59	4	1951
60	3.07	7.4	0.8	5.4	0.7	63	4	1947
64	3.25	7.6	2.1	4.1	0.5	72	4	1938
66	3.33	6.5	0.8	3.5	0.5	77	5	1933
70	3.51	5.7	0.8	2.5	0.4	87	5	1923
72	3.60	4.6	0.7	2.1	0.4	93	6	1917
76	3.85	4.3	0.7	1.0	0.3	116	9	1894
82	4.14	3.6	0.7	0				

Table S1: $^{210}\mathrm{Pb}$ data used for date calculations.

Depth Interval	year	In conc	±	In flux	sedimentation rate	density
cm		ppb		$ m ng/(cm^2-yr)$	m cm/yr	$ m g/cm^3$
0-1	2009	2	0.4			0.03
2-3	2008	2	0.4	0.06	1.43	0.03
4-5	2007	4	0.7	0.14	1.88	0.02
6-7	2005	3	0.5	0.10	1.28	0.03
8-9	2004	2	0.4	0.09	1.44	0.03
10-11	2002	2	0.4	0.08	1.14	0.04
12-13	2001	2	0.4	0.11	1.30	0.04
14-15	2000	2	0.4	0.14	1.75	0.04
16-18	1998	2	0.3	0.12	1.65	0.04
20-22	1996	2	0.4	0.15	2.31	0.03
24-26	1994	2	0.5	0.18	1.61	0.04
28-30	1991	3	0.5	0.22	1.39	0.06
32-34	1987	5	1	0.33	1.21	0.05
36-38	1981	16	3	0.73	0.67	0.07
40-42	1976	20	4	1.54	0.79	0.10
44-46	1970	34	13	1.54	0.66	0.07
49-52	1961	44	9	1.90	0.66	0.07
54-56	1956	27	5	1.02	0.76	0.05
56-58	1951	50	29	1.15	0.41	0.06
58-60	1947	51	10	1.24	0.48	0.05
62-64	1938	56	12	0.94	0.44	0.04
64-66	1933	45	9	0.82	0.42	0.04
66-68	1926	36	$\overline{7}$	0.40	0.29	0.04
68-70	1923	43	9	1.13	0.55	0.05
70-72	1917	69	38	1.08	0.33	0.05
72 - 74	1908	45	9	0.64	0.24	0.06
74-76	1894	65	16	0.59	0.14	0.06
76-78	1893	41	8	*5.67	*2.09	0.07
78-80	1888	27	5	0.46	0.41	0.04
80-82	1884	30	6	0.51	0.45	0.04
82-83.5	1880	29	6	0.50	0.45	0.04
83.5-84	1879	14	3	0.24	0.28	0.06
84-84.5	1877	13	3	0.22	0.36	0.05
84.5-87	1872	9	2	0.15	0.48	0.04

Table S2: Indium depth profile data.

*This point was omitted from Figures 4 and 5 because of a calculated sedimentation rate 4x higher than the other calculated sedimentation rates, causing the flux to be 10x higher than surrounding fluxes. See text for discussion.

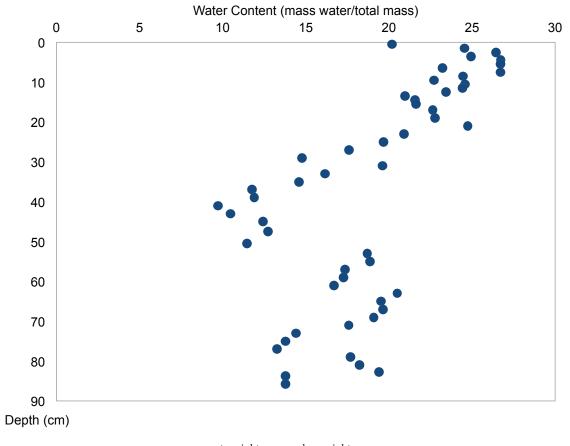


Figure S2: Water content $\left(\frac{\text{mass wet weight - mass dry weight}}{\text{mass wet weight}}\right)$ of Thoreau's Bog core samples.

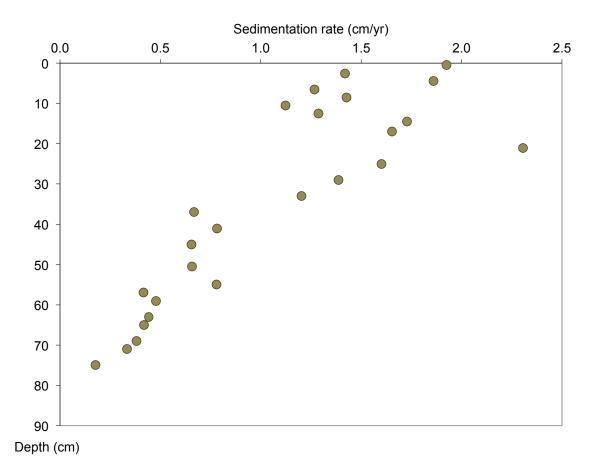


Figure S3: Apparent sedimentation rate of Thoreau's Bog core samples is higher at the surface, where live peat is growing, and lower at depth, where peat is degraded and compressed.

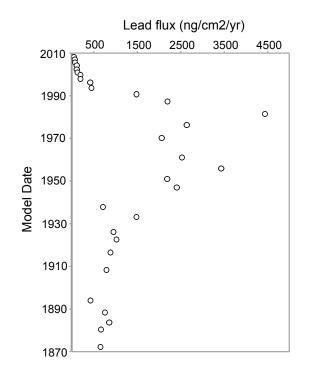


Figure S4: Lead fluxes have been increasing since at least the early 1900s, peak in the 1970s, and decrease to the present. This agrees well with other published flux profiles for lead in the northeastern United States, and serves as a cross-check on the dating and indium analyses for this core.

119 References

- (1) Appleby, P. G. In *Chronostratigraphic Techniques in Recent Sediments*; Last, W. M.,
 Smol, J. P., Eds.; Tracking Environmental Change Using Lake Sediments, Volume 1:
 Basin Analysis, Coring, and Chronological Techniques.; Kluwer Academic Publishers:
 Dordrecht, The Netherlands, 2001; pp 171–203.
- (2) Appleby, P. G.; Nolan, P. J.; Oldfield, F.; Richardson, N.; Higgitt, S. R. Pb-210 Dating
 of Lake-Sediments and Ombrotrophic Peats by Gamma-Essay. *Sci. Total Environ.* 1988,
 69, 157–177.
- (3) Appleby, P. G.; Oldfield, F. The Calculation of Lead-210 Dates Assuming a Constant
 Rate of Supply of Unsupported ²¹⁰Pb to the Sediment. *Catena* 1978, 5, 1–8.
- (4) Baskaran, M. Po-210 and Pb-210 as atmospheric tracers and global atmospheric Pb-210
 fallout: A review. J. Environ. Radioact. 2011, 102, 500-513.
- (5) Lima, A. L.; Hubeny, J. B.; Reddy, C. M.; King, J. W.; Hughen, K. A.; Eglinton, T. I.
 High-resolution historical records from Pettaquamscutt River basin sediments: 1. Pb210 and varve chronologies validate record of Cs-137 released by the Chernobyl accident. *Geochim. Cosmochim. Acta* 2005, 69, 1803–1812.
- (6) Thomas, R. Chapter 14: Review of Interferences, 3rd ed.; Practical Guide to ICP-MS:
 A Tutorial for Beginners; CRC Press, 2013; pp 133–143.
- (7) Thomas, R. Chapter 13: Methods of Quantitation, 3rd ed.; Practical Guide to ICP-MS:
 A Tutorial for Beginners; CRC Press, 2013; pp 123–132.
- (8) Givelet, N.; Roux, G. L.; Cheburkin, A.; Chen, B.; Frank, J.; Goodsite, M.; Kempter, H.;
 Krachler, M.; Noernberg, T.; Rausch, N.; Rheinberger, S.; Roos-Barraclough, F.; Sapkota, A.; Scholz, C.; Shotyk, W. Suggested protocol for collecting, handling and prepar-

- ing peat cores and peat samples for physical, chemical, mineralogical and isotopic anal-
- yses. J. Environ. Monit. **2004**, *6*, 481–492.