Supporting information for *Environ. Sci. Technol.*

Isotope Fractionation Associated with the Indirect Photolysis of Substituted Anilines in Aqueous Solution

Marco Ratti^{1,2}, Silvio Canonica¹, Kristopher McNeill², Jakov Bolotin¹, and Thomas B. Hofstetter^{*,1,2}

¹Eawag, Swiss Federal Institute of Aquatic Science and Technology, CH-8600 Dübendorf, Switzerland ²Institute of Biogeochemistry and Pollutant Dynamics (IBP), ETH Zürich, CH-8092 Zürich, Switzerland

> *Corresponding author: thomas.hofstetter@eawag.ch phone +41 58 765 50 76, fax +41 58 765 50 28

Contents

S 1	Chemicals	2
S2	2 Tables S2.1 Reaction rate constants	2 2
$\mathbf{S3}$	8 Figures	3
	 S3.1 Kinetics and isotope fractionation associated with the transformation of aniline, 4-Cl-aniline, and 4-OCH₃-aniline by ³AQDS[*] S3.2 Kinetics and isotope fractionation associated with the transformation of aniline, 4-CH₃-, and 4-OCH₃-aniline by ³MB[*] 	3 4
$\mathbf{S4}$	Product analysis	5
	S4.1 Indirect Phototransformation of 4-CH ₃ -aniline by ${}^{3}AQDS^{*}$	5
		6
	S4.3 Indirect Phototransformation of 4-Cl-aniline by ${}^{3}AQDS^{*}$	8

S1 Chemicals

Chemicals and gases were purchased from various manufacturers and used without further treatment. A list of compound names, purities, and suppliers follows. Aniline $(\geq 99.5\%)$, p-toluidine (99.6\%), 4-chloroaniline (98%), p-anisidine ($\geq 99\%$), methylene blue (certified by the Biological Stain Commission) and potassium phosphate monobasic (>99%) were purchased from Sigma-Aldrich (Buchs SG, Switzerland); anthraquinone-1,5-disulfonic acid disodium salt (98%) was from ABCR GmbH & CO. KG (Karlsruhe, Deutschland); hydrochloric acid (32%) and sodium hydroxide (98%), sodium chloride (>99%) were from Merck (Dietikon, Switzerland); methanol (for HPLC gradient) from Acros Organics (Geel, Belgium). All aqueous solutions were prepared in nanopure water (18.2 MΩ-cm, Barnstead NANOpure Diamond Water Purification System).

The carrier and reference gas for GC and GC/IRMS included helium (He, 99.999%), N₂ (99.9999%), CO₂ (99.999%), H₂ (99.999%), synthetic air ($20 \pm 1\%$ O₂ in N₂, 99.9995%), O₂ (99.9995%) and, N₂ (99.9995%) from Carbagas (Rümlang, Switzerland). All aqueous solutions were prepared in nanopure water (18.2 MΩ-cm, Barnstead NANOpure Diamond Water Purification System).

S2 Tables

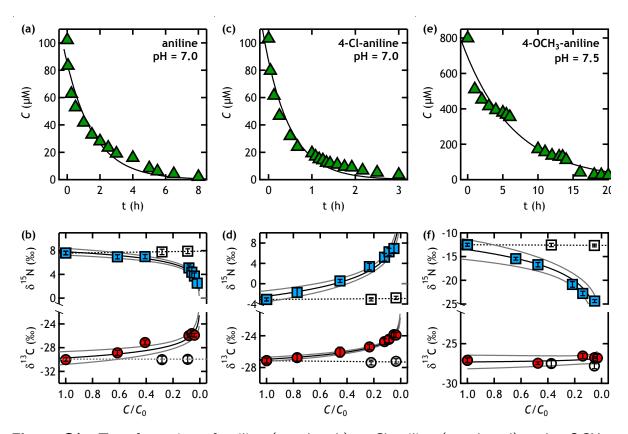
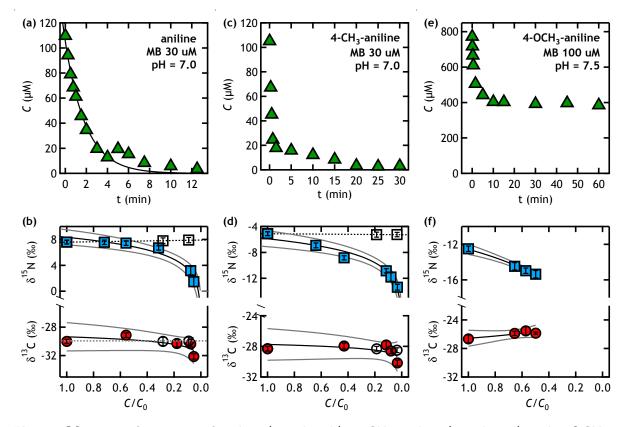

S2.1 Reaction rate constants

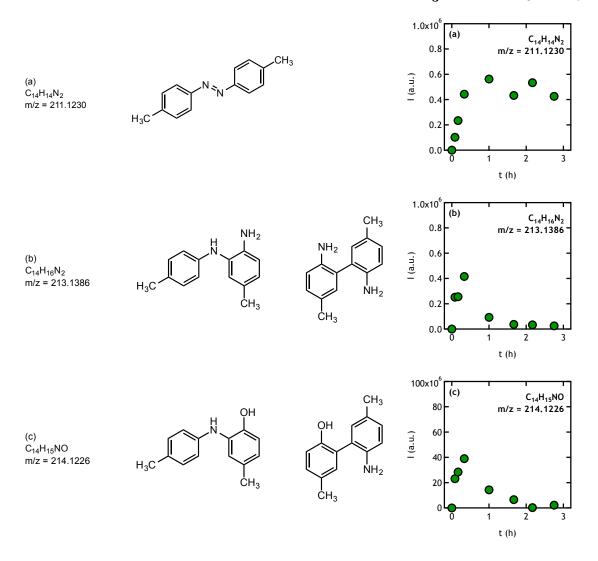
Table S1 Pseudo-first order reaction rate constants for the indirect photolysis of aniline and 4-Cl-, 4-CH₃-, 4-OCH₃-aniline, by excited triplet states of 9,10-anthraquinone-1,5-disulfonate (${}^{3}AQDS^{*}$) and methylene blue (${}^{3}MB^{*}$). Uncertainties are 95% confidence intervals.

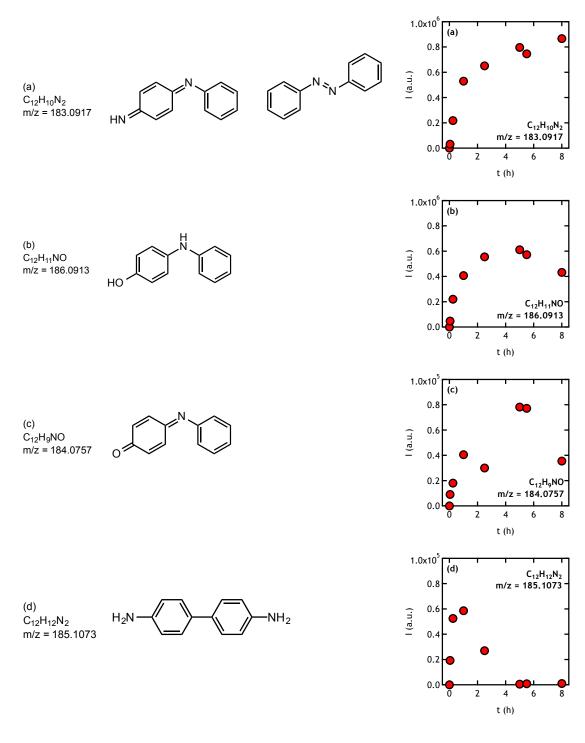
Compound	pН	$k_{\rm obs}/{\rm h}^{-1}$	
³ AQDS*			
aniline	7.0	0.6 ± 0.2	
4-Cl-aniline	7.0	1.7 ± 0.3	
4-CH ₃ -aniline	7.0	1.6 ± 0.6	
4-OCH ₃ -aniline	7.5	0.14 ± 0.02	
${}^{3}\mathbf{MB}^{*}$			
aniline	7.0	31 ± 6	
4-Cl-aniline	7.0	34 ± 3	
4-CH ₃ -aniline	7.0	n.d.	
4-OCH ₃ -aniline	7.5	n.d.	


S3 Figures

S3.1 Kinetics and isotope fractionation associated with the transformation of aniline, 4-Cl-aniline, and 4-OCH₃-aniline by ${}^{3}AQDS^{*}$

Figure S1 Transformation of aniline (panels a,b), 4-Cl-aniline (panels c,d) and 4-OCH₃aniline (panels e, f) by excited triplet states of 9,10-anthraquinone-1,5-disulfonate (³AQDS^{*}). Total AQDS concentration was 1.0 mM. Panels (a), (c), and (e) illustrate substrate disappearance. The solid lines were calculated using pseudo-first-order decay kinetics. Panels (b), (d), and (f): C and N isotope signatures (δ^{13} C, circles, δ^{15} N, squares) vs. fraction of remaining substrate (C/C_0). Uncertainties of data points are standard deviations of triplicate measurements. Solid lines were calculated with eq. 1; gray lines are 95% confidence intervals. Control experiments were treated identically but reactors did not contain photosensitizers (empty symbols, dotted lines).


S3.2 Kinetics and isotope fractionation associated with the transformation of aniline, 4-CH₃-, and 4-OCH₃-aniline by ${}^{3}MB^{*}$


Figure S2 Transformation of aniline (panels a,b), 4-CH₃-aniline (panels c,d) and 4-OCH₃aniline (panels e, f) by excited triplet states of methylene blue (³MB^{*}). Panels (a), (c), and (e) illustrate substrate disappearance. The solid line in panel (a) was calculated using pseudofirst-order decay kinetics. Panels (b), (d), and (f): C and N isotope signatures (δ^{13} C, circles, δ^{15} N, squares) vs. fraction of remaining substrate (C/C_0). Uncertainties of data points are standard deviations of triplicate measurements. Solid lines were calculated with eq. 1; gray lines are 95% confidence intervals. Control experiments were treated identically but reactors did not contain photosensitizers (empty symbols, dotted lines).

S4 Product analysis

S4.1 Indirect Phototransformation of $4-CH_3$ -aniline by $^3AQDS^*$

Figure S3 Molecular structure of possible reaction products from the indirect phototransformation of 4-CH₃-aniline by ³AQDS^{*} at pH = 7.0 (total AQDS = 1mM). Concentration dynamics of reaction products are shown as signal areas of the investigated m/z-ratio vs. irradiation time.

S4.2 Indirect Phototransformation of aniline by ³AQDS^{*}

(continues on next page)

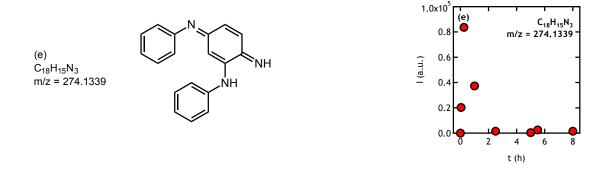
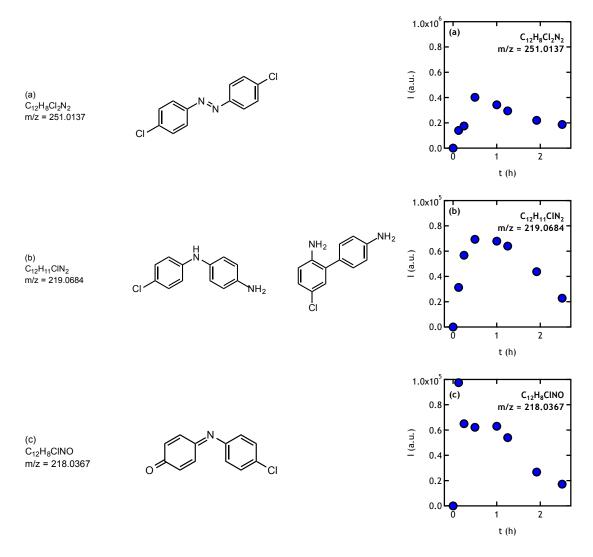



Figure S4 Molecular structure of possible reaction products from the indirect phototransformation of aniline by ${}^{3}AQDS^{*}$ at pH = 7.0 (total AQDS = 1mM). Concentration dynamics of reaction products are shown as signal areas of the investigated m/z-ratio vs. irradiation time.

S4.3 Indirect Phototransformation of 4-Cl-aniline by ³AQDS^{*}

Figure S5 Molecular structure of possible reaction products from the indirect phototransformation of 4-Cl-aniline by ${}^{3}AQDS^{*}$ at pH = 7.0 (total AQDS = 1mM). Concentration dynamics of reaction products are shown as signal areas of the investigated m/z-ratio vs. irradiation time.