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The second free energy term (in SI unit) corresponding to solvation as defined by Shilov and

Lyashchenko (their Eq. 21) is

G2 = ∑
i

Ni
z2

i e2

8πε0εwR±
τ2(κ0), (1)

where Ni is the number of ions of species i, e is the unit charge, zi is the valence of the ionic charge,

ε0 is the permittivity of vacuum, εw is the dielectric constant of water (of the solution at infinite

dilution), R± = (R++R−)/2 is the mean ionic radius,

κ0 =

(
e2

ε0εwkTV ∑Niz2
i

)1/2

(2)

is the inverse Debye screening length expressing the concentration dependence (k is Boltzmann’s

constant, T is temperature, V is volume),

τ2(κ0) = 2
∫ 1

0

λ

f (κ0λ )
dλ , (3)

and function f (κ0) is defined through

ε(c) = ε(κ0) = εw f (κ0), (4)

where ε(c) is the experimental c-dependent dielectric constant. Function f (κ0) expresses the c-

dependence of the dielectric constant, where concentration is related to density through Ni/V =

1000NAci with NA being the Avogadro number. For the 1:1 and 2:1 electrolytes considered in this

paper the salt concentration is equal to the cation concentration: c = c+.

The excess chemical potential (that is related to the logarithm of the activity coefficient, γi,2, is

obtained from the derivation

µi,2 = kT lnγi,2 =
∂G2

∂Ni
. (5)
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If we leave R± in G2, and perform the derivation, we can obtain the expression developed by Shilov

and Lyashchenko for the infinite dilution as reference:

µi,2 =
z2

i e2

8πε0R±εw

[
τ2(κ0)+

1
2

κ0
∂τ2(κ0)

∂κ0
−1
]
=

z2
i e2

8πε0R±εw

[
τ2(κ0)+

1
2

σ2(κ0)−1
]
, (6)

where

σ2(κ0) = κ0
∂τ2(κ0)

∂κ0
. (7)

This equation corresponds to Eq. 29 of Shilov and Lyashchenko except that the second term origi-

nating from the concentration dependence of V is omitted here (it is small and can be neglected).

In the main text, we showed that changing R± for R∗i , this equation is equivalent with the

Born-like expression proposed by us1–4

µ
IW
i (c) =

z2
i e2

8πε0R∗i

(
1

ε(c)
− 1

εw

)
, (8)

using the infinite dilution as reference. This equivalence, however, stands only if we perform the

R±→ R∗i replacement only after the differentiation ∂G2/∂Ni (called route 1 in the main text). We

obtain a slightly different result if we define the free energy with R∗i right at the beginning

G†
2 = ∑

i
Ni

z2
i e2

8πε0εwR∗i
τ2(κ0) (9)

and perform the differentiation ∂G†
2/∂Ni afterwards (called route 2 in the main text):

∂G†
2

∂Ni
=

∂

∂Ni

(
∑

j
N j

z2
je

2

8πε0εwR∗j
τ2(κ0)

)

= ∑
j

δi j
z2

je
2

8πε0εwR∗j
τ2(κ0)+∑

j
N j

z2
je

2

8πε0εwR∗j

∂τ2(κ0)

∂Ni
, (10)
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where δi j is the Kronecker delta (1 if i = j and 0 otherwise). In this equation

∂τ2(κ0)

∂Ni
=

∂τ2(κ0)

∂κ0

∂κ0

∂Ni

=
∂τ2(κ0)

∂κ0

1
2κ0

∂

∂Ni

[
e2

ε0εwkTV ∑
k

Nkz2
k

]

=
∂τ2(κ0)

∂κ0

1
2κ0

[
e2

ε0εwkTV ∑
k

δikz2
k +

e2

ε0εwkT

(
∑
k

Nkz2
k

)
∂ (1/V )

∂Ni

]
. (11)

The second term in the square brackets is similar to that of Shilov and Lyashchenko, but is small

so we neglect it. The first term is

∂τ2(κ0)

∂Ni
=

∂τ2(κ0)

∂κ0

1
2κ0

e2

ε0εwkTV
z2

i (12)

using the definition of δi j. Writing it into the second term of Eq. 10 and rearranging we obtain

∑
j

N j
z2

je
2

8πε0εwR∗j

∂τ2(κ0)

∂Ni
= ∑

j
N j

z2
je

2

8πε0εwR∗j

∂τ2(κ0)

∂κ0

1
2κ0

e2

ε0εwkTV
z2

i

=

(
∑

j
N j

z2
je

2

ε0εwkTV
R∗i
R∗j

)
z2

i e2

8πε0εwR∗i

1
2κ0

∂τ2(κ0)

∂κ0

=
z2

i e2

8πε0εwR∗i

κ2
i

2κ0

∂τ2(κ0)

∂κ0
(13)

where we introduced the notation

κ
2
i = ∑

j
N j

z2
je

2

ε0εwkTV
R∗i
R∗j

(14)

that differs from κ0 in the fraction of R∗i /R∗j that can be considerable in some cases. Here we

investigate the effect of that difference.

Replacing Eq. 13 in the second term of Eq. 10, for the solvation (IW) excess chemical potential
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in route 2 we obtain that

µ
†
i,2 =

z2
i e2

8πε0εwR∗i

(
τ2(κ0)+

κ2
i

2κ0

∂τ2(κ0)

∂κ0
−1
)

(15)

or (using Eq. 7)

µ
†
i,2 =

z2
i e2

8πε0εwR∗i

(
τ2(κ0)+

1
2

(
κ2

i

κ2
0

)
σ2(κ0)−1

)
(16)

with the infinitely dilute electrolyte as reference. The difference between this equation (route 2)

and Eq. 6 (route 1) is the presence of the κ2
i /κ2

0 multiplication factor before the σ2-term. Although

the two equations in routes 1 and 2 differ for the individual chemical potentials, the mean computed

as

µ
IW
± =

1
ν

(
ν+µ

IW
+ +ν−µ

IW
−
)

(17)

is the same no matter whether we use route 1 or route 2 (ν = ν++ ν−). For pure electrolytes,

ν+ = |z−| and ν− = z+. The proof follows.

The first term containing τ2(κ0) is the same in Eq. 16 and 6. We can prove the statement

if we show the equality of the second terms containing σ2(τ0). By collecting the ion-dependent

quantities in square brackets, these terms can be written in the form

A
ν

[
ν+

z2
+

R∗+

κ2
+

κ2
0
+ν−

z2
−

R∗−

κ2
−

κ2
0

]
=

A
ν

[
ν+

z2
+

R∗+
+ν−

z2
−

R∗−

]
, (18)

where A = e2σ2(κ0)/16πε0εw. We prove the equality by developing the square bracket on the left

hand side until we get the square bracket on the right hand side. Using the definition of κ2
+ and κ2

−

(Eq. 14), we obtain

[
ν+

z2
+

R∗+

1
κ2

0

(
BN+z2

+

R∗+
R∗+

+BN−z2
−

R∗+
R∗−

)
+ν−

z2
−

R∗−

1
κ2

0

(
BN+z2

+

R∗−
R∗+

+BN−z2
−

R∗−
R∗−

)]
, (19)
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where B = e2/ε0εwkTV . After rearranging, we obtain

B(ν+z2
++ν−z2

−)

κ2
0

[
z2
+N+

R∗+
+

z2
−N−
R∗−

]
. (20)

Using the equations N+ =
ν+

ν
N and N− =

ν−
ν

N with N being the total number of ions, we can

write that

B
(

N+ν

N
z2
++

N−ν

N
z2
−

)
κ2

0

z2
+

ν+N
ν

R∗+
+

z2
−

ν−N
ν

R∗−

 . (21)

In this equation, N and ν drop out, so we obtain

B(N+z2
++N−z2

−)

κ2
0

[
z2
+ν+

R∗+
+

z2
−ν−
R∗−

]
. (22)

Since κ2
0 = B(N+z2

++N−z2
−), the equality in Eq. 18 is proven.

Because the results obtained form the two routes differ only for the individual excess chemical

potentials, we show results only for them. As in the main text, we use NaCl and CaCl2 as examples.

We do not show results for using the Pauling radii in the IW term, because we proved in the main

text that they overestimate the IW term.

The results (Figs. 1 and 2) show that route 2 (dashed line) gives a little bit larger values for the

bigger ions (the anion, in these cases) than route 1 (solid line). The reverse is true for the smaller

ion (the cation, in these cases). The difference is quite small. Furthermore, route 2 does not give

any systematic improvement over route 1. For example, it improves the prediction for Na+, but

makes it worse for Cl−. The same is true for CaCl2.

Therefore, we suggest using route 1. There are other reasons for this suggestion. We showed

in the main text, that route 1 is equivalent with using just the “plain” Born-expression (Eq. 8) for

the IW term. Moreover, this simple expression can be the basis of eliminating the Born radius by
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Figure 1: Individual activity coefficients of NaCl and its II and IW components (in molar scale).
Solid and dashed blue lines show the IW term as computed from route 1 (Eq. 8) and route 2 (Eq.
16), respectively, using the Born (RB

i ) radii for R∗i . The radii can be found in Table 1 of the main
text. Solid and dashed red lines show the II terms as computed from either GCMC simulations or
the EDH theory (Eq. 18 of Shilov and Lyashchenko5). The black curves show the total activity
coefficients as computed from different combinations – thick solid: GCMC for II and route 1 for
IW; solid: EDH for II and route 1 for IW; dashed: EDH for II and route 2 for IW (the Born radius
is used in all cases). The experimental data are taken from Wilczek-Vera et al.6
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Figure 2: Individual activity coefficients of CaCl2 and its II and IW components (in molar scale).
Solid and dashed blue lines show the IW term as computed from route 1 (Eq. 8) and route 2 (Eq.
16), respectively, using the Born (RB

i ) radii for R∗i . The radii can be found in Table 1 of the main
text. Solid and dashed red lines show the II terms as computed from either GCMC simulations or
the EDH theory (Eq. 18 of Shilov and Lyashchenko5). The black curves show the total activity
coefficients as computed from different combinations – thick solid: GCMC for II and route 1 for
IW; solid: EDH for II and route 1 for IW; dashed: EDH for II and route 2 for IW (the Born radius
is used in all cases). The experimental data are taken from Wilczek-Vera et al.6
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introducing the hydration free energy, ∆Gs
i :

µ
IW
i (c) = ∆Gs

i
ε(c)− εw

ε(c) (εw−1)
. (23)

In this way, we obtain an equation that contains only experimentally attainable parameters. Param-

eter ∆Gs
i gives the amplitude of the IW term, while function ε(c) describes the c-dependence of

the IW term.

The Born radius drops ou. It is not a loss, because the Born radius is not a physical radius;

it is just a fitting parameter to reproduce the experimental hydration free energy with the Born

equation. Getting rid of the Born radius, we also get rid of the confusion of using different radii

in the II (ion-ion) and IW terms. The Pauling radius used in the II term is a real physical radius

defining the distance of closest approach of ions in the simulations. The Born radius has no such a

molecular meaning.

A relation similar to that in Eq. 23 can also be developed in the case of route 2 with a slightly

different c-dependence. Route 1, nevertheless, results in simpler formulas so we do not pursue

route 2 further.
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