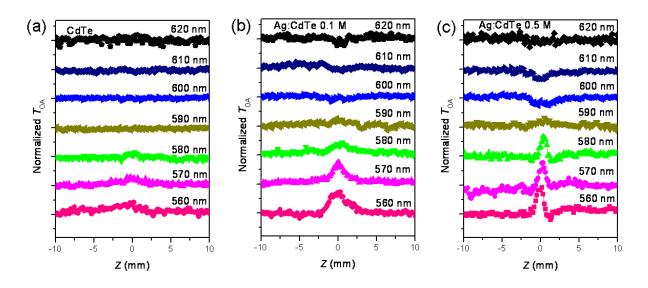
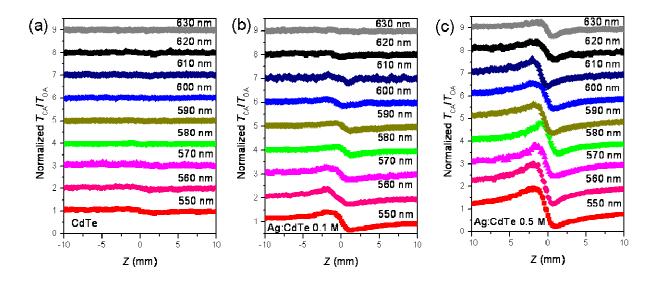
Supporting Information for

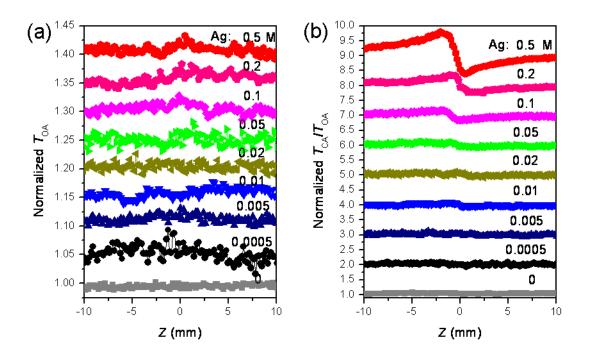
## Largely Enhanced Optical Nonlinear Response of Heavily Doped Ag:CdTe Nanocrystals around the Excitonic Band Edge


Si-Jing Ding<sup>†</sup>, Fan Nan<sup>†</sup>, Xiao-Na Liu<sup>‡</sup>, Xiao-Li Liu<sup>†</sup>, Ya-Fang Zhang<sup>†</sup>, Shan Liang<sup>†,§</sup>, Duan-Zheng Yao<sup>†</sup>, Xin-Hui Zhang<sup>\*,‡</sup>, Qu-Quan Wang<sup>\*,†,||</sup>

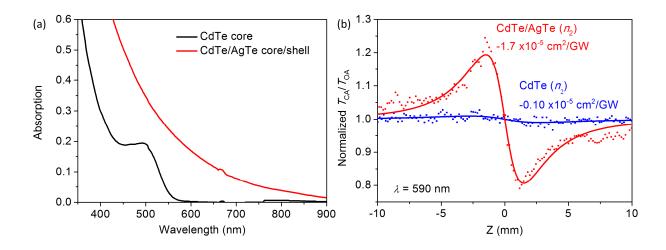
<sup>&</sup>lt;sup>†</sup>Key Laboratory of Artificial Micro- and Nano-structures of the Ministry of Education, and School of Physics and Technology, Wuhan University, Wuhan 430072, P. R. China.


<sup>&</sup>lt;sup>‡</sup>State Key Laboratory of Superlattices and Microstructures, Institute of Semiconductors, Chinese Academy of Sciences, Beijing 100083, P. R. China.

<sup>§</sup>Department of Physics, Hunan Normal University, Changsha 410081, P. R. China.


The Institute for Advanced Study, Wuhan University, Wuhan 430072, P. R. China.




**Figure S1.** Open-aperture Z-scan nonlinear transmittance ( $T_{OA}$ ) of the Ag:CdTe SQDs with silver concentration  $\rho_{Ag} = 0$  M (a), 0.1 M (b), and 0.5 M (c), which are recorded at the wavelengths of 550, 560, 570, 580, 590, 600, 610, and 620 nm.



**Figure S2.** Normalized closed-aperture Z-scan nonlinear transmittance  $(T_{CA}/T_{OA})$  of the Ag:CdTe SQDs with silver concentration  $\rho_{Ag} = 0$  M (a), 0.1 M (b), and 0.5 M (c), which are recorded at the wavelengths of 550, 560, 570, 580, 590, 600, 610, 620, and 630 nm.



**Figure S3.** (a) Open-aperture Z-scan nonlinear transmittance ( $T_{\rm OA}$ ) of Ag:CdTe SQDs with silver concentration  $\rho_{\rm Ag}=0\sim0.5$  M. (b) Normalized closed-aperture Z-scan nonlinear transmittance ( $T_{\rm CA}/T_{\rm OA}$ ) of the Ag:CdTe SQDs with silver concentration  $\rho_{\rm Ag}=0\sim0.5$  M. The wavelength is fixed at 590 nm.



**Figure S4. (a)** Absorption spectra of CdTe cores and CdTe/AgTe core/shell SQDs. **(b)** Close-aperture Z-scan nonlinear transmittance of CdTe cores and CdTe/AgTe core/shell SQDs. The nonlinear refractive index of CdTe/AgTe core/shell SQDs is enhanced 17 times comparing to that of the CdTe cores.